未验证 提交 5c70a65f 编写于 作者: J Jason 提交者: GitHub

Update README.md

上级 170abfa4
......@@ -63,71 +63,9 @@ bash tools/diff.sh alexnet ../../ ../../
export CAFFE2FLUID_CUSTOM_LAYERS=/path/to/caffe2fluid/kaffe
```
# 模型测试
目前
# 模型测试
## 要点
1. 将Caffe模型及其对应的网络结构代码转换为Fluid模型和代码。
2. 通过扩展此工具也可以支持Caffe的自定义图层转换。
3. `examples/imagenet/tools`中提供了工具可以用于对此Caffe和Fluid预测后输出结果的差异。
## 准备工作
该部分主要介绍了使用此工具所需的环境安装。[详情](https://github.com/PaddlePaddle/X2Paddle/blob/master/caffe2fluid/prepare.md)
## 如何使用
1. 如果你的python中没有`pycaffe`模块,需要在`./proto`中加入`caffepb`,有以下两种方法可以实现这一操作。
> ```shell
> # 从caffe.proto中生成pycaffe
> bash ./proto/compile.sh
> # 直接从github上下载
> cd proto/ && wget https://raw.githubusercontent.com/ethereon/caffe-tensorflow/master/kaffe/caffe/caffeb.py
> ```
2. 将Caffe模型转换为Fluid模型
> ```shell
> # 将Caffe的模型和prototxt文件存放于`models`文件夹下
> # 生成Fluid代码和模型文件
> python convert.py ./models/alexnet.prototxt --caffemodel ./models/alexnet.caffemodel --data-output-path ./models/alexnet.npy --code-output-path ./models/alexnet.py
> # 将权值参数保存为Fluid模型文件
> python ./models/alexnet.py ./models/alexnet.npy ./models/fluid
> # 获取AlexNet中fc8层和prob层的结果
> python ./models/alexnet.py ./models/alexnet.npy ./models/fluid fc8,prob
> ```
3. 转换后并进行预测和比较(此部分需要Caffe和PaddlePaddle框架支持)
> ```shell
> cd examples/imagenet
>
> # 假设通过前一个步骤已经获得`../../models/fluid/model`和`../../models/fluid/params`,则可以使用Fluid进行预测
> python infer.py infer ../../models/fluid/ data/65.jpeg
>
> # 同时进行转换和预测
> bash ./tools/run.sh alexnet ../../models/ ../../models
> # 其中第一个参数为命名,第二个参数为Caffe代码和模型的存放路径,第三个参数为Fluid代码和模型的存放路径
> # 注意,Caffe和Fluid代码和模型的命名必须相同,只是后缀不同
>
> # 计算Caffe输出和Fluid输出的差异
> bash ./tools/diff.sh alexnet ../../models/ ../../models
> # 其中第一个参数为命名,第二个参数为Caffe代码和模型的存放路径,第三个参数为Fluid代码和模型的存放路径
> # 注意,Caffe和Fluid代码和模型的命名必须相同,只是后缀不同
> ```
## 如何转换自定义层
1.`kaffe/custom_layers`实现自定义的层,例如:mylayer.py
-实现`shape_func(input_shape, [other_caffe_params])`来计算输出的大小
-实现`layer_func(input_shape, [other_caffe_params])`来构造一个Fluid层
-运用这两个功能`register(kind='MyType', shape=shape_func, layer=layer_func)`
-注意:更多的示例可以从`kaffe/custom_layers`中找到
2.`import mylayer`添加到`kaffe/custom_layers/\__\_init__.py`
3. 准备你的pycaffe作为你的定制版本(与以前的env准备相同)
-选择一:编译你自己的`caffe.proto`来代替`proto/caffe.proto`
-选择二:更换你的`pycaffe`到特定的版本
4. 将Caffe模型转换为Fluid模型
5. 设置环境变量`$CAFFE2FLUID_CUSTOM_LAYERS``custom_layers`的父目录
> ```shell
> export CAFFE2FLUID_CUSTOM_LAYERS=/path/to/caffe2fluid/kaffe
> ```
6. 使用转换好的模型
## 可测试的模型
caffe2fluid在如下模型上通过测试
- [Lenet](https://github.com/ethereon/caffe-tensorflow/blob/master/examples/mnist)
- [ResNet(ResNet-50,ResNet-101,ResNet-152)](https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777)
- [GoogleNet](https://gist.github.com/jimmie33/7ea9f8ac0da259866b854460f4526034)
- [VGG](https://gist.github.com/ksimonyan/211839e770f7b538e2d8)
- [AlexNet](https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册