Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
619b1833
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 2 年 前同步成功
通知
329
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
619b1833
编写于
6月 30, 2020
作者:
S
SunAhong1993
提交者:
GitHub
6月 30, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2 from PaddlePaddle/develop
oo
上级
e9f4c95b
58e1668e
变更
39
展开全部
隐藏空白更改
内联
并排
Showing
39 changed file
with
12360 addition
and
10392 deletion
+12360
-10392
.pre-commit-config.yaml
.pre-commit-config.yaml
+3
-6
.travis.yml
.travis.yml
+0
-2
README.md
README.md
+6
-1
setup.py
setup.py
+2
-5
tools/merge_params.py
tools/merge_params.py
+9
-7
x2paddle/__init__.py
x2paddle/__init__.py
+1
-1
x2paddle/convert.py
x2paddle/convert.py
+60
-39
x2paddle/core/fluid_code.py
x2paddle/core/fluid_code.py
+7
-4
x2paddle/core/op_mapper.py
x2paddle/core/op_mapper.py
+21
-22
x2paddle/decoder/caffe_decoder.py
x2paddle/decoder/caffe_decoder.py
+6
-8
x2paddle/decoder/caffe_pb2.py
x2paddle/decoder/caffe_pb2.py
+9045
-8911
x2paddle/decoder/onnx_decoder.py
x2paddle/decoder/onnx_decoder.py
+6
-8
x2paddle/decoder/paddle_decoder.py
x2paddle/decoder/paddle_decoder.py
+28
-0
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+8
-8
x2paddle/op_mapper/caffe_custom_layer/convolutiondepthwise.py
...ddle/op_mapper/caffe_custom_layer/convolutiondepthwise.py
+16
-14
x2paddle/op_mapper/caffe_custom_layer/detectionoutput.py
x2paddle/op_mapper/caffe_custom_layer/detectionoutput.py
+7
-6
x2paddle/op_mapper/caffe_custom_layer/normalize.py
x2paddle/op_mapper/caffe_custom_layer/normalize.py
+7
-7
x2paddle/op_mapper/caffe_custom_layer/permute.py
x2paddle/op_mapper/caffe_custom_layer/permute.py
+5
-4
x2paddle/op_mapper/caffe_custom_layer/priorbox.py
x2paddle/op_mapper/caffe_custom_layer/priorbox.py
+18
-16
x2paddle/op_mapper/caffe_custom_layer/register.py
x2paddle/op_mapper/caffe_custom_layer/register.py
+1
-2
x2paddle/op_mapper/caffe_custom_layer/roipooling.py
x2paddle/op_mapper/caffe_custom_layer/roipooling.py
+11
-9
x2paddle/op_mapper/caffe_custom_layer/select.py
x2paddle/op_mapper/caffe_custom_layer/select.py
+11
-9
x2paddle/op_mapper/caffe_custom_layer/shufflechannel.py
x2paddle/op_mapper/caffe_custom_layer/shufflechannel.py
+5
-4
x2paddle/op_mapper/caffe_op_mapper.py
x2paddle/op_mapper/caffe_op_mapper.py
+193
-260
x2paddle/op_mapper/caffe_shape.py
x2paddle/op_mapper/caffe_shape.py
+2
-2
x2paddle/op_mapper/onnx_custom_layer/InstanceNormalization.py
...ddle/op_mapper/onnx_custom_layer/InstanceNormalization.py
+12
-14
x2paddle/op_mapper/onnx_custom_layer/register.py
x2paddle/op_mapper/onnx_custom_layer/register.py
+1
-2
x2paddle/op_mapper/onnx_directly_map.py
x2paddle/op_mapper/onnx_directly_map.py
+24
-30
x2paddle/op_mapper/onnx_op_mapper.py
x2paddle/op_mapper/onnx_op_mapper.py
+332
-398
x2paddle/op_mapper/paddle_custom_layer/__init__.py
x2paddle/op_mapper/paddle_custom_layer/__init__.py
+0
-0
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
+80
-0
x2paddle/op_mapper/paddle_custom_layer/multiclass_nms.py
x2paddle/op_mapper/paddle_custom_layer/multiclass_nms.py
+416
-0
x2paddle/op_mapper/paddle_custom_layer/yolo_box.py
x2paddle/op_mapper/paddle_custom_layer/yolo_box.py
+822
-0
x2paddle/op_mapper/paddle_op_mapper.py
x2paddle/op_mapper/paddle_op_mapper.py
+820
-0
x2paddle/op_mapper/tf_op_mapper.py
x2paddle/op_mapper/tf_op_mapper.py
+140
-235
x2paddle/op_mapper/tf_op_mapper_nhwc.py
x2paddle/op_mapper/tf_op_mapper_nhwc.py
+172
-301
x2paddle/optimizer/caffe_optimizer.py
x2paddle/optimizer/caffe_optimizer.py
+10
-8
x2paddle/optimizer/tf_optimizer.py
x2paddle/optimizer/tf_optimizer.py
+52
-49
x2paddle_model_zoo.md
x2paddle_model_zoo.md
+1
-0
未找到文件。
.pre-commit-config.yaml
浏览文件 @
619b1833
-
repo
:
local
-
repo
:
https://github.com/PaddlePaddle/mirrors-yapf.git
sha
:
0d79c0c469bab64f7229c9aca2b1186ef47f0e37
hooks
:
hooks
:
-
id
:
yapf
-
id
:
yapf
name
:
yapf
entry
:
yapf
language
:
system
args
:
[
-i
,
--style .style.yapf
]
files
:
\.py$
files
:
\.py$
-
repo
:
https://github.com/pre-commit/pre-commit-hooks
-
repo
:
https://github.com/pre-commit/pre-commit-hooks
sha
:
a11d9314b22d8f8c7556443875b731ef05965464
sha
:
a11d9314b22d8f8c7556443875b731ef05965464
hooks
:
hooks
:
...
@@ -18,6 +14,7 @@
...
@@ -18,6 +14,7 @@
-
id
:
check-symlinks
-
id
:
check-symlinks
-
id
:
check-added-large-files
-
id
:
check-added-large-files
-
repo
:
local
-
repo
:
local
hooks
:
hooks
:
-
id
:
copyright_checker
-
id
:
copyright_checker
name
:
copyright_checker
name
:
copyright_checker
...
...
.travis.yml
浏览文件 @
619b1833
language
:
python
language
:
python
python
:
python
:
-
'
2.7'
-
'
3.5'
-
'
3.5'
-
'
3.6'
script
:
script
:
-
if [[ $TRAVIS_PYTHON_VERSION != 2.7 ]]; then /bin/bash ./tools/check_code_style.sh; fi
-
if [[ $TRAVIS_PYTHON_VERSION != 2.7 ]]; then /bin/bash ./tools/check_code_style.sh; fi
...
...
README.md
浏览文件 @
619b1833
...
@@ -44,10 +44,15 @@ x2paddle --framework=caffe --prototxt=deploy.prototxt --weight=deploy.caffemodel
...
@@ -44,10 +44,15 @@ x2paddle --framework=caffe --prototxt=deploy.prototxt --weight=deploy.caffemodel
```
```
x2paddle --framework=onnx --model=onnx_model.onnx --save_dir=pd_model
x2paddle --framework=onnx --model=onnx_model.onnx --save_dir=pd_model
```
```
### Paddle2ONNX
```
# 注意:paddle_infer_model_dir下需包含__model__和__params__两个文件
x2paddle --framework=paddle2onnx --model=paddle_infer_model_dir --save_dir=onnx_model
```
### 参数选项
### 参数选项
| 参数 | |
| 参数 | |
|----------|--------------|
|----------|--------------|
|--framework | 源模型类型 (tensorflow、caffe、onnx) |
|--framework | 源模型类型 (tensorflow、caffe、onnx
、paddle2onnx
) |
|--prototxt | 当framework为caffe时,该参数指定caffe模型的proto文件路径 |
|--prototxt | 当framework为caffe时,该参数指定caffe模型的proto文件路径 |
|--weight | 当framework为caffe时,该参数指定caffe模型的参数文件路径 |
|--weight | 当framework为caffe时,该参数指定caffe模型的参数文件路径 |
|--save_dir | 指定转换后的模型保存目录路径 |
|--save_dir | 指定转换后的模型保存目录路径 |
...
...
setup.py
浏览文件 @
619b1833
...
@@ -11,8 +11,7 @@ setuptools.setup(
...
@@ -11,8 +11,7 @@ setuptools.setup(
version
=
x2paddle
.
__version__
,
version
=
x2paddle
.
__version__
,
author
=
"dltp-sz"
,
author
=
"dltp-sz"
,
author_email
=
"dltp-sz@baidu.com"
,
author_email
=
"dltp-sz@baidu.com"
,
description
=
description
=
"a toolkit for converting trained model to PaddlePaddle from other deep learning frameworks."
,
"a toolkit for converting trained model to PaddlePaddle from other deep learning frameworks."
,
long_description
=
long_description
,
long_description
=
long_description
,
long_description_content_type
=
"text/plain"
,
long_description_content_type
=
"text/plain"
,
url
=
"https://github.com/PaddlePaddle/x2paddle"
,
url
=
"https://github.com/PaddlePaddle/x2paddle"
,
...
@@ -23,6 +22,4 @@ setuptools.setup(
...
@@ -23,6 +22,4 @@ setuptools.setup(
"Operating System :: OS Independent"
,
"Operating System :: OS Independent"
,
],
],
license
=
'Apache 2.0'
,
license
=
'Apache 2.0'
,
entry_points
=
{
'console_scripts'
:
[
entry_points
=
{
'console_scripts'
:
[
'x2paddle=x2paddle.convert:main'
,
]})
'x2paddle=x2paddle.convert:main'
,
]})
tools/merge_params.py
浏览文件 @
619b1833
...
@@ -5,12 +5,14 @@ model_dir = sys.argv[1]
...
@@ -5,12 +5,14 @@ model_dir = sys.argv[1]
new_model_dir
=
sys
.
argv
[
2
]
new_model_dir
=
sys
.
argv
[
2
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
[
inference_program
,
feed_target_names
,
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
dirname
=
model_dir
,
executor
=
exe
)
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
dirname
=
model_dir
,
executor
=
exe
)
print
(
feed_target_names
)
print
(
feed_target_names
)
fluid
.
io
.
save_inference_model
(
dirname
=
new_model_dir
,
fluid
.
io
.
save_inference_model
(
feeded_var_names
=
feed_target_names
,
dirname
=
new_model_dir
,
target_vars
=
fetch_targets
,
feeded_var_names
=
feed_target_names
,
executor
=
exe
,
target_vars
=
fetch_targets
,
main_program
=
inference_program
,
executor
=
exe
,
params_filename
=
"__params__"
)
main_program
=
inference_program
,
params_filename
=
"__params__"
)
x2paddle/__init__.py
浏览文件 @
619b1833
__version__
=
"0.7.
1
"
__version__
=
"0.7.
4
"
x2paddle/convert.py
浏览文件 @
619b1833
#
Copyright (c) 2019
PaddlePaddle Authors. All Rights Reserved.
#
Copyright (c) 2020
PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
...
@@ -19,32 +19,37 @@ import sys
...
