未验证 提交 4ac94c64 编写于 作者: J Jason 提交者: GitHub

Merge pull request #136 from Channingss/develop

support transformer & fix some bug
......@@ -15,7 +15,7 @@ paddlepaddle >= 1.5.0
**按需安装以下依赖**
tensorflow : tensorflow == 1.14.0
caffe : 无
onnx : onnx == 1.5.0 pytorch == 1.1.0
onnx : onnx == 1.5.0 onnxruntime == 0.4.0
## 安装
### 安装方式一(推荐)
......
......@@ -23,4 +23,9 @@ setuptools.setup(
"Operating System :: OS Independent",
],
license='Apache 2.0',
entry_points={'console_scripts': ['x2paddle=x2paddle.convert:main']})
entry_points={
'console_scripts': [
'x2paddle=x2paddle.convert:main',
'onnx_infer=x2paddle.onnx_infer:main'
]
})
......@@ -154,7 +154,7 @@ def onnx2paddle(model_path, save_dir):
model = ONNXDecoder(model_path)
from x2paddle.op_mapper.onnx_op_mapper import ONNXOpMapper
mapper = ONNXOpMapper(model)
mapper = ONNXOpMapper(model, save_dir)
from x2paddle.optimizer.onnx_optimizer import ONNXOptimizer
optimizer = ONNXOptimizer(mapper)
......
......@@ -17,7 +17,6 @@ from x2paddle.core.fluid_code import FluidCode
from onnx.checker import ValidationError
from onnx.checker import check_model
from onnx.utils import polish_model
from onnx.version_converter import convert_version
from onnx import helper
from onnx.helper import get_attribute_value, make_attribute
from onnx.shape_inference import infer_shapes
......@@ -26,9 +25,11 @@ from onnx.numpy_helper import to_array
from onnx import AttributeProto, TensorProto, GraphProto
from collections import OrderedDict as Dict
import onnx
from onnx.helper import ValueInfoProto
import numpy as np
from copy import deepcopy
import logging as _logging
import os
default_op_domain = 'ai.onnx'
_logger = _logging.getLogger(__name__)
......@@ -47,6 +48,7 @@ class ONNXGraphNode(GraphNode):
self.weight_inputs = list()
self.out_shapes = list()
self.dtype = None
self.which_child = {}
def get_attr_map(self):
"""
......@@ -60,10 +62,9 @@ class ONNXGraphNode(GraphNode):
@property
def value(self):
assert 'Constant' in self.layer_type, "Only Constant | ConstantOfShape node has value."
attr = self.layer.attribute['value']
if 'value' not in self.attr_map:
return None
return self.attr_map[name]
return self.attr_map['value']
def get_attribute_value2(self, attr):
"""
......@@ -105,29 +106,39 @@ class ONNXGraphDataNode(GraphNode):
self.fluid_code = FluidCode()
self.weight = None
self.embeded_as = None
self.which_child = {}
@property
def out_shapes(self):
values = self.layer.type.tensor_type.shape.dim
out_shapes = list()
out_shapes.append([dim.dim_value for dim in values])
return out_shapes
if isinstance(self.layer, ValueInfoProto):
values = self.layer.type.tensor_type.shape.dim
out_shapes = list()
out_shapes.append([dim.dim_value for dim in values])
return out_shapes
else:
values = self.layer.dims
out_shapes = list()
out_shapes.append(values)
return out_shapes
@property
def dtype(self):
dtype = self.layer.type.tensor_type.elem_type
return TENSOR_TYPE_TO_NP_TYPE[dtype]
if isinstance(self.layer, ValueInfoProto):
dtype = self.layer.type.tensor_type.elem_type
return TENSOR_TYPE_TO_NP_TYPE[dtype]
else:
dtype = self.layer.data_type
return TENSOR_TYPE_TO_NP_TYPE[dtype]
class ONNXGraph(Graph):
def __init__(self, graph, onnx_model):
super(ONNXGraph, self).__init__(graph)
def __init__(self, onnx_model):
super(ONNXGraph, self).__init__(onnx_model.graph)
