Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
6da21ebe
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
1 年多 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6da21ebe
编写于
8月 27, 2020
作者:
J
jiangjiajun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
temporay support
上级
23ba3b50
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
582 addition
and
31 deletion
+582
-31
x2paddle/convert.py
x2paddle/convert.py
+8
-0
x2paddle/core/program.py
x2paddle/core/program.py
+105
-1
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+37
-15
x2paddle/op_mapper/tf_op_mapper_nhwc.py
x2paddle/op_mapper/tf_op_mapper_nhwc.py
+124
-15
x2paddle/optimizer/batch_norm.py
x2paddle/optimizer/batch_norm.py
+22
-0
x2paddle/optimizer/bias.py
x2paddle/optimizer/bias.py
+61
-0
x2paddle/optimizer/transpose.py
x2paddle/optimizer/transpose.py
+225
-0
未找到文件。
x2paddle/convert.py
浏览文件 @
6da21ebe
...
...
@@ -118,13 +118,21 @@ def tf2paddle(model_path,
from
x2paddle.op_mapper.tf_op_mapper
import
TFOpMapper
from
x2paddle.op_mapper.tf_op_mapper_nhwc
import
TFOpMapperNHWC
from
x2paddle.optimizer.tf_optimizer
import
TFOptimizer
from
x2paddle.optimizer.transpose
import
TransposeOpt
from
x2paddle.optimizer.bias
import
BiasOpt
print
(
"Now translating model from tensorflow to paddle."
)
model
=
TFDecoder
(
model_path
,
define_input_shape
=
define_input_shape
)
mapper
=
TFOpMapperNHWC
(
model
)
program
.
build
()
opt
=
BiasOpt
()
opt
.
run
(
program
)
opt
=
TransposeOpt
()
opt
.
run
(
program
)
program
.
gen_model
(
save_dir
)
program
.
visualize
(
save_dir
)
def
caffe2paddle
(
proto
,
weight
,
save_dir
,
caffe_proto
,
params_merge
=
False
):
...
...
x2paddle/core/program.py
浏览文件 @
6da21ebe
...
...
@@ -15,8 +15,11 @@
from
__future__
import
print_function
from
__future__
import
division
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.proto
import
framework_pb2
from
collections
import
OrderedDict
import
copy
import
numpy
import
time
import
collections
...
...
@@ -57,6 +60,29 @@ class PaddleLayer(object):
block
.
father_layer
=
self
self
.
blocks
.
append
(
block
)
def
get_code
(
self
,
with_outputs
=
True
):
code
=
""
# if len(self.outputs) == 1:
# code = self.outputs[0]
# else:
# for output in self.outputs:
# code += "{}, ".format(output)
# code = code.strip(", ")
# code += " = "
code
+=
"{}("
.
format
(
self
.
kernel
)
for
k
,
v
in
self
.
inputs
.
items
():
if
isinstance
(
v
,
list
):
code
+=
"{}=[{}], "
.
format
(
k
,
", "
.
join
(
v
))
else
:
code
+=
"{}={}, "
.
format
(
k
,
v
)
for
k
,
v
in
self
.
attrs
.
items
():
code
+=
"{}={}, "
.
format
(
k
,
v
)
code
=
code
.
strip
(
", "
)
code
+=
")"
return
code
class
PaddleProgram
(
object
):
def
__init__
(
self
):
...
...
@@ -80,10 +106,59 @@ class PaddleProgram(object):
layer
=
PaddleLayer
(
kernel
,
inputs
,
outputs
,
**
kwargs
)
layer_id
=
str
(
len
(
self
.
layers
))
if
self
.
father_layer
is
not
None
:
layer_id
=
"{}.{}.{}"
.
format
(
layer_id
,
len
(
self
.
father_layer
.
blocks
()),
self
.
father_layer
.
id
)
layer_id
=
"{}.{}.{}"
.
format
(
layer_id
,
len
(
self
.
father_layer
.
blocks
()),
self
.
father_layer
.
id
)
self
.
layers
[
layer_id
]
=
layer
return
layer_id
def
del_layer
(
self
,
layer_id
):
layer
=
self
.
layers
[
layer_id
]
outputs
=
self
.
edges_out
.
get
(
layer_id
,
[])
inputs
=
self
.
edges_in
.
get
(
layer_id
,
[])
assert
len
(
inputs
)
<=
1
,
"There should be 0 or 1 input for deleted layer."
if
len
(
inputs
)
==
0
:
for
out
in
outputs
:
while
layer_id
in
self
.
edges_in
[
out
]:
index
=
self
.
edges_in
[
out
].
index
(
layer_id
)
del
self
.
edges_in
[
out
][
index
]
input_keys
=
list
(
self
.
layers
[
out
].
inputs
.
keys
())
for
k
in
input_keys
:
if
self
.
layers
[
out
].
inputs
[
k
]
==
layer
.
outputs
[
0
]:
del
self
.
