Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
458b551d
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
458b551d
编写于
11月 30, 2020
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix the conv2dtranspose
上级
cdaa32d5
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
278 addition
and
210 deletion
+278
-210
x2paddle/op_mapper/dygraph/pytorch2paddle/aten.py
x2paddle/op_mapper/dygraph/pytorch2paddle/aten.py
+80
-7
x2paddle/optimizer/code_optimizer/layer_code_generator.py
x2paddle/optimizer/code_optimizer/layer_code_generator.py
+2
-1
x2paddle/optimizer/fusion/dygraph/interpolate_bilinear_fuser.py
...le/optimizer/fusion/dygraph/interpolate_bilinear_fuser.py
+196
-202
未找到文件。
x2paddle/op_mapper/dygraph/pytorch2paddle/aten.py
浏览文件 @
458b551d
...
...
@@ -14,6 +14,7 @@
# limitations under the License.
import
copy
import
numpy
as
np
from
x2paddle.core.util
import
*
from
x2paddle.core.program
import
PaddleGraph
...
...
@@ -926,7 +927,7 @@ def aten_conv2d(mapper, graph, node):
%27 (Tensor): bias。
%28 (int): 步长大小。
%29 (int): 填充大小。
%30 (int):
膨胀系数
大小。
%30 (int):
空洞
大小。
%26 (int): 卷积的组数。
"""
scope_name
=
mapper
.
normalize_scope_name
(
node
)
...
...
@@ -988,7 +989,7 @@ def aten__convolution(mapper, graph, node):
%10 (Tensor): bias。
%19 (list): 步长大小。
%20 (list): 填充大小。
%21 (list):
膨胀系数
大小。
%21 (list):
空洞
大小。
%13 (bool): 是否进行转置卷积。
%22 (list): 输出形状上一侧额外添加的大小。
%12 (int): 卷积的组数。
...
...
@@ -1009,9 +1010,12 @@ def aten__convolution(mapper, graph, node):
current_inputs
=
list
(
layer_inputs
.
values
())
# 处理输入1,即%18
weights
=
mapper
.
pytorch_params
[
inputs_name
[
1
]]
mapper
.
paddle_params
[
op_name
+
".weight"
]
=
weights
layer_attrs
[
"out_channels"
]
=
weights
.
shape
[
0
]
layer_attrs
[
"kernel_size"
]
=
weights
.
shape
[
2
:]
mapper
.
paddle_params
[
op_name
+
".weight"
]
=
weights
#np.swapaxes(weights, 0, 1)
if
mapper
.
attrs
[
inputs_name
[
6
]]:
layer_attrs
[
"out_channels"
]
=
weights
.
shape
[
1
]
else
:
layer_attrs
[
"out_channels"
]
=
weights
.
shape
[
0
]
layer_attrs
[
"kernel_size"
]
=
weights
.
shape
[
2
:]
# 处理输入2,即%10
if
inputs_name
[
2
]
in
mapper
.
pytorch_params
:
bias
=
mapper
.
pytorch_params
[
inputs_name
[
2
]]
...
...
@@ -1033,8 +1037,12 @@ def aten__convolution(mapper, graph, node):
layer_attrs
[
"output_padding"
]
=
mapper
.
attrs
[
inputs_name
[
7
]]
# 处理输入8,即%12
layer_attrs
[
"groups"
]
=
mapper
.
attrs
[
inputs_name
[
8
]]
layer_attrs
[
'in_channels'
]
=
weights
.
shape
[
1
]
*
mapper
.
attrs
[
inputs_name
[
8
]]
if
mapper
.
attrs
[
inputs_name
[
6
]]:
layer_attrs
[
'in_channels'
]
=
weights
.
shape
[
0
]
*
mapper
.
attrs
[
inputs_name
[
8
]]
else
:
layer_attrs
[
'in_channels'
]
=
weights
.
shape
[
1
]
*
mapper
.
attrs
[
inputs_name
[
8
]]
if
mapper
.
attrs
[
inputs_name
[
6
]]:
graph
.
add_layer
(
"paddle.nn.Conv2DTranspose"
,
...
...