@@ -19,32 +19,37 @@ import sys
def
arg_parser
():
def
arg_parser
():
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--model"
,
parser
.
add_argument
(
"-m"
,
"--model"
,
type
=
_text_type
,
"-m"
,
default
=
None
,
type
=
_text_type
,
help
=
"define model file path for tensorflow or onnx"
)
default
=
None
,
parser
.
add_argument
(
"--prototxt"
,
help
=
"define model file path for tensorflow or onnx"
)
"-p"
,
parser
.
add_argument
(
type
=
_text_type
,
"--prototxt"
,
default
=
None
,
"-p"
,
help
=
"prototxt file of caffe model"
)
type
=
_text_type
,
parser
.
add_argument
(
"--weight"
,
default
=
None
,
"-w"
,
help
=
"prototxt file of caffe model"
)
type
=
_text_type
,
parser
.
add_argument
(
default
=
None
,
"--weight"
,
help
=
"weight file of caffe model"
)
"-w"
,
parser
.
add_argument
(
"--save_dir"
,
type
=
_text_type
,
"-s"
,
default
=
None
,
type
=
_text_type
,
help
=
"weight file of caffe model"
)
default
=
None
,
parser
.
add_argument
(
help
=
"path to save translated model"
)
"--save_dir"
,
"-s"
,
type
=
_text_type
,
default
=
None
,
help
=
"path to save translated model"
)
parser
.
add_argument
(
parser
.
add_argument
(
"--framework"
,
"--framework"
,
"-f"
,
"-f"
,
type
=
_text_type
,
type
=
_text_type
,
default
=
None
,
default
=
None
,
help
=
"define which deeplearning framework(tensorflow/caffe/onnx)"
)
help
=
"define which deeplearning framework(tensorflow/caffe/onnx/paddle2onnx)"
)
parser
.
add_argument
(
parser
.
add_argument
(
"--caffe_proto"
,
"--caffe_proto"
,
"-c"
,
"-c"
,
...
@@ -52,27 +57,30 @@ def arg_parser():
...
@@ -52,27 +57,30 @@ def arg_parser():
default
=
None
,
default
=
None
,
help
=
"optional: the .py file compiled by caffe proto file of caffe model"
help
=
"optional: the .py file compiled by caffe proto file of caffe model"
)
)
parser
.
add_argument
(
"--version"
,
parser
.
add_argument
(
"-v"
,
"--version"
,
action
=
"store_true"
,
"-v"
,
default
=
False
,
action
=
"store_true"
,
help
=
"get version of x2paddle"
)
default
=
False
,
help
=
"get version of x2paddle"
)
parser
.
add_argument
(
parser
.
add_argument
(
"--without_data_format_optimization"
,
"--without_data_format_optimization"
,
"-wo"
,
"-wo"
,
action
=
"store_true"
,
action
=
"store_true"
,
default
=
False
,
default
=
False
,
help
=
"tf model conversion without data format optimization"
)
help
=
"tf model conversion without data format optimization"
)
parser
.
add_argument
(
"--define_input_shape"
,
parser
.
add_argument
(
"-d"
,
"--define_input_shape"
,
action
=
"store_true"
,
"-d"
,
default
=
False
,
action
=
"store_true"
,
help
=
"define input shape for tf model"
)
default
=
False
,
parser
.
add_argument
(
"--params_merge"
,
help
=
"define input shape for tf model"
)
"-pm"
,
parser
.
add_argument
(
action
=
"store_true"
,
"--params_merge"
,
default
=
False
,
"-pm"
,
help
=
"define whether merge the params"
)
action
=
"store_true"
,
default
=
False
,
help
=
"define whether merge the params"
)
return
parser
return
parser
...
@@ -117,7 +125,6 @@ def tf2paddle(model_path,
...
@@ -117,7 +125,6 @@ def tf2paddle(model_path,
optimizer
.
merge_bias
()
optimizer
.
merge_bias
()
optimizer
.
optimize_sub_graph
()
optimizer
.
optimize_sub_graph
()
# optimizer.merge_batch_norm()
# optimizer.merge_batch_norm()
# optimizer.merge_prelu()
# optimizer.merge_prelu()
else
:
else
:
...
@@ -177,6 +184,14 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
...
@@ -177,6 +184,14 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
mapper
.
save_inference_model
(
save_dir
,
params_merge
)
mapper
.
save_inference_model
(
save_dir
,
params_merge
)
def
paddle2onnx
(
model_path
,
save_dir
):
from
x2paddle.decoder.paddle_decoder
import
PaddleDecoder
from
x2paddle.op_mapper.paddle_op_mapper
import
PaddleOpMapper
model
=
PaddleDecoder
(
model_path
,
'__model__'
,
'__params__'
)
mapper
=
PaddleOpMapper
()
mapper
.
convert
(
model
.
program
,
save_dir
)
def
main
():
def
main
():
if
len
(
sys
.
argv
)
<
2
:
if
len
(
sys
.
argv
)
<
2
:
print
(
"Use
\"
x2paddle -h
\"
to print the help information"
)
print
(
"Use
\"
x2paddle -h
\"
to print the help information"
)
...
@@ -249,8 +264,14 @@ def main():
...
@@ -249,8 +264,14 @@ def main():
if
args
.
params_merge
:
if
args
.
params_merge
:
params_merge
=
True
params_merge
=
True
onnx2paddle
(
args
.
model
,
args
.
save_dir
,
params_merge
)
onnx2paddle
(
args
.
model
,
args
.
save_dir
,
params_merge
)
elif
args
.
framework
==
"paddle2onnx"
:
assert
args
.
model
is
not
None
,
"--model should be defined while translating paddle model to onnx"
paddle2onnx
(
args
.
model
,
args
.
save_dir
)
else
:
else
:
raise
Exception
(
"--framework only support tensorflow/caffe/onnx now"
)
raise
Exception
(
"--framework only support tensorflow/caffe/onnx/paddle2onnx now"
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
x2paddle/core/fluid_code.py
浏览文件 @
619b1833
...
@@ -46,8 +46,9 @@ class Layer(object):
...
@@ -46,8 +46,9 @@ class Layer(object):
for
input
in
self
.
inputs
:
for
input
in
self
.
inputs
:
if
isinstance
(
input
,
GraphNode
):
if
isinstance
(
input
,
GraphNode
):
if
hasattr
(
input
,
"index"
):
if
hasattr
(
input
,
"index"
):
in_list
+=
(
input
.
layer_name
+
in_list
+=
(
"[{}]"
.
format
(
input
.
index
)
+
", "
)
input
.
layer_name
+
"[{}]"
.
format
(
input
.
index
)
+
", "
)
else
:
else
:
in_list
+=
(
input
.
layer_name
+
", "
)
in_list
+=
(
input
.
layer_name
+
", "
)
elif
isinstance
(
input
,
six
.
string_types
):
elif
isinstance
(
input
,
six
.
string_types
):
...
@@ -71,8 +72,8 @@ class Layer(object):
...
@@ -71,8 +72,8 @@ class Layer(object):
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
input
)
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
input
)
elif
isinstance
(
self
.
inputs
,
GraphNode
):
elif
isinstance
(
self
.
inputs
,
GraphNode
):
if
hasattr
(
self
.
inputs
,
"index"
):
if
hasattr
(
self
.
inputs
,
"index"
):
layer_code
+=
(
self
.
inputs
.
layer_name
+
layer_code
+=
(
"[{}]"
.
format
(
self
.
inputs
.
index
))
self
.
inputs
.
layer_name
+
"[{}]"
.
format
(
self
.
inputs
.
index
))
else
:
else
:
layer_code
+=
(
self
.
inputs
.
layer_name
)
layer_code
+=
(
self
.
inputs
.
layer_name
)
if
self
.
op
!=
"="
:
if
self
.
op
!=
"="
:
...
@@ -88,6 +89,8 @@ class Layer(object):
...
@@ -88,6 +89,8 @@ class Layer(object):
for
key
,
value
in
param_attr
.
items
():
for
key
,
value
in
param_attr
.
items
():
if
'
\n
'
in
str
(
value
):
if
'
\n
'
in
str
(
value
):
value
=
string
(
str
(
value
).
replace
(
'
\n
'
,
','
))
value
=
string
(
str
(
value
).
replace
(
'
\n
'
,
','
))
if
str
(
key
)
==
'attr'
:
value
=
'ParamAttr('
+
str
(
value
)
+
')'
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
value
)
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
value
)
layer_code
=
layer_code
.
strip
(
", "
)
layer_code
=
layer_code
.
strip
(
", "
)
...
...
x2paddle/core/op_mapper.py
浏览文件 @
619b1833
...
@@ -64,10 +64,8 @@ def run_net(param_dir="./"):
...
@@ -64,10 +64,8 @@ def run_net(param_dir="./"):
b
=
os
.
path
.
exists
(
os
.
path
.
join
(
param_dir
,
var
.
name
))
b
=
os
.
path
.
exists
(
os
.
path
.
join
(
param_dir
,
var
.
name
))
return
b
return
b
fluid
.
io
.
load_vars
(
exe
,
fluid
.
io
.
load_vars
(
param_dir
,
exe
,
param_dir
,
fluid
.
default_main_program
(),
predicate
=
if_exist
)
fluid
.
default_main_program
(),
predicate
=
if_exist
)
class
OpMapper
(
object
):
class
OpMapper
(
object
):
...
@@ -98,8 +96,8 @@ class OpMapper(object):
...
@@ -98,8 +96,8 @@ class OpMapper(object):
def
add_codes
(
self
,
codes
,
indent
=
0
):
def
add_codes
(
self
,
codes
,
indent
=
0
):
if
isinstance
(
codes
,
list
):
if
isinstance
(
codes
,
list
):
for
code
in
codes
:
for
code
in
codes
:
self
.
paddle_codes
+=
(
self
.
tab
*
indent
+
code
.
strip
(
'
\n
'
)
+
self
.
paddle_codes
+=
(
'
\n
'
)
self
.
tab
*
indent
+
code
.
strip
(
'
\n
'
)
+
'
\n
'
)
elif
isinstance
(
codes
,
str
):
elif
isinstance
(
codes
,
str
):
self
.
paddle_codes
+=
(
self
.
tab
*
indent
+
codes
.
strip
(
'
\n
'
)
+
'
\n
'
)
self
.
paddle_codes
+=
(
self
.
tab
*
indent
+
codes
.
strip
(
'
\n
'
)
+
'
\n
'
)
else
:
else
:
...
@@ -135,24 +133,25 @@ class OpMapper(object):
...
@@ -135,24 +133,25 @@ class OpMapper(object):
os
.
path
.
join
(
os
.
path
.
join
(
py_code_dir
,
var
.
name
)))
os
.
path
.
join
(
os
.
path
.
join
(
py_code_dir
,
var
.
name
)))
return
b
return
b
fluid
.
io
.
load_vars
(
exe
,
fluid
.
io
.
load_vars
(
py_code_dir
,
exe
,
fluid
.
default_main_program
(),
py_code_dir
,
predicate
=
if_exist
)
fluid
.
default_main_program
(),
predicate
=
if_exist
)
if
params_merge
:
if
params_merge
:
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
fluid
.
io
.
save_inference_model
(
save_dir
,
"inference_model"
),
dirname
=
os
.
path
.
join
(
save_dir
,
"inference_model"
),
feeded_var_names
=
input_names
,
feeded_var_names
=
input_names
,
target_vars
=
outputs
,
target_vars
=
outputs
,
executor
=
exe
,
executor
=
exe
,
params_filename
=
"__params__"
)
params_filename
=
"__params__"
)
else
:
else
:
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
fluid
.
io
.
save_inference_model
(
save_dir
,
"inference_model"
),
dirname
=
os
.
path
.
join
(
save_dir
,
"inference_model"
),
feeded_var_names
=
input_names
,
feeded_var_names
=
input_names
,
target_vars
=
outputs
,
target_vars
=
outputs
,
executor
=
exe
,
executor
=
exe
,
params_filename
=
None
)
params_filename
=
None
)
except
:
except
:
raise
Exception
(
raise
Exception
(
"Paddle code was saved in {}/model.py, but seems there's wrong exist, please check model.py manually."