layers
[
out
].
inputs
[
k
]
del
self
.
layers
[
layer_id
]
if
layer_id
in
self
.
edges_in
:
del
self
.
edges_in
[
layer_id
]
if
layer_id
in
self
.
edges_out
:
del
self
.
edges_out
[
layer_id
]
return
# 将所有输出layer的输入layer进行替换
for
out
in
outputs
:
for
i
in
range
(
len
(
self
.
edges_in
[
out
])):
if
self
.
edges_in
[
out
][
i
]
==
layer_id
:
self
.
edges_in
[
out
][
i
]
=
inputs
[
0
]
# 将输出layer赋给输入layer的输出
replace_index
=
self
.
edges_out
[
inputs
[
0
]].
index
(
layer_id
)
del
self
.
edges_out
[
inputs
[
0
]][
replace_index
]
for
i
,
out
in
enumerate
(
outputs
):
self
.
edges_out
[
inputs
[
0
]].
insert
(
replace_index
+
i
,
out
)
for
k
,
v
in
self
.
layers
[
out
].
inputs
.
items
():
if
v
==
layer
.
outputs
[
0
]:
self
.
layers
[
out
].
inputs
[
k
]
=
list
(
layer
.
inputs
.
values
())[
0
]
del
self
.
layers
[
layer_id
]
if
layer_id
in
self
.
edges_out
:
del
self
.
edges_out
[
layer_id
]
if
layer_id
in
self
.
edges_in
:
del
self
.
edges_in
[
layer_id
]
def
build
(
self
):
outputs_from_nodes
=
dict
()
for
layer_id
,
layer
in
self
.
layers
.
items
():
...
...
@@ -105,6 +180,12 @@ class PaddleProgram(object):
for
output
in
layer
.
outputs
:
outputs_from_nodes
[
output
]
=
layer_id
layer_ids
=
copy
.
deepcopy
(
list
(
self
.
layers
.
keys
()))
for
layer_id
in
layer_ids
:
if
len
(
self
.
edges_in
.
get
(
layer_id
,
[]))
==
0
and
len
(
self
.
edges_out
.
get
(
layer_id
,
[]))
==
0
:
del
self
.
layers
[
layer_id
]
def
gen_code
(
self
,
code_dir
):
def
write_code
(
f
,
code_list
,
indent
=
0
):
indent_blank
=
" "
*
indent
...
...
@@ -193,6 +274,13 @@ class PaddleProgram(object):
feeded_var_names
=
[
i
.
name
for
i
in
inputs
],
target_vars
=
outputs
,
executor
=
exe
)
print
(
"Model has been converted, saved in {}"
.
format
(
save_dir
))
print
(
"=====Model inputs info====="
)
for
ipt
in
self
.
inputs
:
print
(
"Tensor: {}"
.
format
(
ipt
))
print
(
"=====Model outputs info===="
)
for
out
in
self
.
outputs
:
print
(
"Tensor: {}"
.
format
(
out
))
def
dump_parameter
(
self
,
param_name
,
param
,
save_dir
):
if
not
os
.
path
.
exists
(
save_dir
):
...
...
@@ -227,3 +315,19 @@ class PaddleProgram(object):
fp
.
write
(
tensor_desc
.
SerializeToString
())
param
.
tofile
(
fp
)
fp
.
close
()
def
visualize
(
self
,
save_dir
):
from
graphviz
import
Digraph
dot
=
Digraph
(
"PaddleGraph"
,
"Generated by X2Paddle"
)
for
layer_id
,
layer
in
self
.
layers
.
items
():
dot
.
node
(
layer_id
,
layer
.
kernel
)
for
layer_id
,
outputs
in
self
.
edges_out
.
items
():
for
out
in
outputs
:
dot
.
edge
(
layer_id
,
out
)
with
open
(
os
.
path
.
join
(
save_dir
,
'graph.dot'
),
'w'
)
as
f
:
f
.
write
(
dot
.
source
)
dot
.
format
=
'svg'
dot
.
render
(
filename
=
'graph'
,
directory
=
save_dir
)
x2paddle/decoder/tf_decoder.py
浏览文件 @
6da21ebe
...
...
@@ -60,7 +60,7 @@ class TFGraphNode(GraphNode):
@
property
def
dtype
(
self
):
keys
=
[
'dtype'
,
'T
idx'
,
'T'
,
'DstT
'
]
keys
=
[
'dtype'
,
'T
'
,
'DstT'
,
'Tidx
'
]
for
k
in
keys
:
dtype
=
self
.
layer
.
attr
[
k
].
type
if
dtype
>
0
:
...
...
@@ -74,7 +74,7 @@ class TFGraphNode(GraphNode):
@
property
def
raw_dtype
(
self
):
keys
=
[
'dtype'
,
'T
idx'
,
'T'
,
'DstT
'
]
keys
=
[
'dtype'
,
'T
'
,
'DstT'
,
'Tidx
'
]
for
k
in
keys
:
dtype
=
self
.
layer
.
attr
[
k
].
type
if
dtype
>
0
:
...