@@ -1052,6 +1060,71 @@ def aten__convolution(mapper, graph, node):
return
current_inputs
,
current_outputs
def
aten_conv_transpose2d
(
mapper
,
graph
,
node
):
""" 构造conv_transpose2d的PaddleLayer。
TorchScript示例:
%input.10 : Tensor = aten::conv_transpose2d(%input.1, %18, %10, %19, %20, %21, %13, %22)
参数含义:
%input.10 (Tensor): 输出,卷积后的结果。
%input.8 (Tensor): 需要进行卷积的特征层。
%18 (Tensor): weights。
%10 (Tensor): bias。
%19 (list): 步长大小。
%20 (list): 填充大小。
%21 (int/tuple): 输出形状上一侧额外添加的大小。
%13 (int): 二维卷积层的组数。
%22 (int/tuple): 空洞大小。
"""
scope_name
=
mapper
.
normalize_scope_name
(
node
)
op_name
=
name_generator
(
"conv2d"
,
mapper
.
nn_name2id
)
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
op_name
,
output_name
]
layer_inputs
=
{}
layer_attrs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%input.8
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
# 处理输入1,即%18
weights
=
mapper
.
pytorch_params
[
inputs_name
[
1
]]
mapper
.
paddle_params
[
op_name
+
".weight"
]
=
weights
layer_attrs
[
"out_channels"
]
=
weights
.
shape
[
1
]
layer_attrs
[
"kernel_size"
]
=
weights
.
shape
[
2
:]
# 处理输入2,即%10
if
inputs_name
[
2
]
in
mapper
.
pytorch_params
:
bias
=
mapper
.
pytorch_params
[
inputs_name
[
2
]]
if
bias
is
not
None
:
mapper
.
paddle_params
[
op_name
+
".bias"
]
=
bias
else
:
layer_attrs
[
"bias_attr"
]
=
False
else
:
layer_attrs
[
"bias_attr"
]
=
False
# 处理输入3,即%19
layer_attrs
[
"stride"
]
=
mapper
.
attrs
[
inputs_name
[
3
]]
# 处理输入4,即%20
layer_attrs
[
"padding"
]
=
mapper
.
attrs
[
inputs_name
[
4
]]
# 处理输入5,即%21
layer_attrs
[
"output_padding"
]
=
mapper
.
attrs
[
inputs_name
[
5
]]
# 处理输入6,即%13
layer_attrs
[
"groups"
]
=
mapper
.
attrs
[
inputs_name
[
6
]]
# 处理输入7,即%22
layer_attrs
[
"dilation"
]
=
mapper
.
attrs
[
inputs_name
[
7
]]
layer_attrs
[
'in_channels'
]
=
weights
.
shape
[
0
]
*
mapper
.
attrs
[
inputs_name
[
6
]]
graph
.
add_layer
(
"paddle.nn.Conv2DTranspose"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
def
aten_cos
(
mapper
,
graph
,
node
):
""" 构造数学计算cos的PaddleLayer。
...
...
x2paddle/optimizer/code_optimizer/layer_code_generator.py
浏览文件 @
458b551d
...
...
@@ -21,6 +21,7 @@ NN_KERNEL_NAME = {"paddle.nn.BatchNorm": "bn",
"paddle.nn.Conv2D"
:
"conv"
,
"paddle.nn.Embedding"
:
"embedding"
,
"paddle.nn.Linear"
:
"linear"
,
"paddle.nn.Conv2DTranspose"
:
"conv"
,
"paddle.nn.ReLU"
:
"relu"
,
"paddle.nn.ReLU6"
:
"relu"
,
"paddle.nn.Softmax"
:
"softmax"
,
...
...
@@ -35,7 +36,7 @@ NN_KERNEL_NAME = {"paddle.nn.BatchNorm": "bn",
"paddle.nn.GELU"
:
"gelu"
,
"paddle.nn.Hardtanh"
:
"tanh"
,
"paddle.nn.LeakyReLU"
:
"leakly_relu"
}
NN_KERNEL_WITH_PARAMS
=
list
(
NN_KERNEL_NAME
.
keys
())[:
5
]
NN_KERNEL_WITH_PARAMS
=
list
(
NN_KERNEL_NAME
.
keys
())[:
6
]
def
rename_layers
(
layers
,
param_tree
=
None
):
""" 对子模块的输入输出等进行重命名。
...
...
x2paddle/optimizer/fusion/dygraph/interpolate_bilinear_fuser.py
浏览文件 @
458b551d
...