"Paddle code was saved in {}/model.py, but seems there's wrong exist, please check model.py manually."
...
...
x2paddle/decoder/caffe_decoder.py
浏览文件 @
619b1833
...
@@ -49,13 +49,11 @@ class CaffeResolver(object):
...
@@ -49,13 +49,11 @@ class CaffeResolver(object):
class
CaffeGraphNode
(
GraphNode
):
class
CaffeGraphNode
(
GraphNode
):
def
__init__
(
self
,
layer
,
type_str
,
layer_name
=
None
):
def
__init__
(
self
,
layer
,
type_str
,
layer_name
=
None
):
if
layer_name
is
None
:
if
layer_name
is
None
:
super
(
CaffeGraphNode
,
super
(
CaffeGraphNode
,
self
).
__init__
(
self
).
__init__
(
layer
,
layer
,
layer
.
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
layer
.
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
else
:
else
:
super
(
CaffeGraphNode
,
super
(
CaffeGraphNode
,
self
).
__init__
(
self
).
__init__
(
layer
,
layer
,
layer_name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
layer_name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
self
.
layer_type
=
type_str
self
.
layer_type
=
type_str
self
.
fluid_code
=
FluidCode
()
self
.
fluid_code
=
FluidCode
()
self
.
data
=
None
self
.
data
=
None
...
@@ -268,8 +266,8 @@ class CaffeDecoder(object):
...
@@ -268,8 +266,8 @@ class CaffeDecoder(object):
c_i
=
blob
.
channels
c_i
=
blob
.
channels
h
=
blob
.
height
h
=
blob
.
height
w
=
blob
.
width
w
=
blob
.
width
data
=
np
.
asarray
(
list
(
blob
.
data
),
data
=
np
.
asarray
(
dtype
=
np
.
float32
).
reshape
(
c_o
,
c_i
,
h
,
w
)
list
(
blob
.
data
),
dtype
=
np
.
float32
).
reshape
(
c_o
,
c_i
,
h
,
w
)
transformed
.
append
(
data
)
transformed
.
append
(
data
)
return
transformed
return
transformed
x2paddle/decoder/caffe_pb2.py
浏览文件 @
619b1833
此差异已折叠。
点击以展开。
x2paddle/decoder/onnx_decoder.py
浏览文件 @
619b1833
...
@@ -71,9 +71,8 @@ class ONNXGraphNode(GraphNode):
...
@@ -71,9 +71,8 @@ class ONNXGraphNode(GraphNode):
if
attr
.
type
==
onnx
.
AttributeProto
.
TENSOR
:
if
attr
.
type
==
onnx
.
AttributeProto
.
TENSOR
:
dtype
=
np
.
dtype
(
TENSOR_TYPE_TO_NP_TYPE
[
attr
.
t
.
data_type
])
dtype
=
np
.
dtype
(
TENSOR_TYPE_TO_NP_TYPE
[
attr
.
t
.
data_type
])
data
=
attr
.
t
.
raw_data
data
=
attr
.
t
.
raw_data
value
=
np
.
frombuffer
(
data
,
value
=
np
.
frombuffer
(
dtype
=
dtype
,
data
,
dtype
=
dtype
,
count
=
(
len
(
data
)
//
dtype
.
itemsize
))
count
=
(
len
(
data
)
//
dtype
.
itemsize
))
elif
attr
.
type
==
onnx
.
AttributeProto
.
STRING
:
elif
attr
.
type
==
onnx
.
AttributeProto
.
STRING
:
value
=
attr
.
s
value
=
attr
.
s
value
=
value
.
decode
()
if
isinstance
(
value
,
bytes
)
else
value
value
=
value
.
decode
()
if
isinstance
(
value
,
bytes
)
else
value
...
@@ -205,9 +204,8 @@ class ONNXGraph(Graph):
...
@@ -205,9 +204,8 @@ class ONNXGraph(Graph):
self
.
node_map
[
name
].
weight
=
weight
self
.
node_map
[
name
].
weight
=
weight
self
.
node_map
[
name
].
embeded_as
=
[]
self
.
node_map
[
name
].
embeded_as
=
[]
else
:
else
:
self
.
node_map
[
name
]
=
ONNXGraphDataNode
(
initializer
,
self
.
node_map
[
name
]
=
ONNXGraphDataNode
(
layer_name
=
name
,
initializer
,
layer_name
=
name
,
is_global_input
=
False
)
is_global_input
=
False
)
self
.
node_map
[
name
].
weight
=
weight
self
.
node_map
[
name
].
weight
=
weight
self
.
node_map
[
name
].
embeded_as
=
[]
self
.
node_map
[
name
].
embeded_as
=
[]
...
@@ -494,8 +492,8 @@ class ONNXDecoder(object):
...
@@ -494,8 +492,8 @@ class ONNXDecoder(object):
sess
=
rt
.
InferenceSession
(
model_path
)
sess
=
rt
.
InferenceSession
(
model_path
)
for
ipt
in
sess
.
get_inputs
():
for
ipt
in
sess
.
get_inputs
():
datatype
=
datatype_map
[
ipt
.
type
]
datatype
=
datatype_map
[
ipt
.
type
]
input_dict
[
ipt
.
name
]
=
np
.
random
.
random
(
input_dict
[
ipt
.
name
]
=
np
.
random
.
random
(
ipt
.
shape
).
astype
(
ipt
.
shape
).
astype
(
datatype
)
datatype
)
res
=
sess
.
run
(
None
,
input_feed
=
input_dict
)
res
=
sess
.
run
(
None
,
input_feed
=
input_dict
)
except
:
except
:
...
...
x2paddle/decoder/paddle_decoder.py
0 → 100644
浏览文件 @
619b1833
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
class
PaddleDecoder
(
object
):
def
__init__
(
self
,
model_dir
,
model_filename
=
'__model__'
,
params_filename
=
None
):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
[
self
.
program
,
feed
,
fetchs
]
=
fluid
.
io
.
load_inference_model
(
model_dir
,
exe
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
x2paddle/decoder/tf_decoder.py
浏览文件 @
619b1833
...
@@ -120,13 +120,13 @@ class TFGraph(Graph):
...
@@ -120,13 +120,13 @@ class TFGraph(Graph):
def
build
(
self
):
def
build
(
self
):
for
layer
in
self
.
model
.
node
:
for
layer
in
self
.
model
.
node
:
self
.
node_map
[
layer
.
name
.
replace
(
'/'
,
'_'
).
replace
(
self
.
node_map
[
layer
.
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
)]
=
TFGraphNode
(
layer
,
data_format
=
self
.
tf_data_format
)
'-'
,
'_'
)]
=
TFGraphNode
(
layer
,
data_format
=
self
.
tf_data_format
)
for
layer_name
,
node
in
self
.
node_map
.
items
():
for
layer_name
,
node
in
self
.
node_map
.
items
():
for
in_node
in
node
.
layer
.
input
:
for
in_node
in
node
.
layer
.
input
:
in_node
=
in_node
.
replace
(
'/'
,
in_node
=
in_node
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
).
replace
(
'_'
).
replace
(
'-'
,
'^'
,
''
)
'_'
).
replace
(
'^'
,
''
)
if
in_node
not
in
self
.
node_map
:
if
in_node
not
in
self
.
node_map
:
if
in_node
.
strip
().
split
(
':'
)[
0
]
in
self
.
node_map
:
if
in_node
.
strip
().
split
(
':'
)[
0
]
in
self
.
node_map
:
self
.
connect
(
in_node
.
strip
().
split
(
':'
)[
0
],
layer_name
)
self
.
connect
(
in_node
.
strip
().
split
(
':'
)[
0
],
layer_name
)
...
@@ -390,10 +390,10 @@ class TFDecoder(object):
...
@@ -390,10 +390,10 @@ class TFDecoder(object):
shape
=
shape
,
shape
=
shape
,
name
=
"x2paddle_{}"
.
format
(
layer
.
name
))
name
=
"x2paddle_{}"
.
format
(
layer
.
name
))
except
:
except
:
x2paddle_input
=
tf
.
placeholder
(
dtype
=
dtype
,
x2paddle_input
=
tf
.
placeholder
(
shape
=
sha
pe
,
dtype
=
dty
pe
,
name
=
"x2paddle_{}"
.
format
(
shape
=
shape
,
layer
.
name
))
name
=
"x2paddle_{}"
.
format
(
layer
.
name
))
input_map
[
"{}:0"
.
format
(
layer
.
name
)]
=
x2paddle_input
input_map
[
"{}:0"
.
format
(
layer
.
name
)]
=
x2paddle_input
if
shape
.
count
(
None
)
>
0
:
if
shape
.
count
(
None
)
>
0
:
...
...
x2paddle/op_mapper/caffe_custom_layer/convolutiondepthwise.py
浏览文件 @
619b1833
...
@@ -122,16 +122,17 @@ def convolutiondepthwise_layer(inputs,
...
@@ -122,16 +122,17 @@ def convolutiondepthwise_layer(inputs,
c_out
=
num_output
if
num_output
is
not
None
else
input_shape
[
0
][
1
]
c_out
=
num_output
if
num_output
is
not
None
else
input_shape
[
0
][
1
]
group
=
int
(
c_in
/
(
c_in
/
c_out
))
if
c_in
>
c_out
else
int
(
c_in
/
group
=
int
(
c_in
/
(
c_in
/
c_out
))
if
c_in
>
c_out
else
int
(
c_in
/
(
c_out
/
c_in
))
(
c_out
/
c_in
))
out
=
fluid
.
layers
.
conv2d
(
input
,
out
=
fluid
.
layers
.
conv2d
(
dilation
=
[
dila_h
,
dila_w
],
input
,
filter_size
=
[
k_h
,
k_w
],
dilation
=
[
dila_h
,
dila_w
],
stride
=
[
s_h
,
s_w
],
filter_size
=
[
k_h
,
k_w
],
padding
=
[
p_h
,
p_w
],
stride
=
[
s_h
,
s_w
],
groups
=
group
,
padding
=
[
p_h
,
p_w
],
num_filters
=
c_out
,
groups
=
group
,
param_attr
=
name
+
'_weights'
,
num_filters
=
c_out
,
bias_attr
=
name
+
'_bias'
,
param_attr
=
name
+
'_weights'
,
name
=
name
)
bias_attr
=
name
+
'_bias'
,
name
=
name
)
return
out
return
out
...
@@ -142,7 +143,8 @@ def convolutiondepthwise_weights(name, data=None):
...
@@ -142,7 +143,8 @@ def convolutiondepthwise_weights(name, data=None):
return
weights_name
return
weights_name
register
(
kind
=
'ConvolutionDepthwise'
,
register
(
shape
=
convolutiondepthwise_shape
,
kind
=
'ConvolutionDepthwise'
,
layer
=
convolutiondepthwise_layer
,
shape
=
convolutiondepthwise_shape
,
weights
=
convolutiondepthwise_weights
)
layer
=
convolutiondepthwise_layer
,
weights
=
convolutiondepthwise_weights
)
x2paddle/op_mapper/caffe_custom_layer/detectionoutput.py
浏览文件 @
619b1833
...