self.onnx_model = onnx_model
self.initializer = {}
self.place_holder_nodes = list()
self.get_place_holder_nodes()
self.value_infos = self.inferred_model_value_info(graph)
self.value_infos = self.inferred_model_value_info(self.model)
self.results_of_inference = dict()
def get_inner_nodes(self):
......@@ -165,22 +176,9 @@ class ONNXGraph(Graph):
"""
build topo_sort of ONNX model
"""
data_node = self.place_holder_nodes[0]
value_info = self.value_infos[data_node]
input_shape = value_info['shape']
self.get_results_of_inference(self.onnx_model, input_shape)
for layer in self.model.node:
node = ONNXGraphNode(layer)
self.node_map[layer.name] = node
for opt in layer.output:
if opt in self.value_infos:
value_info = self.value_infos[opt]
node.dtype = value_info['dtype']
node.out_shapes.append(value_info['shape'])
else:
_, dtype, shape = self.get_dynamic_shape(opt)
node.dtype = dtype
node.out_shapes.append(shape)
for layer in self.model.input:
if layer.name not in self.node_map:
......@@ -191,20 +189,40 @@ class ONNXGraph(Graph):
is_global_input=is_place_holder)
#set data node's weight
for name, weight in self.graph_weights(self.model):
for initializer in self.model.initializer:
name = initializer.name
weight = to_array(initializer)
if name in self.node_map:
if isinstance(self.node_map[name], ONNXGraphDataNode):
self.node_map[name].weight = weight
self.node_map[name].embeded_as = []
else:
self.node_map[name] = ONNXGraphDataNode(initializer,
layer_name=name,
is_global_input=False)
self.node_map[name].weight = weight
self.node_map[name].embeded_as = []
#generate connection between nodes for topo
for layer_name, node in self.node_map.items():
if isinstance(node, ONNXGraphNode):
for idx, in_node in enumerate(node.layer.input):
if in_node not in self.node_map:
raise Exception(
'input[{}] of node[{}] does not exist in node_map'.
format(in_node, layer_name))
flag = 0
for nd in self.model.node:
for idx, opt in enumerate(nd.output):
if opt == in_node:
self.connect(nd.name, layer_name)
flag = 1
node.which_child[nd.name] = idx
self.node_map[nd.name].index = 0
break
if flag == 1:
break
if flag == 0:
raise Exception(
'input[{}] of node[{}] does not exist in node_map'
.format(in_node, layer_name))
else:
self.connect(in_node, layer_name)
#generate topo
......@@ -212,13 +230,16 @@ class ONNXGraph(Graph):
self.input_nodes = self.place_holder_nodes
def get_nodes(self, names, copy=False):
"""
get nodes by more than one name
"""
nodes = []
for name in names:
nodes.add(self.get_node(name, copy=copy))
def get_input_node(self, node, idx=0, copy=False):
if len(node.which_child) == 0:
ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
return ipt_node
else:
ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
if ipt_node.layer_name in node.which_child:
ipt_node.index = node.which_child[ipt_node.layer_name]
return ipt_node
def graph_weights(self, graph):
"""
......@@ -270,50 +291,6 @@ class ONNXGraph(Graph):
}
return value_info
def get_results_of_inference(self, model, shape):
try:
import torch
version = torch.__version__
if '1.1.0' not in version:
print("your model have dynamic graph, torch==1.1.0 is required")
return
except:
print(
"your model have dynamic graph, we use caff2 to inference graph, please use \"pip install torch==1.1.0\"."
