未验证 提交 6d568c3b 编写于 作者: J Jason 提交者: GitHub

Update export_tf_model.md

上级 1aba4498
...@@ -2,3 +2,42 @@ ...@@ -2,3 +2,42 @@
本文档介绍如何将TensorFlow模型导出为X2Paddle支持的模型格式。 本文档介绍如何将TensorFlow模型导出为X2Paddle支持的模型格式。
TensorFlow提供了接口可将网络参数和网络结构同时保存到同一个文件中,并且只保存指定的前向计算子图,下面示例展示了如何导出tensorflow/models下的VGG16模型
步骤一 下载模型参数文件
```
wget http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz
tar xzvf vgg_16_2016_08_28.tar.gz
```
步骤二 加载和导出模型
```
import tensorflow.contrib.slim as slim
from tensorflow.contrib.slim.nets import vgg
from tensorflow.python.framework import graph_util
import tensorflow as tf
# 固化模型函数
# output_tensor_names: list,指定模型的输出tensor的name
# freeze_model_path: 模型导出的文件路径
def freeze_model(sess, output_tensor_names, freeze_model_path):
out_graph = graph_util.convert_variables_to_constants(
sess, sess.graph.as_graph_def(), output_tensor_names)
with tf.gfile.GFile(freeze_model_path, 'wb') as f:
f.write(out_graph.SerializeToString())
print("freeze model saved in {}".format(freeze_model_path))
# 加载模型参数
sess = tf.Session()
inputs = tf.placeholder(dtype=tf.float32,
shape=[None, 224, 224, 3],
name="inputs")
logits, endpoint = vgg.vgg_16(inputs, num_classes=1000, is_training=False)
load_model = slim.assign_from_checkpoint_fn(
"vgg_16.ckpt", slim.get_model_variables("vgg_16"))
load_model(sess)
# 导出模型
freeze_model(sess, ["vgg_16/fc8/squeezed"], "vgg16.pb")
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册