@@ -37,8 +37,8 @@ def detectionoutput_layer(inputs,
...
@@ -37,8 +37,8 @@ def detectionoutput_layer(inputs,
pbv
=
fluid
.
layers
.
reshape
(
x
=
pbv
,
shape
=
[
-
1
,
4
])
pbv
=
fluid
.
layers
.
reshape
(
x
=
pbv
,
shape
=
[
-
1
,
4
])
mbox_loc
=
inputs
[
0
]
mbox_loc
=
inputs
[
0
]
mbox_loc
=
fluid
.
layers
.
reshape
(
x
=
mbox_loc
,
shape
=
[
-
1
,
pb
.
shape
[
0
],
4
])
mbox_loc
=
fluid
.
layers
.
reshape
(
x
=
mbox_loc
,
shape
=
[
-
1
,
pb
.
shape
[
0
],
4
])
mbox_conf_flatten
=
fluid
.
layers
.
reshape
(
x
=
mbox_conf_flatten
,
mbox_conf_flatten
=
fluid
.
layers
.
reshape
(
shape
=
[
0
,
pb
.
shape
[
0
],
-
1
])
x
=
mbox_conf_flatten
,
shape
=
[
0
,
pb
.
shape
[
0
],
-
1
])
default
=
{
"nms_threshold"
:
0.3
,
"top_k"
:
10
,
"eta"
:
1.0
}
default
=
{
"nms_threshold"
:
0.3
,
"top_k"
:
10
,
"eta"
:
1.0
}
fields
=
[
'eta'
,
'top_k'
,
'nms_threshold'
]
fields
=
[
'eta'
,
'top_k'
,
'nms_threshold'
]
...
@@ -64,7 +64,8 @@ def detectionoutput_weights(name, data=None):
...
@@ -64,7 +64,8 @@ def detectionoutput_weights(name, data=None):
return
weights_name
return
weights_name
register
(
kind
=
'DetectionOutput'
,
register
(
shape
=
detectionoutput_shape
,
kind
=
'DetectionOutput'
,
layer
=
detectionoutput_layer
,
shape
=
detectionoutput_shape
,
weights
=
detectionoutput_weights
)
layer
=
detectionoutput_layer
,
weights
=
detectionoutput_weights
)
x2paddle/op_mapper/caffe_custom_layer/normalize.py
浏览文件 @
619b1833
...
@@ -20,9 +20,8 @@ def normalize_layer(inputs,
...
@@ -20,9 +20,8 @@ def normalize_layer(inputs,
attr
=
name
+
'_scale'
)
attr
=
name
+
'_scale'
)
scale_param
=
fluid
.
layers
.
reshape
(
x
=
scale_param
,
\
scale_param
=
fluid
.
layers
.
reshape
(
x
=
scale_param
,
\
shape
=
[
1
]
if
channel_shared
else
[
input_shape
[
0
][
1
]])
shape
=
[
1
]
if
channel_shared
else
[
input_shape
[
0
][
1
]])
out
=
fluid
.
layers
.
elementwise_mul
(
x
=
l2_norm
,
out
=
fluid
.
layers
.
elementwise_mul
(
y
=
scale_param
,
x
=
l2_norm
,
y
=
scale_param
,
axis
=-
1
if
channel_shared
else
1
)
axis
=-
1
if
channel_shared
else
1
)
return
out
return
out
...
@@ -31,7 +30,8 @@ def normalize_weights(name, data=None):
...
@@ -31,7 +30,8 @@ def normalize_weights(name, data=None):
return
weights_name
return
weights_name
register
(
kind
=
'Normalize'
,
register
(
shape
=
normalize_shape
,
kind
=
'Normalize'
,
layer
=
normalize_layer
,
shape
=
normalize_shape
,
weights
=
normalize_weights
)
layer
=
normalize_layer
,
weights
=
normalize_weights
)
x2paddle/op_mapper/caffe_custom_layer/permute.py
浏览文件 @
619b1833
...
@@ -23,7 +23,8 @@ def permute_weights(name, data=None):
...
@@ -23,7 +23,8 @@ def permute_weights(name, data=None):
return
weights_name
return
weights_name
register
(
kind
=
'Permute'
,
register
(
shape
=
permute_shape
,
kind
=
'Permute'
,
layer
=
permute_layer
,
shape
=
permute_shape
,
weights
=
permute_weights
)
layer
=
permute_layer
,
weights
=
permute_weights
)
x2paddle/op_mapper/caffe_custom_layer/priorbox.py
浏览文件 @
619b1833
...
@@ -30,18 +30,19 @@ def priorbox_layer(inputs,
...
@@ -30,18 +30,19 @@ def priorbox_layer(inputs,
steps
=
tuple
(
step
)
if
type
(
step
)
is
list
or
type
(
step
)
is
tuple
else
(
step
,
steps
=
tuple
(
step
)
if
type
(
step
)
is
list
or
type
(
step
)
is
tuple
else
(
step
,
step
)
step
)
box
,
variance_
=
fluid
.
layers
.
prior_box
(
input
,
box
,
variance_
=
fluid
.
layers
.
prior_box
(
image
,
input
,
min_sizes
=
min_size
,
image
,
max_sizes
=
max_size
,
min_sizes
=
min_size
,
aspect_ratios
=
aspect_ratio
,
max_sizes
=
max_size
,
variance
=
variance
,
aspect_ratios
=
aspect_ratio
,
flip
=
flip
,
variance
=
variance
,
clip
=
clip
,
flip
=
flip
,
steps
=
steps
,
clip
=
clip
,
offset
=
offset
,
steps
=
steps
,
name
=
name
,
offset
=
offset
,
min_max_aspect_ratios_order
=
True
)
name
=
name
,
min_max_aspect_ratios_order
=
True
)
box
=
fluid
.
layers
.
reshape
(
box
,
[
1
,
1
,
-
1
])
box
=
fluid
.
layers
.
reshape
(
box
,
[
1
,
1
,
-
1
])
variance_
=
fluid
.
layers
.
reshape
(
variance_
,
[
1
,
1
,
-
1
])
variance_
=
fluid
.
layers
.
reshape
(
variance_
,
[
1
,
1
,
-
1
])
out
=
fluid
.
layers
.
concat
([
box
,
variance_
],
axis
=
1
)
out
=
fluid
.
layers
.
concat
([
box
,
variance_
],
axis
=
1
)
...
@@ -53,7 +54,8 @@ def priorbox_weights(name, data=None):
...
@@ -53,7 +54,8 @@ def priorbox_weights(name, data=None):
return
weights_name
return
weights_name
register
(
kind
=
'PriorBox'
,
register
(
shape
=
priorbox_shape
,
kind
=
'PriorBox'
,
layer
=
priorbox_layer
,
shape
=
priorbox_shape
,
weights
=
priorbox_weights
)
layer
=
priorbox_layer
,
weights
=
priorbox_weights
)
x2paddle/op_mapper/caffe_custom_layer/register.py
浏览文件 @
619b1833
...
@@ -23,8 +23,7 @@ def register(kind, shape, layer, weights):
...
@@ -23,8 +23,7 @@ def register(kind, shape, layer, weights):
kind
=
[
kind
]
kind
=
[
kind
]
else
:
else
:
assert
type
(
assert
type
(
kind
kind
)
is
list
,
'invalid param "kind" for register, not a list or str'
)
is
list
,
'invalid param "kind" for register, not a list or str'
for
k
in
kind
:
for
k
in
kind
:
assert
type
(
assert
type
(
...
...
x2paddle/op_mapper/caffe_custom_layer/roipooling.py
浏览文件 @
619b1833
...
@@ -21,11 +21,12 @@ def roipooling_layer(inputs,
...
@@ -21,11 +21,12 @@ def roipooling_layer(inputs,
input
=
inputs
[
0
]
input
=
inputs
[
0
]
roi
=
inputs
[
1
]
roi
=
inputs
[
1
]
roi
=
fluid
.
layers
.
slice
(
roi
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
5
])
roi
=
fluid
.
layers
.
slice
(
roi
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
5
])
out
=
fluid
.
layers
.
roi_pool
(
input
,
out
=
fluid
.
layers
.
roi_pool
(
roi
,
input
,
pooled_height
=
pooled_h
,
roi
,
pooled_width
=
pooled_w
,
pooled_height
=
pooled_h
,
spatial_scale
=
spatial_scale
)
pooled_width
=
pooled_w
,
spatial_scale
=
spatial_scale
)
return
out
return
out
...
@@ -34,7 +35,8 @@ def roipooling_weights(name, data=None):
...
@@ -34,7 +35,8 @@ def roipooling_weights(name, data=None):
return
weights_name
return
weights_name
register
(
kind
=
'ROIPooling'
,
register
(
shape
=
roipooling_shape
,
kind
=
'ROIPooling'
,
layer
=
roipooling_layer
,
shape
=
roipooling_shape
,
weights
=
roipooling_weights
)
layer
=
roipooling_layer
,
weights
=
roipooling_weights
)
x2paddle/op_mapper/caffe_custom_layer/select.py
浏览文件 @
619b1833
...
@@ -30,11 +30,12 @@ def select_layer(inputs,
...
@@ -30,11 +30,12 @@ def select_layer(inputs,
out
=
[]
out
=
[]
for
i
in
range
(
len
(
slice_point
)):
for
i
in
range
(
len
(
slice_point
)):
out
.
append
(
out
.
append
(
fluid
.
layers
.
slice
(
input
,
fluid
.
layers
.
slice
(
axes
=
[
axis
],
input
,
starts
=
[
slice_point
[
i
]],
axes
=
[
axis
],
ends
=
[
slice_point
[
i
+
1
]],
starts
=
[
slice_point
[
i
]],
name
=
name
+
'_'
+
str
(
i
)))
ends
=
[
slice_point
[
i
+
1
]],
name
=
name
+
'_'
+
str
(
i
)))
if
i
==
len
(
slice_point
)
-
2
:
if
i
==
len
(
slice_point
)
-
2
:
break
break
return
out
return
out
...
@@ -45,7 +46,8 @@ def select_weights(name, data=None):
...
@@ -45,7 +46,8 @@ def select_weights(name, data=None):
return
weights_name
return
weights_name
register
(
kind
=
'Select'
,
register
(
shape
=
select_shape
,
kind
=
'Select'
,
layer
=
select_layer
,
shape
=
select_shape
,
weights
=
select_weights
)
layer
=
select_layer
,
weights
=
select_weights
)
x2paddle/op_mapper/caffe_custom_layer/shufflechannel.py
浏览文件 @
619b1833
...
@@ -17,7 +17,8 @@ def shufflechannel_weights(name, data=None):
...
@@ -17,7 +17,8 @@ def shufflechannel_weights(name, data=None):
return
weights_name
return
weights_name
register
(
kind
=
'ShuffleChannel'
,
register
(
shape
=
shufflechannel_shape
,
kind
=
'ShuffleChannel'
,
layer
=
shufflechannel_layer
,
shape
=
shufflechannel_shape
,
weights
=
shufflechannel_weights
)
layer
=
shufflechannel_layer
,
weights
=
shufflechannel_weights
)
x2paddle/op_mapper/caffe_op_mapper.py
浏览文件 @
619b1833
此差异已折叠。
点击以展开。
x2paddle/op_mapper/caffe_shape.py
浏览文件 @
619b1833
...
@@ -33,8 +33,8 @@ def get_kernel_parameters(params):
...