...
@@ -121,7 +121,7 @@ class TFGraph(Graph):
def
__init__
(
self
,
model
,
data_format
=
"NHWC"
):
super
(
TFGraph
,
self
).
__init__
(
model
)
self
.
identity_map
=
dict
()
self
.
multi_out_ops
=
[
'Split'
,
'SplitV'
,
'IteratorV2'
]
self
.
multi_out_ops
=
[
'Split'
,
'SplitV'
,
'IteratorV2'
,
'Unpack'
]
self
.
tf_data_format
=
data_format
def
build
(
self
):
...
...
@@ -159,6 +159,7 @@ class TFGraph(Graph):
del
self
.
output_nodes
[
idx
]
# tensorflow graph optimize
self
.
_get_inputs_outputs
()
self
.
_remove_isolated_node
()
self
.
_optimize_dialiation_conv
()
self
.
_remove_identity_node
()
...
...
@@ -167,9 +168,11 @@ class TFGraph(Graph):
def
get_node
(
self
,
node_name
,
copy
=
False
):
items
=
node_name
.
strip
().
split
(
':'
)
items
[
0
]
=
items
[
0
].
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
)
if
items
[
0
]
in
self
.
identity_map
:
items
[
0
]
=
self
.
identity_map
[
items
[
0
]]
new_node_name
=
":"
.
join
(
items
)
new_node_name
=
self
.
identity_map
[
items
[
0
]]
else
:
new_node_name
=
":"
.
join
(
items
)
node
=
super
(
TFGraph
,
self
).
get_node
(
new_node_name
,
copy
)
if
node
is
None
:
return
None
...
...
@@ -200,6 +203,27 @@ class TFGraph(Graph):
idx
=
self
.
topo_sort
.
index
(
node_name
)
del
self
.
topo_sort
[
idx
]
def
_get_inputs_outputs
(
self
):
node_inputs_info
=
dict
()
node_outputs_info
=
dict
()
self
.
input_nodes
=
list
()
self
.
output_nodes
=
list
()
for
node
in
self
.
model
.
node
:
inputs
=
[
ipt
.
split
(
':'
)[
0
].
replace
(
'^'
,
''
)
for
ipt
in
node
.
input
]
node_inputs_info
[
node
.
name
]
=
inputs
for
ipt
in
inputs
:
if
ipt
not
in
node_outputs_info
:
node_outputs_info
[
ipt
]
=
list
()
node_outputs_info
[
ipt
].
append
(
node
.
name
)
for
node
in
self
.
model
.
node
:
if
node
.
op
==
"Placeholder"
:
self
.
input_nodes
.
append
(
node
.
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
if
len
(
node_inputs_info
.
get
(
node
.
name
,
[]))
>
0
and
len
(
node_outputs_info
.
get
(
node
.
name
,
[]))
==
0
:
self
.
output_nodes
.
append
(
node
.
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
def
_optimize_dialiation_conv
(
self
):
for
name
in
list
(
self
.
node_map
.
keys
()):
node
=
self
.
node_map
[
name
]
...
...
@@ -268,6 +292,14 @@ class TFGraph(Graph):
idx
=
self
.
output_nodes
.
index
(
node_name
)
self
.
output_nodes
[
idx
]
=
input_node
.
layer_name
for
i
,
out
in
enumerate
(
cp
.
deepcopy
(
self
.
output_nodes
)):
if
out
not
in
self
.
node_map
:
index
=
self
.
output_nodes
.
index
(
out
)
del
self
.
output_nodes
[
index
]
elif
len
(
self
.
node_map
[
out
].
layer
.
input
)
==
0
:
index
=
self
.
output_nodes
.
index
(
out
)
del
self
.
output_nodes
[
index
]
def
_remove_cast_node
(
self
):
cast_node
=
list
()
for
node_name
,
node
in
self
.
node_map
.
items
():
...
...
@@ -289,16 +321,6 @@ class TFGraph(Graph):
idx
=
self
.
output_nodes
.
index
(
node_name
)
self
.
output_nodes
[
idx
]
=
input_node
.
layer_name
def
data_format_propagation
(
self
,
node
):
current_node
=
self
.
node_map
[
node
.
layer_name
]
outputs
=
current_node
.
outputs
if
len
(
outputs
)
==
0
:
return
for
out
in
outputs
:
next_node
=
self
.
node_map
[
out
]
next_node
.
tf_data_format
=
node
.
tf_data_format
self
.
data_format_propagation
(
next_node
)
class
TFDecoder
(
object
):
def
__init__
(
self
,
pb_model
,
data_format
=
"NHWC"
,
define_input_shape
=
False
):
...
...
x2paddle/op_mapper/tf_op_mapper_nhwc.py
浏览文件 @
6da21ebe
...