...
@@ -22,13 +22,7 @@ from x2paddle.core.util import *
class
DygraphInterpolateBilinearFuser
(
FuseBase
):
def
__init__
(
self
):
super
(
DygraphInterpolateBilinearFuser
,
self
).
__init__
(
graph_type
=
"dygraph"
)
import
torch
torch_version
=
torch
.
__version__
torch_version_part
=
torch_version
.
split
(
"."
)
if
int
(
torch_version_part
[
0
])
==
1
and
int
(
torch_version_part
[
1
])
>
5
:
self
.
version_gt_150
=
True
else
:
self
.
version_gt_150
=
False
self
.
pattenrs
=
list
()
def
build_pattern
(
self
):
""" 描述需要替换的双线性插值图结构。
...
...
@@ -72,201 +66,201 @@ class DygraphInterpolateBilinearFuser(FuseBase):
def
gen_name
(
id
):
return
"x"
+
str
(
id
)
if
self
.
version_gt_150
:
self
.
pattern
.
add_layer
(
"prim.shape"
,
inputs
=
{
"input"
:
"interpolate-input-0"
},
outputs
=
[
gen_name
(
9
)])
self
.
pattern
.
add_layer
(
"prim.len"
,
inputs
=
{
"input"
:
gen_name
(
9
)},
outputs
=
[
gen_name
(
9
)])
self
.
pattern
.
add_layer
(
"prim.sub"
,
inputs
=
{
"x"
:
gen_name
(
9
)},
outputs
=
[
gen_name
(
10
)],
y
=
2
)
self
.
pattern
.
add_layer
(
"prim.list"
,
inputs
=
{},
outputs
=
[
gen_name
(
11
)])
self
.
pattern
.
add_layer
(
"prim.loop"
,
inputs
=
{
"input"
:
gen_name
(
10
)},
outputs
=
[
gen_name
(
12.1
),
gen_name
(
12.2
)])
loop_layer
=
self
.
pattern
.
layers
[
list
(
self
.
pattern
.
layers
.
keys
())[
-
1
]]
pattern_block
=
PaddleGraph
(
loop_layer
,
graph_type
=
"dygraph"
)
pattern_block
.
add_layer
(
"prim.append"
,
inputs
=
{
"list"
:
gen_name
(
11
)},
outputs
=
[],
element
=
None
)
loop_layer
.
inputs
[
"input-0"
]
=
gen_name
(
11
)
loop_layer
.
add_block
(
pattern_block
)
self
.
pattern
.
add_layer
(
"prim.tuple"
,
inputs
=
{
"input0"
:
"interpolate-input-0"
,
"input1"
:
"interpolate-input-4"
,
},
outputs
=
[
gen_name
(
12
)],
input2
=
None
,
input3
=
None
)
self
.
pattern
.
add_layer
(
"prim.eq"
,
inputs
=
{
"x"
:
"interpolate-input-2"
},
outputs
=
[
gen_name
(
10.1
)],
y
=
3
)
self
.
pattern
.
add_layer
(
"prim.if"
,
inputs
=
{
"input"
:
gen_name
(
10.1
)},
outputs
=
[
gen_name
(
14
)])
if_layer1
=
self
.
pattern
.
layers
[
list
(
self
.
pattern
.
layers
.
keys
())[
-
1
]]
pattern_block
=
PaddleGraph
(
parent_layer
=
if_layer1
,
graph_type
=
"dygraph"
)
pattern_block
.
add_layer
(
"prim.exception"
,
inputs
=
{},
outputs
=
[
gen_name
(
15
)],
input
=
"Exception"
)
pattern_block
.
add_layer
(
"prim.equal"
,
inputs
=
{},
outputs
=
[
gen_name
(
14
)],
input
=
None
)
if_layer1
.
add_block
(
pattern_block
)
pattern_block
=
PaddleGraph
(
parent_layer
=
if_layer1
,
graph_type
=
"dygraph"
)
pattern_block
.
add_layer
(
"prim.shape"
,
inputs
=
{
"input"
:
"interpolate-input-0"
},
outputs
=
[
gen_name
(
18
)])
pattern_block
.
add_layer
(
"prim.len"
,
inputs
=
{
"input"
:
gen_name
(
18
)},
outputs
=
[
gen_name
(
18
)])
pattern_block
.