@@ -33,8 +33,8 @@ def get_kernel_parameters(params):
[
s_h
,
s_w
]
=
[
params
.
stride
]
*
2
[
s_h
,
s_w
]
=
[
params
.
stride
]
*
2
elif
len
(
params
.
stride
)
>
0
:
elif
len
(
params
.
stride
)
>
0
:
s_h
=
params
.
stride_h
if
params
.
stride_h
>
0
else
params
.
stride
[
0
]
s_h
=
params
.
stride_h
if
params
.
stride_h
>
0
else
params
.
stride
[
0
]
s_w
=
params
.
stride_w
if
params
.
stride_w
>
0
else
params
.
stride
[
s_w
=
params
.
stride_w
if
params
.
stride_w
>
0
else
params
.
stride
[
len
(
len
(
params
.
stride
)
-
1
]
params
.
stride
)
-
1
]
elif
params
.
stride_h
>
0
or
params
.
stride_w
>
0
:
elif
params
.
stride_h
>
0
or
params
.
stride_w
>
0
:
s_h
=
params
.
stride_h
s_h
=
params
.
stride_h
s_w
=
params
.
stride_w
s_w
=
params
.
stride_w
...
...
x2paddle/op_mapper/onnx_custom_layer/InstanceNormalization.py
浏览文件 @
619b1833
...
@@ -24,21 +24,18 @@ def InstanceNormalization_layer(inputs, name=None):
...
@@ -24,21 +24,18 @@ def InstanceNormalization_layer(inputs, name=None):
epsilon
=
1e-5
epsilon
=
1e-5
input_
=
inputs
[
0
]
input_
=
inputs
[
0
]
mean
=
fluid
.
layers
.
reduce_mean
(
input_
,
dim
=
[
2
,
3
],
keep_dim
=
True
)
mean
=
fluid
.
layers
.
reduce_mean
(
input_
,
dim
=
[
2
,
3
],
keep_dim
=
True
)
var
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
input_
-
mean
),
var
=
fluid
.
layers
.
reduce_mean
(
dim
=
[
2
,
3
],
fluid
.
layers
.
square
(
input_
-
mean
),
dim
=
[
2
,
3
],
keep_dim
=
True
)
keep_dim
=
True
)
if
name
is
not
None
:
if
name
is
not
None
:
scale_name
=
name
+
"_scale"
scale_name
=
name
+
"_scale"
offset_name
=
name
+
"_offset"
offset_name
=
name
+
"_offset"
scale_param
=
inputs
[
1
]
scale_param
=
inputs
[
1
]
offset_param
=
inputs
[
2
]
offset_param
=
inputs
[
2
]
scale
=
fluid
.
layers
.
create_parameter
(
name
=
scale_param
.
name
,
scale
=
fluid
.
layers
.
create_parameter
(
shape
=
input_
.
shape
[
1
:
2
],
name
=
scale_param
.
name
,
shape
=
input_
.
shape
[
1
:
2
],
dtype
=
"float32"
)
dtype
=
"float32"
)
offset
=
fluid
.
layers
.
create_parameter
(
offset
=
fluid
.
layers
.
create_parameter
(
name
=
offset_param
.
name
,
name
=
offset_param
.
name
,
shape
=
input_
.
shape
[
1
:
2
],
dtype
=
"float32"
)
shape
=
input_
.
shape
[
1
:
2
],
dtype
=
"float32"
)
tmp
=
fluid
.
layers
.
elementwise_mul
(
x
=
(
input_
-
mean
),
y
=
scale
,
axis
=
1
)
tmp
=
fluid
.
layers
.
elementwise_mul
(
x
=
(
input_
-
mean
),
y
=
scale
,
axis
=
1
)
tmp
=
tmp
/
fluid
.
layers
.
sqrt
(
var
+
epsilon
)
tmp
=
tmp
/
fluid
.
layers
.
sqrt
(
var
+
epsilon
)
...
@@ -51,8 +48,9 @@ def InstanceNormalization_weights(name, data=None):
...
@@ -51,8 +48,9 @@ def InstanceNormalization_weights(name, data=None):
return
weights_name
return
weights_name
register
(
kind
=
'InstanceNormalization'
,
register
(
shape
=
InstanceNormalization_shape
,
kind
=
'InstanceNormalization'
,
layer
=
InstanceNormalization_layer
,
shape
=
InstanceNormalization_shape
,
child_func
=
None
,
layer
=
InstanceNormalization_layer
,
weights
=
InstanceNormalization_weights
)
child_func
=
None
,
weights
=
InstanceNormalization_weights
)
x2paddle/op_mapper/onnx_custom_layer/register.py
浏览文件 @
619b1833
...
@@ -36,8 +36,7 @@ def register(kind, shape, layer, child_func, weights):
...
@@ -36,8 +36,7 @@ def register(kind, shape, layer, child_func, weights):
kind
=
[
kind
]
kind
=
[
kind
]
else
:
else
:
assert
type
(
assert
type
(
kind
kind
)
is
list
,
'invalid param "kind" for register, not a list or str'
)
is
list
,
'invalid param "kind" for register, not a list or str'
for
k
in
kind
:
for
k
in
kind
:
assert
type
(
assert
type
(
...
...
x2paddle/op_mapper/onnx_directly_map.py
浏览文件 @
619b1833
...
@@ -28,61 +28,55 @@ default_op_mapping_field_values['FILL_NAME_FIELD'] = True
...
@@ -28,61 +28,55 @@ default_op_mapping_field_values['FILL_NAME_FIELD'] = True
default_op_mapping
=
{
default_op_mapping
=
{
'Shape'
:
[
'shape'
,
[
'X'
],
[
'Out'
]],
'Shape'
:
[
'shape'
,
[
'X'
],
[
'Out'
]],
'Clip'
:
[
'Clip'
:
[
'clip'
,
[
'X'
],
[
'Out'
],
'clip'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
dict
(),
min
=
(
_np
.
asarray
(
dict
(
[
255
,
255
,
127
,
255
],
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)[
0
]),
min
=
(
_np
.
asarray
([
255
,
255
,
127
,
255
],
max
=
(
_np
.
asarray
(
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)[
0
]),
[
255
,
255
,
127
,
127
],
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)[
0
]),
)
max
=
(
_np
.
asarray
([
255
,
255
,
127
,
127
],
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)[
0
]),
)
],
],
'Erf'
:
[
'erf'
,
[
'X'
],
[
'Out'
]],
'Erf'
:
[
'erf'
,
[
'X'
],
[
'Out'
]],
'Ceil'
:
[
'ceil'
,
[
'X'
],
[
'Out'
]],
'Ceil'
:
[
'ceil'
,
[
'X'
],
[
'Out'
]],
'ReduceMean'
:
[
'ReduceMean'
:
[
'reduce_mean'
,
[
'X'
],
[
'Out'
],
'reduce_mean'
,
[
'X'
],
[
'Out'
],
dict
(
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
dict
(
keep_dim
=
1
)
],
],
'ReduceSum'
:
[
'ReduceSum'
:
[
'reduce_sum'
,
[
'X'
],
[
'Out'
],
'reduce_sum'
,
[
'X'
],
[
'Out'
],
dict
(
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
dict
(
keep_dim
=
1
)
],
],
'ReduceMin'
:
[
'ReduceMin'
:
[
'reduce_min'
,
[
'X'
],
[
'Out'
],
'reduce_min'
,
[
'X'
],
[
'Out'
],
dict
(
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
dict
(
keep_dim
=
1
)
],
'ReduceMax'
:
[
'reduce_max'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
],
],
#active function
#active function
'Relu'
:
[
'relu'
,
[
'X'
],
[
'Out'
]],
'Relu'
:
[
'relu'
,
[
'X'
],
[
'Out'
]],
'LeakyRelu'
:
[
'leaky_relu'
,
[
'X'
],
[
'Out'
],
'LeakyRelu'
:
[
'leaky_relu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
.
01
)],
dict
(),
dict
(
alpha
=
.
01
)],
'Elu'
:
[
'elu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
1.
)],
'Elu'
:
[
'elu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
1.
)],
'ThresholdedRelu'
:
[
'ThresholdedRelu'
:
[
'thresholded_relu'
,
[
'X'
],
[
'Out'
],
'thresholded_relu'
,
[
'X'
],
[
'Out'
],
dict
(
alpha
=
'threshold'
),
dict
(
alpha
=
'threshold'
),
dict
(
alpha
=
1.
)
dict
(
alpha
=
1.
)
],
],
'Tanh'
:
[
'tanh'
,
[
'X'
],
[
'Out'
]],
'Tanh'
:
[
'tanh'
,
[
'X'
],
[
'Out'
]],
'Sigmoid'
:
[
'sigmoid'
,
[
'X'
],
[
'Out'
]],
'Sigmoid'
:
[
'sigmoid'
,
[
'X'
],
[
'Out'
]],
'HardSigmoid'
:
[
'HardSigmoid'
:
[
'hard_sigmoid'
,
[
'X'
],
[
'Out'
],
'hard_sigmoid'
,
[
'X'
],
[
'Out'
],
dict
(
dict
(
alpha
=
'slope'
,
beta
=
'offset'
),
alpha
=
'slope'
,
beta
=
'offset'
),
dict
(
dict
(
slope
=
.
2
,
offset
=
.
5
)
slope
=
.
2
,
offset
=
.
5
)
],
],
'Softsign'
:
[
'softsign'
,
[
'X'
],
[
'Out'
]],
'Softsign'
:
[
'softsign'
,
[
'X'
],
[
'Out'
]],
'Softplus'
:
[
'softplus'
,
[
'X'
],
[
'Out'
]],
'Softplus'
:
[
'softplus'
,
[
'X'
],
[
'Out'
]],
'Exp'
:
[
'exp'
,
[
'X'
],
[
'Out'
]],
'Exp'
:
[
'exp'
,
[
'X'
],
[
'Out'
]],
'Softmax'
:
[
'softmax'
,
[
'X'
],
[
'Out'
],
'Softmax'
:
[
'softmax'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
axis
=
1
)],
dict
(),
dict
(
axis
=
1
)],
'Sqrt'
:
[
'sqrt'
,
[
'X'
],
[
'Out'
]],
'Sqrt'
:
[
'sqrt'
,
[
'X'
],
[
'Out'
]],
'Floor'
:
[
'floor'
,
[
'X'
],
[
'Out'
]],
'Floor'
:
[
'floor'
,
[
'X'
],
[
'Out'
]],
'Abs'
:
[
'abs'
,
[
'X'
],
[
'Out'
]],
'Abs'
:
[
'abs'
,
[
'X'
],
[
'Out'
]],
}
}
default_ioa_constraint
=
{
default_ioa_constraint
=
{
'Gather'
:
'Gather'
:
[(
lambda
i
,
o
,
a
:
a
.
get
(
'axis'
,
0
)
==
0
,
[(
lambda
i
,
o
,
a
:
a
.
get
(
'axis'
,
0
)
==
0
,
'only axis = 0 is supported'
)],
'only axis = 0 is supported'
)],
}
}
x2paddle/op_mapper/onnx_op_mapper.py
浏览文件 @
619b1833
此差异已折叠。
点击以展开。
x2paddle/op_mapper/paddle_custom_layer/__init__.py
0 → 100644
浏览文件 @
619b1833
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
0 → 100644
浏览文件 @
619b1833
import
onnx
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
im2seq_counter
=
0
def
im2sequence
(
op
,
block
):
global
im2sequence_counter
n
,
c
,
h
,
w
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
assert
h
>
0
and
w
>
0
,
"Only supported fixed input shape for im2sequence operator."
stride_h
,
stride_w
=
op
.