)
return
from x2paddle.decoder.onnx_backend import prepare
np_images = np.random.rand(shape[0], shape[1], shape[2],
shape[3]).astype('float32')
outputs = []
for node in model.graph.node:
value_info = helper.make_tensor_value_info(node.name,
TensorProto.UNDEFINED,
[])
outputs.append(value_info)
while len(outputs) > 0:
tmp_outputs = outputs[:254]
model.graph.ClearField('output')
model.graph.output.MergeFrom(tmp_outputs)
prepared_backend = prepare(model,
device='CPU',
no_check_UNSAFE=True)
res = prepared_backend.run(inputs=np_images)
for idx, info in enumerate(tmp_outputs):
self.results_of_inference[info.name] = res[idx]
outputs = outputs[254:]
return
def get_dynamic_shape(self, layer):
"""
get dynamic shape from caffe2.backend
"""
output = self.results_of_inference[layer]
return output.tolist(), output.dtype, output.shape
class ONNXDecoder(object):
def __init__(self, onnx_model):
......@@ -334,8 +311,8 @@ class ONNXDecoder(object):
self.standardize_variable_name(model.graph)
self.model = model
graph_def = model.graph
self.onnx_graph = ONNXGraph(graph_def, model)
graph = model.graph
self.onnx_graph = ONNXGraph(model)
self.onnx_graph.build()
def build_value_refs(self, nodes):
......@@ -476,7 +453,7 @@ class ONNXDecoder(object):
if name == '':
raise ValueError('name should not be empty')
for s in ' .*?\\/-:': #
for s in ' .*?\\/-:':
name = name.replace(s, '_')
return '_' + name
......@@ -499,46 +476,3 @@ class ONNXDecoder(object):
node.input[i] = self.make_variable_name(node.input[i])
for i in range(len(node.output)):
node.output[i] = self.make_variable_name(node.output[i])
def split_model(self, model, outputs=None):
"""
Takes a model and changes its outputs.
"""
if outputs is None:
raise RuntimeError("outputs is None")
if outputs == model.graph.output[0].name:
return model
nodes = model.graph.node
keep_nodes = []
# all the nodes we need to keep.
for node in nodes:
if outputs in node.output:
keep_nodes.append(node)
break
keep_nodes.append(node)
infer_shapes = onnx.shape_inference.infer_shapes(model)
var_out = []
for value_info in infer_shapes.graph.value_info:
if value_info.name == outputs:
var_out.append(value_info)
break
graph = helper.make_graph(keep_nodes, model.graph.name,
model.graph.input, var_out,
model.graph.initializer)
onnx_model = helper.make_model(graph)
onnx_model.ir_version = model.ir_version
onnx_model.producer_name = model.producer_name
onnx_model.producer_version = model.producer_version
onnx_model.domain = model.domain
onnx_model.model_version = model.model_version
onnx_model.doc_string = model.doc_string
if len(onnx_model.graph.input) != len(model.graph.input):
raise RuntimeError("Input mismatch {} != {}".format(
len(onnx_model.input), len(model.input)))
return onnx_model
import onnxruntime as rt
import os
import sys
import numpy as np
import onnx
import json
import argparse
from six import text_type as _text_type
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir",
"-s",
type=_text_type,
default=None,
help="define save_dir")
return parser
def main():
parser = arg_parser()
args = parser.parse_args()
save_dir = args.save_dir
model_dir = os.path.join(save_dir, 'onnx_model_infer.onnx')
data_dir = os.path.join(save_dir, 'input_data.npy')
model = onnx.load(model_dir)
sess = rt.InferenceSession(model_dir)
inputs = np.load(data_dir, allow_pickle=True)
data_dir
inputs_dict = {}
for i, ipt in enumerate(inputs):
inputs_dict[sess.get_inputs()[i].name] = ipt
res = sess.run(None, input_feed=inputs_dict)
for idx, value_info in enumerate(model.graph.output):
np.save(os.path.join(save_dir, value_info.name), res[idx])
if __name__ == "__main__":
main()
......@@ -22,8 +22,9 @@ def InstanceNormalization_shape(input_shape):
def InstanceNormalization_layer(inputs, name=None):