...
@@ -51,7 +51,8 @@ class TFOpMapperNHWC(OpMapper):
'alpha'
:
'alpha'
}],
'Floor'
:
[
'floor'
],
'Erf'
:
[
'erf'
]
'Erf'
:
[
'erf'
],
'Square'
:
[
'square'
]
}
elementwise_ops
=
{
'Add'
:
'elementwise_add'
,
...
...
@@ -145,12 +146,23 @@ class TFOpMapperNHWC(OpMapper):
op_type
=
self
.
elementwise_ops
[
node
.
layer_type
]
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
program
.
add_layer
(
kernel
=
"fluid.layers.{}"
.
format
(
op_type
),
inputs
=
{
"x"
:
x
.
name
,
"y"
:
y
.
name
},
outputs
=
[
node
.
name
])
def
NotEqual
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
program
.
add_layer
(
kernel
=
"fluid.layers.not_equal"
,
inputs
=
{
"x"
:
x
.
name
,
"y"
:
y
.
name
},
outputs
=
[
node
.
name
])
def
Placeholder
(
self
,
node
):
shape
=
node
.
out_shapes
[
0
]
assert
len
(
shape
)
!=
0
,
"Unknown shape of input nodes[{}]."
.
format
(
...
...
@@ -172,6 +184,8 @@ class TFOpMapperNHWC(OpMapper):
if
len
(
shape
)
==
0
:
assert
value
.
size
==
1
,
"Unexpected situation happend"
shape
=
[
1
]
if
value
==
float
(
'inf'
):
value
=
"float('inf')"
initializer
=
"Constant({})"
.
format
(
value
)
program
.
parameters
[
node
.
name
]
=
node
.
value
...
...
@@ -441,17 +455,28 @@ class TFOpMapperNHWC(OpMapper):
def
Reshape
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
param
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
input_name
=
input
.
name
if
input
.
dtype
==
'bool'
:
cast_name
=
gen_name
(
'reshape'
,
'cast'
)
program
.
add_layer
(
kernel
=
"fluid.layers.cast"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
cast_name
],
dtype
=
"'int32'"
)
input_name
=
cast_name
if
param
.
layer_type
==
"Const"
:
shape
=
param
.
value
.
tolist
()
program
.
add_layer
(
kernel
=
"fluid.layers.reshape"
,
inputs
=
{
"x"
:
input
.
name
},
inputs
=
{
"x"
:
input
_
name
},
outputs
=
[
node
.
name
],
shape
=
shape
)
else
:
program
.
add_layer
(
kernel
=
"fluid.layers.reshape"
,
inputs
=
{
"x"
:
input
.
name
,
inputs
=
{
"x"
:
input
_
name
,
"shape"
:
param
.
name
},
outputs
=
[
node
.
name
])
if
param
.
layer_type
!=
"Const"
:
...
...
@@ -464,6 +489,13 @@ class TFOpMapperNHWC(OpMapper):
outputs
=
[
node
.
name
],
shape
=
out_shape
.
tolist
())
if
input
.
dtype
==
'bool'
:
program
.
add_layer
(
kernel
=
"fluid.layers.cast"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
dtype
=
"'bool'"
)
def
Pad
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
paddings
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
...
...
@@ -517,9 +549,18 @@ class TFOpMapperNHWC(OpMapper):
def
Shape
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
input_name
=
input
.
name
if
input
.
dtype
==
'bool'
:
cast_name
=
gen_name
(
'shape'
,
'cast'
)
program
.
add_layer
(
kernel
=
"fluid.layers.cast"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
cast_name
],
dtype
=
"'int32'"
)
input_name
=
cast_name
program
.
add_layer
(
kernel
=
"fluid.layers.shape"
,
inputs
=
{
"input"
:
input
.
name
},
inputs
=
{
"input"
:
input
_
name
},
outputs
=
[
node
.
name
])
def
ArgMax
(
self
,
node
):
...
...
@@ -642,12 +683,43 @@ class TFOpMapperNHWC(OpMapper):
def
Pack
(
self
,
node
):
inputs
=
[
self
.
graph
.
get_node
(
name
)
for
name
in
node
.
layer
.
input
]
input_names
=
[
i
.
name
for
i
in
inputs
]
axis
=
node
.
get_attr
(
"axis"
)
program
.
add_layer
(
kernel
=
"fluid.layers.stack"
,
inputs
=
{
"x"
:
[
i
.
name
for
i
in
inputs
]
},
inputs
=
{
"x"
:
input_names
},
outputs
=
[
node
.
name
],
axis
=
axis
)
if
len
(
node
.
out_shapes
[
0
])
==
1
:
program
.
add_layer
(
kernel
=
"fluid.layers.reshape"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
shape
=
[
-
1
])
def
Unpack
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
axis
=
node
.
get_attr
(
"axis"
)
num
=
node
.