attr
(
'strides'
)
paddings
=
op
.
attr
(
'paddings'
)
assert
op
.
attr
(
'out_stride'
)
!=
1
,
"Only out_stride==1 is supported for im2sequence operator."
h
=
h
+
paddings
[
0
]
+
paddings
[
1
]
w
=
w
+
paddings
[
1
]
+
paddings
[
2
]
kernel_h
,
kernel_w
=
op
.
attr
(
'kernels'
)
out_h
=
1
+
(
h
-
kernel_h
+
stride_h
-
1
)
//
stride_h
out_w
=
1
+
(
w
-
kernel_w
+
stride_w
-
1
)
//
stride_w
h_steps
=
list
()
for
i
in
range
(
out_h
):
h_steps
.
append
([
i
*
stride_h
,
i
*
stride_h
+
kernel_h
])
w_steps
=
list
()
for
i
in
range
(
out_w
):
w_steps
.
append
([
i
*
stride_w
,
i
*
stride_w
+
kernel_w
])
nodes
=
list
()
slice_blocks
=
list
()
for
i
in
range
(
out_h
):
for
j
in
range
(
out_w
):
starts_name
=
"im2sequence.starts.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
starts_tensor
=
helper
.
make_tensor
(
name
=
starts_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
dims
=
[
4
],
vals
=
[
0
,
0
,
h_steps
[
i
][
0
],
w_steps
[
j
][
0
]])
ends_name
=
"im2sequence.ends.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
ends_tensor
=
helper
.
make_tensor
(
name
=
ends_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
dims
=
[
4
],
vals
=
[
999999
,
999999
,
h_steps
[
i
][
1
],
w_steps
[
j
][
1
]])
starts_node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
starts_name
],
value
=
starts_tensor
)
ends_node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
ends_name
],
value
=
ends_tensor
)
nodes
.
extend
([
starts_node
,
ends_node
])
slice_block_name
=
"im2sequence.slice.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
slice_block_node
=
helper
.
make_node
(
'Slice'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
starts_name
,
ends_name
],
outputs
=
[
slice_block_name
])
flatten_block_name
=
"im2sequence.flatten.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
flatten_block_node
=
helper
.
make_node
(
"Flatten"
,
inputs
=
[
slice_block_name
],
outputs
=
[
flatten_block_name
],
axis
=
0
)
nodes
.
extend
([
slice_block_node
,
flatten_block_node
])
slice_blocks
.
append
(
flatten_block_name
)
concat_block_name
=
"im2sequence.concat_block.{}"
.
format
(
im2seq_counter
)
# concat_block_node = helper.make_node("Concat", inputs=slice_blocks, outputs=[concat_block_name], axis=0)
concat_block_node
=
helper
.
make_node
(
"Concat"
,
inputs
=
slice_blocks
,
outputs
=
op
.
output
(
'Out'
),
axis
=
0
)
nodes
.
append
(
concat_block_node
)
print
(
"
\n\n
==========Importance Notice==========="
)
print
(
"Since im2sequence operator is used in your paddlepaddle model, the translated onnx model only support input data with batch_size=1."
)
print
(
"======================================
\n
"
)
return
nodes
x2paddle/op_mapper/paddle_custom_layer/multiclass_nms.py
0 → 100644
浏览文件 @
619b1833
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
sys
import
os
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
onnx
import
warnings
from
onnx
import
helper
,
onnx_pb
def
multiclass_nms
(
op
,
block
):
"""
Convert the paddle multiclass_nms to onnx op.
This op is get the select boxes from origin boxes.
"""
inputs
=
dict
()
outputs
=
dict
()
attrs
=
dict
()
for
name
in
op
.
input_names
:
inputs
[
name
]
=
op
.
input
(
name
)
for
name
in
op
.
output_names
:
outputs
[
name
]
=
op
.
output
(
name
)
for
name
in
op
.
attr_names
:
attrs
[
name
]
=
op
.
attr
(
name
)
result_name
=
outputs
[
'Out'
][
0
]
background
=
attrs
[
'background_label'
]
normalized
=
attrs
[
'normalized'
]
if
normalized
==
False
:
warnings
.
warn
(
'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX.
\
Please set normalized=True in multiclass_nms of Paddle'
)
#convert the paddle attribute to onnx tensor
name_score_threshold
=
[
outputs
[
'Out'
][
0
]
+
"@score_threshold"
]
name_iou_threshold
=
[
outputs
[
'Out'
][
0
]
+
"@iou_threshold"
]
name_keep_top_k
=
[
outputs
[
'Out'
][
0
]
+
'@keep_top_k'
]
name_keep_top_k_2D
=
[
outputs
[
'Out'
][
0
]
+
'@keep_top_k_1D'
]
node_score_threshold
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_score_threshold
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_score_threshold
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
float
(
attrs
[
'score_threshold'
])]))
node_iou_threshold
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_iou_threshold
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_iou_threshold
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
float
(
attrs
[
'nms_threshold'
])]))
node_keep_top_k
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_keep_top_k
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_keep_top_k
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
(),
vals
=
[
np
.
int64
(
attrs
[
'keep_top_k'
])]))
node_keep_top_k_2D
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_keep_top_k_2D
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_keep_top_k_2D
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
1
,
1
],
vals
=
[
np
.
int64
(
attrs
[
'keep_top_k'
])]))
# the paddle data format is x1,y1,x2,y2
kwargs
=
{
'center_point_box'
:
0
}
name_select_nms
=
[
outputs
[
'Out'
][
0
]
+
"@select_index"
]
node_select_nms
=
onnx
.
helper
.
make_node
(
'NonMaxSuppression'
,
inputs
=
inputs
[
'BBoxes'
]
+
inputs
[
'Scores'
]
+
name_keep_top_k
+
\
name_iou_threshold
+
name_score_threshold
,
outputs
=
name_select_nms
)
# step 1 nodes select the nms class
node_list
=
[
node_score_threshold
,
node_iou_threshold
,
node_keep_top_k
,
node_keep_top_k_2D
,
node_select_nms
]
# create some const value to use
name_const_value
=
[
result_name
+
"@const_0"
,
result_name
+
"@const_1"
,
\
result_name
+
"@const_2"
,
\
result_name
+
"@const_-1"
]
value_const_value
=
[
0
,
1
,
2
,
-
1
]
for
name
,
value
in
zip
(
name_const_value
,
value_const_value
):
node
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
name
],
value
=
onnx
.
helper
.
make_tensor
(
name
=
name
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
1
],
vals
=
[
value
]))
node_list
.
append
(
node
)
# Ine this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1
=
[
result_name
+
"@gather_1"
]
node_gather_1
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
name_select_nms
+
[
result_name
+
"@const_1"
],
outputs
=
outputs_gather_1
,
axis
=
1
)
node_list
.
append
(
node_gather_1
)
outputs_squeeze_gather_1
=
[
result_name
+
"@sequeeze_gather_1"
]
node_squeeze_gather_1
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_gather_1
,
outputs
=
outputs_squeeze_gather_1
,
axes
=
[
1
])
node_list
.
append
(
node_squeeze_gather_1
)
outputs_gather_2
=
[
result_name
+
"@gather_2"
]
node_gather_2
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
name_select_nms
+
[
result_name
+
"@const_2"
],
outputs
=
outputs_gather_2
,
axis
=
1
)
node_list
.
append
(
node_gather_2
)
#slice the class is not 0
if
background
==
0
:
outputs_nonzero
=
[
result_name
+
"@nonzero"
]
node_nonzero
=
onnx
.
helper
.
make_node
(
'NonZero'
,
inputs
=
outputs_squeeze_gather_1
,
outputs
=
outputs_nonzero
)
node_list
.
append
(
node_nonzero
)
else
:
name_thresh
=
[
result_name
+
"@thresh"
]
node_thresh
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_thresh
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_thresh
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT32
,
dims
=
[
1
],
vals
=
[
-
1
]))
node_list
.
append
(
node_thresh
)
outputs_cast
=
[
result_name
+
"@cast"
]
node_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_squeeze_gather_1
,
outputs
=
outputs_cast
,
to
=
6
)
node_list
.
append
(
node_cast
)
outputs_greater
=
[
result_name
+
"@greater"
]
node_greater
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
outputs_cast
+
name_thresh
,
outputs
=
outputs_greater
)
node_list
.
append
(
node_greater
)
outputs_nonzero
=
[
result_name
+
"@nonzero"
]
node_nonzero
=
onnx
.
helper
.
make_node
(
'NonZero'
,
inputs
=
outputs_greater
,
outputs
=
outputs_nonzero
)
node_list
.
append
(
node_nonzero
)
outputs_gather_1_nonzero
=
[
result_name
+
"@gather_1_nonzero"
]
node_gather_1_nonzero
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_1
+
outputs_nonzero
,
outputs
=
outputs_gather_1_nonzero
,
axis
=
0
)
node_list
.
append
(
node_gather_1_nonzero
)
outputs_gather_2_nonzero
=
[
result_name
+
"@gather_2_nonzero"
]
node_gather_2_nonzero
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_2
+
outputs_nonzero
,
outputs
=
outputs_gather_2_nonzero
,
axis
=
0
)
node_list
.
append
(
node_gather_2_nonzero
)
# reshape scores N * C * M to (N*C*M) * 1
outputs_reshape_scores_rank1
=
[
result_name
+
"@reshape_scores_rank1"
]
node_reshape_scores_rank1
=
onnx
.
helper
.
make_node
(
"Reshape"
,
inputs
=
inputs
[
'Scores'
]
+
[
result_name
+
"@const_-1"
],
outputs
=
outputs_reshape_scores_rank1
)
node_list
.
append
(
node_reshape_scores_rank1
)
# get the shape of scores
outputs_shape_scores
=
[
result_name
+
"@shape_scores"
]
node_shape_scores
=
onnx
.
helper
.
make_node
(
'Shape'
,
inputs
=
inputs
[
'Scores'
],
outputs
=
outputs_shape_scores
)
node_list
.
append
(
node_shape_scores
)
# gather the index: 2 shape of scores
outputs_gather_scores_dim1
=
[
result_name
+
"@gather_scores_dim1"
]
node_gather_scores_dim1
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_shape_scores
+
[
result_name
+
"@const_2"
],
outputs
=
outputs_gather_scores_dim1
,
axis
=
0
)
node_list
.
append
(
node_gather_scores_dim1
)
# mul class * M
outputs_mul_classnum_boxnum
=
[
result_name
+
"@mul_classnum_boxnum"
]
node_mul_classnum_boxnum
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_gather_1_nonzero
+
outputs_gather_scores_dim1
,
outputs
=
outputs_mul_classnum_boxnum
)
node_list
.
append
(
node_mul_classnum_boxnum
)
# add class * M * index
outputs_add_class_M_index
=
[
result_name
+
"@add_class_M_index"
]
node_add_class_M_index
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
outputs_mul_classnum_boxnum
+
outputs_gather_2_nonzero
,
outputs
=
outputs_add_class_M_index
)
node_list
.
append
(
node_add_class_M_index
)
# Squeeze the indices to 1 dim
outputs_squeeze_select_index
=
[
result_name
+
"@squeeze_select_index"
]
node_squeeze_select_index
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_add_class_M_index
,
outputs
=
outputs_squeeze_select_index
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_squeeze_select_index
)
# gather the data from flatten scores
outputs_gather_select_scores
=
[
result_name
+
"@gather_select_scores"
]
node_gather_select_scores
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_reshape_scores_rank1
+
\
outputs_squeeze_select_index
,
outputs
=
outputs_gather_select_scores
,
axis
=
0
)
node_list
.
