提交 5a156306 编写于 作者: W wjj19950828

resolve conflict

......@@ -115,8 +115,7 @@ Aten:
| 121 | aten::repeat\_interleave | 122 | aten::maxpool1d | 123 | aten::frobenius\_norm | 124 | aten::format |
| 125 | aten::complex | 126 | aten::real | 127 | aten::imag | 128 | aten::fft\_rfftn |
| 129 | aten::fft\_irfftn | 130 | aten::hardsigmoid | 131 | aten::hardswish | 132 | aten::linear |
| 133 | aten::rsqrt | 134 | aten::full | | | | |
| 133 | aten::rsqrt | 134 | aten::replication\_pad1d | 135 | aten::full | | |
Prim:
| 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
......
......@@ -3310,27 +3310,25 @@ def aten_linear(mapper, graph, node):
# transpose weight
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
scope_name)
layer_attrs_transpose = {}
layer_attrs_transpose["perm"] = [1, 0]
layer_inputs["y"] = inputs_name[1]
layer_attrs["transpose_y"] = True
graph.add_layer(
"paddle.transpose",
inputs={"x": inputs_name[1]},
outputs=[inputs_name[1] + "_transpose"],
"paddle.matmul",
inputs=layer_inputs,
outputs=layer_outputs,
scope_name=scope_name,
**layer_attrs_transpose)
layer_inputs["weight"] = inputs_name[1] + "_transpose"
**layer_attrs)
if len(inputs_name) == 3:
mapper._check_input(graph, inputs_node[2], inputs_name[2],
current_outputs, scope_name)
layer_inputs["bias"] = inputs_name[2]
graph.add_layer(
"paddle.add",
inputs={"x": output_name,
"y": inputs_name[2]},
outputs=layer_outputs,
scope_name=scope_name)
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.nn.functional.linear",
inputs=layer_inputs,
outputs=layer_outputs,
scope_name=scope_name,
**layer_attrs)
return current_inputs, current_outputs
......@@ -4658,6 +4656,42 @@ def aten_repeat_interleave(mapper, graph, node):
return current_inputs, current_outputs
def aten_replication_pad1d(mapper, graph, node):
"""
TorchScript Code:
%58 : Tensor = aten::replication_pad1d(%input.1, %152)
Parameter meaning:
%58 (Tensor): Output Tensor
%input.1 (Tensor): Input Tensor
%%152 (list): Padding size
"""
scope_name = mapper.normalize_scope_name(node)
op_name = name_generator("pad", mapper.nn_name2id)
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [op_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# output list
current_outputs = [output_name]
# input list
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
scope_name)
layer_inputs["input"] = inputs_name[0]
layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
layer_attrs["mode"] = string("replicate")
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.nn.Pad1D",
inputs=layer_inputs,
outputs=layer_outputs,
scope_name=scope_name,
**layer_attrs)
return current_inputs, current_outputs
def aten_reshape(mapper, graph, node):
""" 构造调整大小的PaddleLayer。
TorchScript示例:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册