get_attr
(
"num"
)
shape
=
input
.
out_shapes
[
0
]
input_name
=
input
.
name
if
len
(
shape
)
==
1
:
if
shape
[
0
]
>
0
and
num
==
shape
[
0
]:
program
.
add_layer
(
kernel
=
"fluid.layers.unsqueeze"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
[
node
.
name
],
axes
=
[
0
])
input_name
=
node
.
name
axis
=
1
else
:
raise
Exception
(
"Unexpected situation happend in Unpack OP"
)
program
.
add_layer
(
kernel
=
"fluid.layers.unstack"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
"{}_p{}"
.
format
(
node
.
layer_name
,
i
)
for
i
in
range
(
num
)],
axis
=
axis
,
num
=
num
)
def
ConcatV2
(
self
,
node
):
inputs
=
[
self
.
graph
.
get_node
(
name
)
for
name
in
node
.
layer
.
input
[:
-
1
]]
...
...
@@ -656,27 +728,55 @@ class TFOpMapperNHWC(OpMapper):
axis
=
axis
.
value
if
axis
<
0
:
axis
+=
len
(
inputs
[
0
].
out_shapes
[
0
])
input_names
=
[
i
.
name
for
i
in
inputs
]
for
i
,
ipt
in
enumerate
(
inputs
):
if
node
.
dtype
==
'bool'
:
cast_name
=
gen_name
(
'concat'
,
'cast'
)
program
.
add_layer
(
kernel
=
"fluid.layers.cast"
,
inputs
=
{
"x"
:
ipt
.
name
},
outputs
=
[
cast_name
],
dtype
=
"'int32'"
)
input_names
[
i
]
=
cast_name
program
.
add_layer
(
kernel
=
"fluid.layers.concat"
,
inputs
=
{
"input"
:
[
i
.
name
for
i
in
inputs
]
},
inputs
=
{
"input"
:
input_names
},
outputs
=
[
node
.
name
],
axis
=
axis
)
if
node
.
dtype
==
'bool'
:
program
.
add_layer
(
kernel
=
"fluid.layers.cast"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
dtype
=
"'bool'"
)
def
StridedSlice
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
begin
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
end
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
strides
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
3
])
assert
begin
.
layer_type
==
"Const"
assert
end
.
layer_type
==
"Const"
assert
strides
.
layer_type
==
"Const"
strides
=
strides
.
value
.
tolist
()
if
strides
.
layer_type
==
"Const"
:
strides
=
strides
.
value
.
tolist
()
else
:
strides
=
self
.
decoder
.
infer_shape_tensor
(
strides
)
if
begin
.
layer_type
==
"Const"
:
begin
=
begin
.
value
.
tolist
()
else
:
begin
=
self
.
decoder
.
infer_shape_tensor
(
begin
)
if
end
.
layer_type
==
"Const"
:
end
=
end
.
value
.
tolist
()
else
:
end
=
self
.
decoder
.
infer_shape_tensor
(
end
)
assert
len
(
set
(
strides
))
==
1
and
strides
[
0
]
==
1
,
"Only support strides be 1 in StridedSlice OP"
begin
=
begin
.
value
.
tolist
()
end
=
end
.
value
.
tolist
()
if
len
(
begin
)
<
len
(
input
.
out_shapes
[
0
]):
begin
=
begin
+
[
0
]
*
(
len
(
input
.
out_shapes
[
0
])
-
len
(
begin
))
if
len
(
end
)
<
len
(
input
.
out_shapes
[
0
]):
end
=
end
+
[
0
]
*
(
len
(
input
.
out_shapes
[
0
])
-
len
(
end
))
for
i
in
range
(
len
(
end
)):
if
end
[
i
]
==
0
:
end
[
i
]
=
999999
...
...
@@ -736,10 +836,10 @@ class TFOpMapperNHWC(OpMapper):
pass
else
:
program
.
add_layer
(
kernel
=
"fluid.layers.
un
squeeze"
,
kernel
=
"fluid.layers.squeeze"
,
inputs
=
{
"input"
:
node
.
name
},
outputs
=
[
node
.
name
],
axes
=
new
_axes
)
axes
=
shrink
_axes
)
def
Split
(
self
,
node
):
dim
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
...
...
@@ -1099,6 +1199,8 @@ class TFOpMapperNHWC(OpMapper):
outputs
=
[
node
.
name
],
**
attr
)
node
.
layer
.
attr
[
'dtype'
].
type
=
10
def
GatherV2
(
self
,
node
):
embeddings
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
index
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
...
...