append
(
node_gather_select_scores
)
# get nums to input TopK
outputs_shape_select_num
=
[
result_name
+
"@shape_select_num"
]
node_shape_select_num
=
onnx
.
helper
.
make_node
(
'Shape'
,
inputs
=
outputs_gather_select_scores
,
outputs
=
outputs_shape_select_num
)
node_list
.
append
(
node_shape_select_num
)
outputs_gather_select_num
=
[
result_name
+
"@gather_select_num"
]
node_gather_select_num
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_shape_select_num
+
[
result_name
+
"@const_0"
],
outputs
=
outputs_gather_select_num
,
axis
=
0
)
node_list
.
append
(
node_gather_select_num
)
outputs_unsqueeze_select_num
=
[
result_name
+
"@unsqueeze_select_num"
]
node_unsqueeze_select_num
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_gather_select_num
,
outputs
=
outputs_unsqueeze_select_num
,
axes
=
[
0
])
node_list
.
append
(
node_unsqueeze_select_num
)
outputs_concat_topK_select_num
=
[
result_name
+
"@conat_topK_select_num"
]
node_conat_topK_select_num
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
outputs_unsqueeze_select_num
+
name_keep_top_k_2D
,
outputs
=
outputs_concat_topK_select_num
,
axis
=
0
)
node_list
.
append
(
node_conat_topK_select_num
)
outputs_cast_concat_topK_select_num
=
[
result_name
+
"@concat_topK_select_num"
]
node_outputs_cast_concat_topK_select_num
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_concat_topK_select_num
,
outputs
=
outputs_cast_concat_topK_select_num
,
to
=
6
)
node_list
.
append
(
node_outputs_cast_concat_topK_select_num
)
# get min(topK, num_select)
outputs_compare_topk_num_select
=
[
result_name
+
"@compare_topk_num_select"
]
node_compare_topk_num_select
=
onnx
.
helper
.
make_node
(
'ReduceMin'
,
inputs
=
outputs_cast_concat_topK_select_num
,
outputs
=
outputs_compare_topk_num_select
,
keepdims
=
0
)
node_list
.
append
(
node_compare_topk_num_select
)
# unsqueeze the indices to 1D tensor
outputs_unsqueeze_topk_select_indices
=
[
result_name
+
"@unsqueeze_topk_select_indices"
]
node_unsqueeze_topk_select_indices
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_compare_topk_num_select
,
outputs
=
outputs_unsqueeze_topk_select_indices
,
axes
=
[
0
])
node_list
.
append
(
node_unsqueeze_topk_select_indices
)
# cast the indices to INT64
outputs_cast_topk_indices
=
[
result_name
+
"@cast_topk_indices"
]
node_cast_topk_indices
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_unsqueeze_topk_select_indices
,
outputs
=
outputs_cast_topk_indices
,
to
=
7
)
node_list
.
append
(
node_cast_topk_indices
)
# select topk scores indices
outputs_topk_select_topk_indices
=
[
result_name
+
"@topk_select_topk_values"
,
\
result_name
+
"@topk_select_topk_indices"
]
node_topk_select_topk_indices
=
onnx
.
helper
.
make_node
(
'TopK'
,
inputs
=
outputs_gather_select_scores
+
outputs_cast_topk_indices
,
outputs
=
outputs_topk_select_topk_indices
)
node_list
.
append
(
node_topk_select_topk_indices
)
# gather topk label, scores, boxes
outputs_gather_topk_scores
=
[
result_name
+
"@gather_topk_scores"
]
node_gather_topk_scores
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_select_scores
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_scores
,
axis
=
0
)
node_list
.
append
(
node_gather_topk_scores
)
outputs_gather_topk_class
=
[
result_name
+
"@gather_topk_class"
]
node_gather_topk_class
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_1_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_class
,
axis
=
1
)
node_list
.
append
(
node_gather_topk_class
)
# gather the boxes need to gather the boxes id, then get boxes
outputs_gather_topk_boxes_id
=
[
result_name
+
"@gather_topk_boxes_id"
]
node_gather_topk_boxes_id
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_2_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_boxes_id
,
axis
=
1
)
node_list
.
append
(
node_gather_topk_boxes_id
)
# squeeze the gather_topk_boxes_id to 1 dim
outputs_squeeze_topk_boxes_id
=
[
result_name
+
"@squeeze_topk_boxes_id"
]
node_squeeze_topk_boxes_id
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_gather_topk_boxes_id
,
outputs
=
outputs_squeeze_topk_boxes_id
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_squeeze_topk_boxes_id
)
outputs_gather_select_boxes
=
[
result_name
+
"@gather_select_boxes"
]
node_gather_select_boxes
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
inputs
[
'BBoxes'
]
+
outputs_squeeze_topk_boxes_id
,
outputs
=
outputs_gather_select_boxes
,
axis
=
1
)
node_list
.
append
(
node_gather_select_boxes
)
# concat the final result
# before concat need to cast the class to float
outputs_cast_topk_class
=
[
result_name
+
"@cast_topk_class"
]
node_cast_topk_class
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_gather_topk_class
,
outputs
=
outputs_cast_topk_class
,
to
=
1
)
node_list
.
append
(
node_cast_topk_class
)
outputs_unsqueeze_topk_scores
=
[
result_name
+
"@unsqueeze_topk_scores"
]
node_unsqueeze_topk_scores
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_gather_topk_scores
,
outputs
=
outputs_unsqueeze_topk_scores
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_unsqueeze_topk_scores
)
inputs_concat_final_results
=
outputs_cast_topk_class
+
outputs_unsqueeze_topk_scores
+
\
outputs_gather_select_boxes
outputs_concat_final_results
=
outputs
[
'Out'
]
node_concat_final_results
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
inputs_concat_final_results
,
outputs
=
outputs_concat_final_results
,
axis
=
2
)
node_list
.
append
(
node_concat_final_results
)
return
node_list
x2paddle/op_mapper/paddle_custom_layer/yolo_box.py
0 → 100644
浏览文件 @
619b1833
此差异已折叠。
点击以展开。
x2paddle/op_mapper/paddle_op_mapper.py
0 → 100644
浏览文件 @
619b1833
此差异已折叠。
点击以展开。
x2paddle/op_mapper/tf_op_mapper.py
浏览文件 @
619b1833
此差异已折叠。
点击以展开。
x2paddle/op_mapper/tf_op_mapper_nhwc.py
浏览文件 @
619b1833
此差异已折叠。
点击以展开。
x2paddle/optimizer/caffe_optimizer.py
浏览文件 @
619b1833
...
@@ -41,10 +41,11 @@ class CaffeOptimizer(object):
...
@@ -41,10 +41,11 @@ class CaffeOptimizer(object):
if
is_delete_node
:
if
is_delete_node
:
parent_node
.
fluid_code
.
clear
()
parent_node
.
fluid_code
.
clear
()
node
.
fluid_code
.
clear
()
node
.
fluid_code
.
clear
()
node
.
fluid_code
.
add_layer
(
"batch_norm"
,
node
.
fluid_code
.
add_layer
(
inputs
=
input
,
"batch_norm"
,
output
=
node
,
inputs
=
input
,
param_attr
=
parent_param_attr
)
output
=
node
,
param_attr
=
parent_param_attr
)
def
merge_op_activation
(
self
):
def
merge_op_activation
(
self
):
for
node_name
in
self
.
graph
.
topo_sort
:
for
node_name
in
self
.
graph
.
topo_sort
:
...
@@ -62,7 +63,8 @@ class CaffeOptimizer(object):
...
@@ -62,7 +63,8 @@ class CaffeOptimizer(object):
if
is_delete_node
:
if
is_delete_node
:
parent_node
.
fluid_code
.
clear
()
parent_node
.
fluid_code
.
clear
()
node
.
fluid_code
.
clear
()
node
.
fluid_code
.
clear
()
node
.
fluid_code
.
add_layer
(
op
,
node
.
fluid_code
.
add_layer
(
inputs
=
input
,
op
,
output
=
node
,
inputs
=
input
,
param_attr
=
parent_param_attr
)
output
=
node
,
param_attr
=
parent_param_attr
)
x2paddle/optimizer/tf_optimizer.py
浏览文件 @
619b1833
...
@@ -554,10 +554,11 @@ class TFOptimizer(object):
...
@@ -554,10 +554,11 @@ class TFOptimizer(object):
node
.
fluid_code
.
layers
[
0
].
param_attr
[
"shape"
]
=
shape
node
.
fluid_code
.
layers
[
0
].
param_attr
[
"shape"
]
=
shape
node
.
fluid_code
.
layers
[
0
].
output
=
"nhwc_"
+
name
node
.
fluid_code
.
layers
[
0
].
output
=
"nhwc_"
+
name
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
node
.
fluid_code
.
add_layer
(
inputs
=
"nhwc_"
+
name
,
"transpose"
,
output
=
node
,
inputs
=
"nhwc_"
+
name
,
param_attr
=
attr
)
output
=
node
,
param_attr
=
attr
)
self
.
graph
.
input_nodes
[
i
]
=
"nhwc_"
+
name
self
.
graph
.
input_nodes
[
i
]
=
"nhwc_"
+
name
for
i
,
name
in
enumerate
(
self
.
graph
.
output_nodes
):
for
i
,
name
in
enumerate
(
self
.
graph
.
output_nodes
):
node
=
self
.
graph
.
get_node
(
name
)
node
=
self
.
graph
.
get_node
(
name
)
...
@@ -767,8 +768,8 @@ class TFOptimizer(object):
...
@@ -767,8 +768,8 @@ class TFOptimizer(object):
is_prelu
=
False
is_prelu
=
False
continue
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
]
in_nodes0
[
1
]
.
outputs
)
!=
1
:
.
outputs
)
!=
1
:
is_prelu
=
False
is_prelu
=
False
continue
continue
...
@@ -777,8 +778,8 @@ class TFOptimizer(object):
...
@@ -777,8 +778,8 @@ class TFOptimizer(object):
self
.
graph
.
get_node
(
in_name
)
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes0
[
1
].
inputs
for
in_name
in
in_nodes0
[
1
].
inputs
]
]
if
in_nodes2
[
1
].
layer_type
!=
"Const"
or
numpy
.
fabs
(
if
in_nodes2
[
1
].
layer_type
!=
"Const"
or
numpy
.
fabs
(
in_nodes2
[
in_nodes2
[
1
].
value
-
0.5
)
>
1e-06
:
1
].
value
-
0.5
)
>
1e-06
:
is_prelu
=
False
is_prelu
=
False
continue
continue
if
in_nodes2
[
0
].
layer_type
!=
"Mul"
:
if
in_nodes2
[
0
].
layer_type
!=
"Mul"
:
...
@@ -787,8 +788,8 @@ class TFOptimizer(object):
...
@@ -787,8 +788,8 @@ class TFOptimizer(object):
if
exist_act
(
in_nodes2
[
0
]):
if
exist_act
(
in_nodes2
[
0
]):
is_prelu
=
False
is_prelu
=
False
continue
continue
if
len
(
in_nodes2
[
1
].
outputs
)
!=
1
or
len
(
if
len
(
in_nodes2
[
1
].
outputs
)
!=
1
or
len
(
in_nodes2
[
0
]
in_nodes2
[
0
]
.
outputs
)
!=
1
:
.
outputs
)
!=
1
:
is_prelu
=
False
is_prelu
=
False
continue
continue
...