add_layer
(
"prim.eq"
,
inputs
=
{
"x"
:
gen_name
(
18
)},
outputs
=
[
gen_name
(
19
)],
y
=
4
)
pattern_block
.
add_layer
(
"prim.if"
,
inputs
=
{
"input"
:
gen_name
(
19
)},
outputs
=
[
gen_name
(
20
)])
if_layer2
=
pattern_block
.
layers
[
list
(
pattern_block
.
layers
.
keys
())[
-
1
]]
pattern_block_block
=
PaddleGraph
(
parent_layer
=
if_layer2
,
graph_type
=
"dygraph"
)
pattern_block_block
.
add_layer
(
"prim.getitem"
,
inputs
=
{
"list"
:
gen_name
(
11
)},
outputs
=
[
gen_name
(
21
)],
element
=
0
)
pattern_block_block
.
add_layer
(
"prim.getitem"
,
inputs
=
{
"list"
:
gen_name
(
11
)},
outputs
=
[
gen_name
(
22
)],
element
=
1
)
pattern_block_block
.
add_layer
(
"prim.isinstance"
,
inputs
=
{
"input"
:
"interpolate-input-3"
},
outputs
=
[
"interpolate-input-0_isinstance"
],
cls
=
"paddle.fluid.Variable"
)
pattern_block_block
.
add_layer
(
"prim.if"
,
{
"input"
:
"interpolate-input-0_isinstance"
},
outputs
=
[
"interpolate-input-0_if1"
])
if_layer_isinstance
=
pattern_block_block
.
layers
[
list
(
pattern_block_block
.
layers
.
keys
())[
-
1
]]
pattern_block_block_block
=
PaddleGraph
(
if_layer_isinstance
,
graph_type
=
"dygraph"
)
pattern_block_block_block
.
add_layer
(
"prim.var2list"
,
inputs
=
{
"input"
:
"interpolate-input-3"
},
outputs
=
[
"interpolate-input-3"
])
if_layer_isinstance
.
add_block
(
pattern_block_block_block
)
pattern_block_block_block
=
PaddleGraph
(
if_layer_isinstance
,
graph_type
=
"dygraph"
)
if_layer_isinstance
.
add_block
(
pattern_block_block_block
)
if_layer_isinstance
.
inputs
[
"input-0"
]
=
"interpolate-input-3"
pattern_block_block
.
add_layer
(
"paddle.nn.functional.interpolate"
,
inputs
=
{
"input"
:
"interpolate-input-0"
,
"size"
:
"interpolate-input-3"
,
"scale_factor"
:
gen_name
(
21
)
},
outputs
=
[
gen_name
(
23
)])
pattern_block_block
.
add_layer
(
"prim.equal"
,
inputs
=
{
"input"
:
gen_name
(
23
)},
outputs
=
[
gen_name
(
20
)])
if_layer2
.
add_block
(
pattern_block_block
)
pattern_block_block
=
PaddleGraph
(
if_layer2
,
graph_type
=
"dygraph"
)
pattern_block_block
.
add_layer
(
"prim.shape"
,
inputs
=
{
"input"
:
"interpolate-input-0"
},
outputs
=
[
gen_name
(
24
)])
pattern_block_block
.
add_layer
(
"prim.len"
,
inputs
=
{
"input"
:
gen_name
(
24
)},
outputs
=
[
gen_name
(
24
)])
pattern_block_block
.
add_layer
(
"prim.eq"
,
inputs
=
{
"x"
:
gen_name
(
24
)},
outputs
=
[
gen_name
(
25
)],
y
=
5
)
pattern_block_block
.
add_layer
(
"prim.if"
,
inputs
=
{
"input"
:
gen_name
(
25
)},
outputs
=
[
gen_name
(
26
)])
if_layer3
=
pattern_block_block
.
layers
[
list
(
pattern_block_block
.
layers
.
keys
())[
-
1
]]
pattern_block_block_block
=
PaddleGraph
(
parent_layer
=
if_layer3
,
graph_type
=
"dygraph"
)
pattern_block_block_block
.
add_layer
(
"prim.exception"
,
inputs
=
{},
outputs
=
[
gen_name
(
27
)],
input
=
"Exception"
)
if_layer3
.