@@ -1121,6 +1223,13 @@ class TFOpMapperNHWC(OpMapper):
inputs
=
inputs
,
outputs
=
[
node
.
name
],
overwrite
=
False
)
if
len
(
index
.
out_shapes
[
0
])
!=
1
:
out_shape
=
node
.
out_shapes
[
0
]
program
.
add_layer
(
kernel
=
"fluid.layers.reshape"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
shape
=
out_shape
)
def
ExpandDims
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
x2paddle/optimizer/batch_norm.py
0 → 100644
浏览文件 @
6da21ebe
import
copy
class
BiasOpt
:
def
__init__
(
self
):
self
.
conv_layers
=
[
'fluid.layers.conv2d'
,
'fluid.layers.conv2d_transpose'
]
self
.
act_layers
=
[
'fluid.layers.relu'
,
'fluid.layers.relu6'
,
'fluid.layers.sigmoid'
,
'fluid.layers.exp'
,
'fluid.layers.tanh'
,
'fluid.layers.softplus'
,
'fluid.layers.leaky_relu'
]
def
run
(
self
,
graph
):
layers
=
copy
.
deepcopy
(
graph
.
layers
)
for
layer_id
,
layer
in
layers
.
items
():
can_be_optimized
=
True
if
layer
.
kernel
!=
"fluid.layers.elemenwise_mul"
:
can_be_optimized
=
False
continue
input_ids
=
graph
.
edges_in
[
layer_id
]
x2paddle/optimizer/bias.py
0 → 100644
浏览文件 @
6da21ebe
import
copy
class
BiasOpt
:
def
__init__
(
self
):
self
.
conv_layers
=
[
'fluid.layers.conv2d'
,
'fluid.layers.conv2d_transpose'
]
self
.
act_layers
=
[
'fluid.layers.relu'
,
'fluid.layers.relu6'
,
'fluid.layers.sigmoid'
,
'fluid.layers.exp'
,
'fluid.layers.tanh'
,
'fluid.layers.softplus'
,
'fluid.layers.leaky_relu'
]
def
run
(
self
,
graph
):
layers
=
copy
.
deepcopy
(
graph
.
layers
)
for
layer_id
,
layer
in
layers
.
items
():
if
layer
.
kernel
in
self
.
conv_layers
or
layer
.
kernel
==
"fluid.layers.transpose"
:
if
len
(
graph
.
edges_out
[
layer_id
])
!=
1
:
continue
out_layer_id
=
graph
.
edges_out
[
layer_id
][
0
]
if
graph
.
layers
[
out_layer_id
].
kernel
!=
"fluid.layers.elementwise_add"
:
continue
if
graph
.
layers
[
out_layer_id
].
attrs
.
get
(
'axis'
,
-
1
)
!=
-
1
:
continue
in_layer_id
=
graph
.
edges_in
[
out_layer_id
]
bias_layer_id
=
in_layer_id
[
1
-
in_layer_id
.
index
(
layer_id
)]
if
graph
.
layers
[
bias_layer_id
].
kernel
!=
"fluid.layers.create_parameter"
:
continue
bias_layer
=
graph
.
layers
[
bias_layer_id
]
if
len
(
bias_layer
.
attrs
[
'shape'
])
!=
1
:
continue
if
len
(
graph
.
edges_out
[
bias_layer_id
])
!=
1
:
continue
if
bias_layer
.
outputs
[
0
]
in
graph
.
outputs
:
continue
if
layer
.
kernel
==
"fluid.layers.transpose"
:
if
layer
.
attrs
[
'perm'
]
!=
[
0
,
2
,
3
,
1
]:
continue
in_layer_id
=
graph
.
edges_in
[
layer_id
][
0
]
if
graph
.
layers
[
in_layer_id
].
kernel
not
in
self
.
conv_layers
:
continue
if
graph
.
layers
[
in_layer_id
].
attrs
[
'bias_attr'
]
!=
False
:
continue
if
len
(
graph
.
edges_out
[
in_layer_id
])
!=
1
:
continue
graph
.
layers
[
in_layer_id
].
attrs
[
'bias_attr'
]
=
bias_layer
.
attrs
[
'name'
]
graph
.
del_layer
(
bias_layer_id
)
graph
.
del_layer
(
out_layer_id
)
else
:
graph
.
layers
[
layer_id
].
attrs
[
'bias_attr'
]
=
bias_layer
.
attrs
[
'name'
]
graph
.
del_layer
(
bias_layer_id
)
graph
.
del_layer
(
out_layer_id
)
x2paddle/optimizer/transpose.py
0 → 100644
浏览文件 @
6da21ebe
import
copy
import
sys
class
TransposeOpt
:
def
__init__
(
self
):
self
.
image_layers
=
[
'fluid.layers.conv2d'
,
'fluid.layers.batch_norm'
,
'fluid.layers.conv2d_transpose'
,
'fluid.layers.resize_nearest'
,
'fluid.layers.resize_bilinear'
,
'fluid.layers.pool2d'
,
'fluid.layers.pad2d'
]
self
.