@@ -803,8 +804,8 @@ class TFOptimizer(object):
...
@@ -803,8 +804,8 @@ class TFOptimizer(object):
if
exist_act
(
in_nodes3
[
1
]):
if
exist_act
(
in_nodes3
[
1
]):
is_prelu
=
False
is_prelu
=
False
continue
continue
if
len
(
in_nodes3
[
0
].
outputs
)
!=
1
or
len
(
if
len
(
in_nodes3
[
0
].
outputs
)
!=
1
or
len
(
in_nodes3
[
1
]
in_nodes3
[
1
]
.
outputs
)
!=
1
:
.
outputs
)
!=
1
:
is_prelu
=
False
is_prelu
=
False
continue
continue
...
@@ -856,12 +857,12 @@ class TFOptimizer(object):
...
@@ -856,12 +857,12 @@ class TFOptimizer(object):
mode
=
"element"
mode
=
"element"
elif
len
(
in_nodes3
[
0
].
value
.
shape
)
==
0
:
elif
len
(
in_nodes3
[
0
].
value
.
shape
)
==
0
:
mode
=
"all"
mode
=
"all"
elif
len
(
in_nodes3
[
0
].
value
.
shape
elif
len
(
in_nodes3
[
0
].
value
.
shape
)
==
1
and
in_nodes3
[
)
==
1
and
in_nodes3
[
0
].
value
.
shape
[
0
]
==
1
:
0
].
value
.
shape
[
0
]
==
1
:
mode
=
"all"
mode
=
"all"
elif
len
(
in_shape
)
==
4
and
len
(
elif
len
(
in_shape
)
==
4
and
len
(
in_nodes3
[
in_nodes3
[
0
].
value
.
shape
0
].
value
.
shape
)
==
1
and
in_nodes3
[
0
].
value
.
shape
[
)
==
1
and
in_nodes3
[
0
].
value
.
shape
[
0
]
==
in_shape
[
-
1
]:
0
]
==
in_shape
[
-
1
]:
mode
=
"channel"
mode
=
"channel"
weight
=
self
.
op_mapper
.
weights
[
in_nodes3
[
0
].
layer_name
]
weight
=
self
.
op_mapper
.
weights
[
in_nodes3
[
0
].
layer_name
]
weight
=
numpy
.
expand_dims
(
weight
,
0
)
weight
=
numpy
.
expand_dims
(
weight
,
0
)
...
@@ -916,14 +917,15 @@ class TFOptimizer(object):
...
@@ -916,14 +917,15 @@ class TFOptimizer(object):
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
node
.
inputs
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
node
.
inputs
]
]
if
in_nodes0
[
0
].
layer_type
!=
"Mul"
or
in_nodes0
[
if
in_nodes0
[
0
].
layer_type
!=
"Mul"
or
in_nodes0
[
1
].
layer_type
!=
"Const"
or
in_nodes0
[
1
].
value
.
size
!=
1
:
1
].
layer_type
!=
"Const"
or
in_nodes0
[
1
].
value
.
size
!=
1
:
is_scale
=
False
is_scale
=
False
continue
continue
if
exist_act
(
in_nodes0
[
0
]):
if
exist_act
(
in_nodes0
[
0
]):
is_scale
=
False
is_scale
=
False
continue
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
]
in_nodes0
[
1
]
.
outputs
)
!=
1
:
.
outputs
)
!=
1
:
is_scale
=
False
is_scale
=
False
continue
continue
...
@@ -939,8 +941,8 @@ class TFOptimizer(object):
...
@@ -939,8 +941,8 @@ class TFOptimizer(object):
if
exist_act
(
in_nodes1
[
1
]):
if
exist_act
(
in_nodes1
[
1
]):
is_scale
=
False
is_scale
=
False
continue
continue
if
len
(
in_nodes1
[
0
].
outputs
)
!=
1
or
len
(
if
len
(
in_nodes1
[
0
].
outputs
)
!=
1
or
len
(
in_nodes1
[
1
]
in_nodes1
[
1
]
.
outputs
)
!=
1
:
.
outputs
)
!=
1
:
is_scale
=
False
is_scale
=
False
continue
continue
...
@@ -962,8 +964,8 @@ class TFOptimizer(object):
...
@@ -962,8 +964,8 @@ class TFOptimizer(object):
scale
=
1.0
/
in_nodes2
[
1
].
value
*
in_nodes1
[
0
].
value
scale
=
1.0
/
in_nodes2
[
1
].
value
*
in_nodes1
[
0
].
value
act
=
None
act
=
None
if
node
.
fluid_code
.
layers
[
0
].
param_attr
is
not
None
:
if
node
.
fluid_code
.
layers
[
0
].
param_attr
is
not
None
:
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
"act"
,
"act"
,
None
)
None
)
node
.
fluid_code
.
clear
()
node
.
fluid_code
.
clear
()
attr
=
{
attr
=
{
...
@@ -972,10 +974,8 @@ class TFOptimizer(object):
...
@@ -972,10 +974,8 @@ class TFOptimizer(object):
"bias_after_scale"
:
True
,
"bias_after_scale"
:
True
,
"act"
:
act
"act"
:
act
}
}
node
.
fluid_code
.
add_layer
(
"scale"
,
node
.
fluid_code
.
add_layer
(
inputs
=
in_node
,
"scale"
,
inputs
=
in_node
,
output
=
node
,
param_attr
=
attr
)
output
=
node
,
param_attr
=
attr
)
del
self
.
graph
.
node_map
[
in_nodes0
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
1
].
layer_name
]
...
@@ -1004,17 +1004,17 @@ class TFOptimizer(object):
...
@@ -1004,17 +1004,17 @@ class TFOptimizer(object):
if
exist_act
(
in_nodes0
[
0
]):
if
exist_act
(
in_nodes0
[
0
]):
is_affine_channel
=
False
is_affine_channel
=
False
continue
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
]
in_nodes0
[
1
]
.
outputs
)
!=
1
:
.
outputs
)
!=
1
:
is_affine_channel
=
False
is_affine_channel
=
False
continue
continue
in_nodes1
=
[
in_nodes1
=
[
self
.
graph
.
get_node
(
in_name
)
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes0
[
0
].
inputs
for
in_name
in
in_nodes0
[
0
].
inputs
]
]
if
len
(
in_nodes1
[
0
].
out_shapes
[
0
]
if
len
(
in_nodes1
[
0
].
out_shapes
[
0
]
)
!=
4
or
in_nodes1
[
)
!=
4
or
in_nodes1
[
1
].
layer_type
!=
"Const"
or
len
(
1
].
layer_type
!=
"Const"
or
len
(
in_nodes1
[
1
]
in_nodes1
[
1
]
.
value
.
shape
)
!=
3
:
.
value
.
shape
)
!=
3
:
is_affine_channel
=
False
is_affine_channel
=
False
continue
continue
if
len
(
in_nodes1
[
1
].
outputs
)
!=
1
:
if
len
(
in_nodes1
[
1
].
outputs
)
!=
1
:
...
@@ -1037,8 +1037,8 @@ class TFOptimizer(object):
...
@@ -1037,8 +1037,8 @@ class TFOptimizer(object):
node
.
layer_type
=
"AffineChannel"
node
.
layer_type
=
"AffineChannel"
node
.
inputs
=
[
in_node
.
layer_name
]
node
.
inputs
=
[
in_node
.
layer_name
]
scale
=
1.0
/
in_nodes0
[
1
].
value
.
flatten
()
scale
=
1.0
/
in_nodes0
[
1
].
value
.
flatten
()
bias
=
in_nodes1
[
1
].
value
.
flatten
(
bias
=
in_nodes1
[
1
].
value
.
flatten
(
)
/
in_nodes0
[
)
/
in_nodes0
[
1
].
value
.
flatten
()
1
].
value
.
flatten
()
if
not
bias_add
:
if
not
bias_add
:
bias
*=
-
1.0
bias
*=
-
1.0
self
.
op_mapper
.
weights
[
node
.
layer_name
+
"_scale"
]
=
scale
self
.
op_mapper
.
weights
[
node
.
layer_name
+
"_scale"
]
=
scale
...
@@ -1046,8 +1046,8 @@ class TFOptimizer(object):
...
@@ -1046,8 +1046,8 @@ class TFOptimizer(object):
act
=
None
act
=
None
if
node
.
fluid_code
.
layers
[
0
].
param_attr
is
not
None
:
if
node
.
fluid_code
.
layers
[
0
].
param_attr
is
not
None
:
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
"act"
,
"act"
,
None
)
None
)
node
.
fluid_code
.
clear
()
node
.
fluid_code
.
clear
()
attr
=
{
attr
=
{
...
@@ -1055,29 +1055,32 @@ class TFOptimizer(object):
...
@@ -1055,29 +1055,32 @@ class TFOptimizer(object):
"shape"
:
[
channel
],
"shape"
:
[
channel
],
"name"
:
string
(
node
.
layer_name
+
"_scale"
)
"name"
:
string
(
node
.
layer_name
+
"_scale"
)
}
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
node
.
fluid_code
.
add_layer
(
inputs
=
None
,
"create_parameter"
,
output
=
node
.
layer_name
+
"_scale"
,
inputs
=
None
,
param_attr
=
attr
)
output
=
node
.
layer_name
+
"_scale"
,
param_attr
=
attr
)
attr
=
{
attr
=
{
"dtype"
:
string
(
scale
.
dtype
),
"dtype"
:
string
(
scale
.
dtype
),
"shape"
:
[
channel
],
"shape"
:
[
channel
],
"name"
:
string
(
node
.
layer_name
+
"_bias"
)
"name"
:
string
(
node
.
layer_name
+
"_bias"
)
}
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
node
.
fluid_code
.
add_layer
(
inputs
=
None
,
"create_parameter"
,
output
=
node
.
layer_name
+
"_bias"
,
inputs
=
None
,
param_attr
=
attr
)
output
=
node
.
layer_name
+
"_bias"
,
param_attr
=
attr
)
inputs
=
{
inputs
=
{
"x"
:
in_node
,
"x"
:
in_node
,
"scale"
:
node
.
layer_name
+
"_scale"
,
"scale"
:
node
.
layer_name
+
"_scale"
,
"bias"
:
node
.
layer_name
+
"_bias"
"bias"
:
node
.
layer_name
+
"_bias"
}
}
attr
=
{
"act"
:
act
}
attr
=
{
"act"
:
act
}
node
.
fluid_code
.
add_layer
(
"affine_channel"
,
node
.
fluid_code
.
add_layer
(
inputs
=
inputs
,
"affine_channel"
,
output
=
node
,
inputs
=
inputs
,
param_attr
=
attr
)
output
=
node
,
param_attr
=
attr
)
del
self
.
graph
.
node_map
[
in_nodes0
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
1
].
layer_name
]
...
...
x2paddle_model_zoo.md
浏览文件 @
619b1833
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
| ShuffleNet |
[
code
](
https://github.com/TropComplique/shufflenet-v2-tensorflow
)
|-|
| ShuffleNet |
[
code
](
https://github.com/TropComplique/shufflenet-v2-tensorflow
)
|-|
| mNASNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
)
|-|
| mNASNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
)
|-|
| EfficientNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
)
|-|
| EfficientNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
)
|-|
| Inception_V3 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py
)
|-|
| Inception_V4 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py
)
|-|
| Inception_V4 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py
)
|-|
| Inception_ResNet_V2 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
)
|-|
| Inception_ResNet_V2 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
)
|-|
| VGG16 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
| VGG16 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录