# TODO(lvmengsi@baidu.com): Check the accuracy when using fluid.layers.layer_norm.
epsilon = 1e-5
mean = fluid.layers.reduce_mean(inputs, dim=[2, 3], keep_dim=True)
var = fluid.layers.reduce_mean(fluid.layers.square(inputs - mean),
input_ = inputs[0]
mean = fluid.layers.reduce_mean(input_, dim=[2, 3], keep_dim=True)
var = fluid.layers.reduce_mean(fluid.layers.square(input_ - mean),
dim=[2, 3],
keep_dim=True)
if name is not None:
......@@ -36,13 +37,13 @@ def InstanceNormalization_layer(inputs, name=None):
initializer=fluid.initializer.Constant(0.0),
trainable=True)
scale = fluid.layers.create_parameter(attr=scale_param,
shape=inputs.shape[1:2],
shape=input_.shape[1:2],
dtype="float32")
offset = fluid.layers.create_parameter(attr=offset_param,
shape=inputs.shape[1:2],
shape=input_.shape[1:2],
dtype="float32")
tmp = fluid.layers.elementwise_mul(x=(inputs - mean), y=scale, axis=1)
tmp = fluid.layers.elementwise_mul(x=(input_ - mean), y=scale, axis=1)
tmp = tmp / fluid.layers.sqrt(var + epsilon)
tmp = fluid.layers.elementwise_add(tmp, offset, axis=1)
return tmp
......@@ -56,4 +57,5 @@ def InstanceNormalization_weights(name, data=None):
register(kind='InstanceNormalization',
shape=InstanceNormalization_shape,
layer=InstanceNormalization_layer,
child_func=None,
weights=InstanceNormalization_weights)
......@@ -95,6 +95,17 @@ def make_custom_layer(node):
return inspect.getsource(layer_func), layer_func
def make_custom_child_func(node):
""" get the code which implement the custom layer function
"""
layer_type = node.layer_type
child_func = custom_layers[layer_type]['child_func']
if child_func is None:
return None, child_func
import inspect
return inspect.getsource(child_func), child_func
def deal_weights(node, data=None):
""" deal the weights of the custom layer
"""
......
......@@ -17,7 +17,7 @@
g_custom_layers = {}
def register(kind, shape, layer, weights):
def register(kind, shape, layer, child_func, weights):
""" register a custom layer or a list of custom layers
Args:
......@@ -48,6 +48,7 @@ def register(kind, shape, layer, weights):
g_custom_layers[k] = {
'shape': shape,
'layer': layer,
'child_func': child_func,
'weights': weights
}
......
......@@ -29,9 +29,6 @@ default_op_mapping = {
'Gather': ['gather', ['X'], ['Out'],
dict(axis='')],
'Shape': ['shape', ['X'], ['Out']],
'Mul': ['elementwise_mul', ['X', 'Y'], ['Out'],
dict(),
dict(axis=-1)],
'Clip': [
'clip', ['X'], ['Out'],
dict(),
......@@ -42,6 +39,7 @@ default_op_mapping = {
dtype=_np.uint8).view(_np.float32)),
)
],
'Ceil': ['ceil', ['X'], ['Out']],
'ReduceMean': [
'reduce_mean', ['X'], ['Out'],
dict(axes='dim', keepdims='keep_dim'),
......@@ -52,7 +50,11 @@ default_op_mapping = {
dict(axes='dim', keepdims='keep_dim'),
dict(keep_dim=1)
],
'ReduceMin': [
'reduce_min', ['X'], ['Out'],
dict(axes='dim', keepdims='keep_dim'),
dict(keep_dim=1)
],
#active function
'Relu': ['relu', ['X'], ['Out']],
'LeakyRelu': ['leaky_relu', ['X'], ['Out'],
......@@ -66,9 +68,6 @@ default_op_mapping = {
],
'Tanh': ['tanh', ['X'], ['Out']],
'Sigmoid': ['sigmoid', ['X'], ['Out']],
'Pow': ['elementwise_pow', ['X', 'Y'], ['Out'],
dict(),
dict(axis=-1)], # TODO: pow for scalar exponent
'HardSigmoid': [
'hard_sigmoid', ['X'], ['Out'],
dict(alpha='slope', beta='offset'),
......@@ -78,8 +77,8 @@ default_op_mapping = {
'Softplus': ['softplus', ['X'], ['Out']],
'Exp': ['exp', ['X'], ['Out']],
'Softmax': ['softmax', ['X'], ['Out'],
dict(axis=''),
dict(axis=1)],
dict(), dict(axis=1)],
'Sqrt': ['sqrt', ['X'], ['Out']],
}
activefunc_op_mapping = {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册