direct_layers
=
[
'fluid.layers.relu'
,
'fluid.layers.relu6'
,
'fluid.layers.abs'
,
'fluid.layers.sigmoid'
,
'fluid.layers.exp'
,
'fluid.layers.rsqrt'
,
'fluid.layers.swish_f32'
,
'fluid.layers.tanh'
,
'fluid.layers.softplus'
,
'fluid.layers.leaky_relu'
,
'fluid.layers.floor'
,
'fluid.layers.erf'
]
self
.
elementwise_layers
=
[
'fluid.layers.elementwise_add'
,
'fluid.layers.elementwise_sub'
,
'fluid.layers.elementwise_mul'
,
'fluid.layers.elementwise_div'
]
def
get_transpose_num
(
self
,
graph
):
count
=
0
for
layer_id
,
layer
in
graph
.
layers
.
items
():
if
layer
.
kernel
==
"fluid.layers.transpose"
:
count
+=
1
return
count
def
strip_direct_layers
(
self
,
graph
):
# 构建opt_graph
# 删除所有direct_layers, 便于对transpose进行优化
opt_graph
=
copy
.
deepcopy
(
graph
)
remove_layer_ids
=
set
()
for
layer_id
,
layer
in
opt_graph
.
layers
.
items
():
if
layer
.
kernel
in
self
.
direct_layers
:
layer_out
=
opt_graph
.
edges_out
[
layer_id
]
layer_in
=
opt_graph
.
edges_in
[
layer_id
]
if
len
(
layer_out
)
==
0
or
len
(
layer_in
)
==
0
:
continue
assert
len
(
layer_in
)
==
1
,
"There should be only 1 input for direct layers."
remove_layer_ids
.
add
(
layer_id
)
for
layer_id
in
remove_layer_ids
:
opt_graph
.
del_layer
(
layer_id
)
return
opt_graph
def
run
(
self
,
graph
):
optimized_transpose_layers
=
list
()
modified_layer_attrs
=
dict
()
modified_parameters
=
dict
()
scanned_layers
=
set
()
total_layer_num
=
len
(
graph
.
layers
)
def
strip_transpose
(
_graph
):
layers
=
copy
.
deepcopy
(
_graph
.
layers
)
for
layer_id
,
layer
in
layers
.
items
():
if
layer_id
in
scanned_layers
:
continue
scanned_layers
.
add
(
layer_id
)
percent
=
round
(
len
(
scanned_layers
)
/
total_layer_num
*
100
,
2
)
sys
.
stderr
.
write
(
"
\r
Optimize Transpose Layers...{}%"
.
format
(
percent
))
if
layer
.
kernel
!=
"fluid.layers.transpose"
:
continue
if
layer
.
attrs
[
"perm"
]
!=
[
0
,
2
,
3
,
1
]:
continue
transpose_layer_ids
=
list
()
elementwise_layer_ids
=
list
()
concat_layer_ids
=
list
()
can_be_optimized
=
True
modified_attrs
=
dict
()
parameter_layers
=
list
()
parameters
=
dict
()
for
out
in
_graph
.
edges_out
[
layer_id
]:
if
_graph
.
layers
[
out
].
kernel
==
"fluid.layers.transpose"
:
if
_graph
.
layers
[
out
].
attrs
[
"perm"
]
!=
[
0
,
3
,
1
,
2
]:
can_be_optimized
=
False
continue
transpose_layer_ids
.
append
(
out
)
elif
_graph
.
layers
[
out
].
kernel
in
self
.
elementwise_layers
:
elementwise_layer_ids
.
append
(
out
)
elif
_graph
.
layers
[
out
].
kernel
==
"fluid.layers.concat"
:
elementwise_layer_ids
.
append
(
out
)
concat_layer_ids
.
append
(
out
)
else
:
can_be_optimized
=
False
break
visited_layers
=
set
()
while
len
(
elementwise_layer_ids
)
>
0
and
can_be_optimized
:
current_id
=
elementwise_layer_ids
.
pop
(
0
)
visited_layers
.
add
(
current_id
)
for
out
in
_graph
.
edges_out
[
current_id
]:
if
_graph
.
layers
[
out
].
kernel
==
"fluid.layers.transpose"
:
if
_graph
.
layers
[
out
].
attrs
[
"perm"
]
!=
[
0
,
3
,
1
,
2
]:
can_be_optimized
=
False
break
if
out
not
in
visited_layers
:
transpose_layer_ids
.
append
(
out
)
elif
_graph
.
layers
[
out
].
kernel
in
self
.
elementwise_layers
:
if
out
not
in
visited_layers
:
elementwise_layer_ids
.
append
(
out
)
elif
_graph
.
layers
[
out
].
kernel
==
"fluid.layers.concat"
:
if
out
not
in
visited_layers
:
elementwise_layer_ids
.
append
(
out
)
concat_layer_ids
.
append
(
out
)
else
:
can_be_optimized
=
False
break
all_create_parameter
=
True
for
ipt
in
_graph
.
edges_in
.
get
(
current_id
,
[]):
if
_graph
.
layers
[
ipt
].
kernel
==
"fluid.layers.transpose"
:
all_creater_parameter
=
False
if
_graph
.
layers
[
ipt
].
attrs
[
"perm"
]
!=
[
0
,
2
,
3
,
1
]:
can_be_optimized
=
False
break
if
ipt
not
in
visited_layers
:
transpose_layer_ids
.
append
(
ipt
)
elif
_graph
.
layers
[
ipt
].
kernel
in
self
.
elementwise_layers
:
all_creater_parameter
=
False
if
ipt
not
in
visited_layers
:
elementwise_layer_ids
.
append
(
ipt
)
elif
_graph
.
layers
[
ipt
].
kernel
==
"fluid.layers.concat"
:
all_creater_parameter
=
False
if
ipt
not
in
visited_layers
:
elementwise_layer_ids
.
append
(
ipt
)
concat_layer_ids
.
append
(
ipt
)
elif
_graph
.
layers
[
ipt
].
kernel
==
"fluid.layers.create_parameter"
:
if
ipt
not
in
visited_layers
:
elementwise_layer_ids
.
append
(
ipt
)
parameter_layers
.
append
(
ipt
)
else
:
can_be_optimized
=
False
break
if
all_create_parameter
:
can_be_optimized
=
False
break
if
not
can_be_optimized
:
break
if
not
can_be_optimized
:
continue
concat_layer_ids
=
list
(
set
(
concat_layer_ids
))
for
l
in
concat_layer_ids
:
axis
=
_graph
.
layers
[
l
].
attrs
.
get
(
'axis'
,
0
)
_graph
.
layers
[
l
].
attrs
[
'axis'
]
=
[
0
,
2
,
3
,
1
][
axis
]
modified_attrs
[
l
]
=
_graph
.
layers
[
l
].
attrs
parameter_layers
=
list
(
set
(
parameter_layers
))
for
l
in
parameter_layers
:
for
o
in
_graph
.
edges_out
[
l
]:
if
_graph
.
layers
[
o
].
kernel
in
self
.
elementwise_layers
:
axis
=
_graph
.
layers
[
o
].
attrs
.
get
(
'axis'
,
-
1
)
_graph
.
layers
[
o
].
attrs
[
'axis'
]
=
[
0
,
3
,
1
,
2
][
axis
]
modified_attrs
[
o
]
=
_graph
.
layers
[
o
].
attrs
else
:
can_be_optimized
=
False
break
if
not
can_be_optimized
:
break
s
=
_graph
.
layers
[
l
].
attrs
[
'shape'
]
p
=
_graph
.
parameters
[
_graph
.
layers
[
l
].
outputs
[
0
]]
if
len
(
s
)
==
4
:
_graph
.
layers
[
l
].
attrs
[
'shape'
]
=
[
s
[
0
],
s
[
3
],
s
[
1
],
s
[
2
]]
modified_attrs
[
l
]
=
_graph
.
layers
[
l
].
attrs
parameters
[
_graph
.
layers
[
l
].
outputs
[
0
]]
=
np
.
transpose
(
p
,
(
0
,
3
,
1
,
2
))
elif
len
(
s
)
==
3
:
_graph
.
layers
[
l
].
attrs
[
'shape'
]
=
[
s
[
2
],
s
[
0
],
s
[
1
]]
modified_attrs
[
l
]
=
_graph
.
layers
[
l
].
attrs
parameters
[
_graph
.
layers
[
l
].
outputs
[
0
]]
=
np
.
transpose
(
p
,
(
2
,
0
,
1
))
if
not
can_be_optimized
:
continue
transpose_layer_ids
.
append
(
layer_id
)
transpose_layer_ids
=
list
(
set
(
transpose_layer_ids
))
for
transpose_layer_id
in
transpose_layer_ids
:
_graph
.
del_layer
(
transpose_layer_id
)
optimized_transpose_layers
.
extend
(
transpose_layer_ids
)
modified_layer_attrs
.
update
(
modified_attrs
)
modified_parameters
.
update
(
parameters
)
return
True
return
False
before_transpose_num
=
self
.
get_transpose_num
(
graph
)
opt_graph
=
self
.
strip_direct_layers
(
graph
)
total_layer_num
=
len
(
opt_graph
.
layers
)
while
strip_transpose
(
opt_graph
):
pass
for
layer_id
in
optimized_transpose_layers
:
graph
.
del_layer
(
layer_id
)
for
layer_id
,
attrs
in
modified_layer_attrs
.
items
():
graph
.
layers
[
layer_id
].
attrs
=
attrs
for
name
,
parameter
in
modified_parameters
.
items
():
graph
.
parameters
[
name
]
=
parameter
current_transpose_num
=
self
.
get_transpose_num
(
graph
)
print
(
"
\n
Transpose layers optimized, before: transpose_num={}, after: transpose_num={}"
.
format
(
before_transpose_num
,
current_transpose_num
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录