add_block
(
pattern_block_block_block
)
pattern_block_block_block
=
PaddleGraph
(
parent_layer
=
if_layer3
,
graph_type
=
"dygraph"
)
pattern_block_block_block
.
add_layer
(
"prim.exception"
,
inputs
=
{},
outputs
=
[
gen_name
(
28
)],
input
=
"Exception"
)
if_layer3
.
add_block
(
pattern_block_block_block
)
pattern_block_block
.
add_layer
(
"prim.equal"
,
inputs
=
{},
outputs
=
[
gen_name
(
20
)],
input
=
None
)
if_layer2
.
add_block
(
pattern_block_block
)
if_layer2
.
inputs
.
update
({
"input-0"
:
"interpolate-input-0"
,
"input-1"
:
"interpolate-input-3"
,
"input-2"
:
"interpolate-input-3"
,
"input-3"
:
gen_name
(
11
),
"input-5"
:
gen_name
(
11
),
})
pattern_block
.
add_layer
(
"prim.equal"
,
inputs
=
{
"input"
:
gen_name
(
20
)},
outputs
=
[
gen_name
(
14
)])
if_layer1
.
add_block
(
pattern_block
)
if_layer1
.
inputs
.
update
({
'input-2'
:
'interpolate-input-0'
,
'input-4'
:
gen_name
(
11
),
'input-6'
:
gen_name
(
11
),
'input-8'
:
'interpolate-input-0'
,
'input-9'
:
'interpolate-input-3'
,
'input-10'
:
'interpolate-input-0'
})
self
.
pattern
.
build
(
inputs
=
{
"input-0"
:
"interpolate-input-0"
,
"input-1"
:
"interpolate-input-1"
,
"input-2"
:
"interpolate-input-2"
,
"input-3"
:
"interpolate-input-3"
,
"input-4"
:
"interpolate-input-4"
})
pattern
=
PaddleGraph
(
graph_type
=
"dygraph"
)
pattern
.
add_layer
(
"prim.shape"
,
inputs
=
{
"input"
:
"interpolate-input-0"
},
outputs
=
[
gen_name
(
9
)])
pattern
.
add_layer
(
"prim.len"
,
inputs
=
{
"input"
:
gen_name
(
9
)},
outputs
=
[
gen_name
(
9
)])
pattern
.
add_layer
(
"prim.sub"
,
inputs
=
{
"x"
:
gen_name
(
9
)},
outputs
=
[
gen_name
(
10
)],
y
=
2
)
pattern
.
add_layer
(
"prim.list"
,
inputs
=
{},
outputs
=
[
gen_name
(
11
)])
pattern
.
add_layer
(
"prim.loop"
,
inputs
=
{
"input"
:
gen_name
(
10
)},
outputs
=
[
gen_name
(
12.1
),
gen_name
(
12.2
)])
loop_layer
=
pattern
.
layers
[
list
(
pattern
.
layers
.
keys
())[
-
1
]]
pattern_block
=
PaddleGraph
(
loop_layer
,
graph_type
=
"dygraph"
)
pattern_block
.
add_layer
(
"prim.append"
,
inputs
=
{
"list"
:
gen_name
(
11
)},
outputs
=
[],
element
=
None
)
loop_layer
.
inputs
[
"input-0"
]
=
gen_name
(
11
)
loop_layer
.
add_block
(
pattern_block
)
pattern
.
add_layer
(
"prim.tuple"
,
inputs
=
{
"input0"
:
"interpolate-input-0"
,
"input1"
:
"interpolate-input-4"
,
},
outputs
=
[
gen_name
(
12
)],
input2
=
None
,
input3
=
None
)
pattern
.
add_layer
(
"prim.eq"
,
inputs
=
{
"x"
:
"interpolate-input-2"
},
outputs
=
[
gen_name
(
10.1
)],
y
=
3
)
pattern
.
add_layer
(
"prim.if"
,
inputs
=
{
"input"
:
gen_name
(
10.1
)},
outputs
=
[
gen_name
(
14
)])
if_layer1
=
pattern
.
layers
[
list
(
pattern
.
layers
.
keys
())[
-
1
]]
pattern_block
=
PaddleGraph
(
parent_layer
=
if_layer1
,
graph_type
=
"dygraph"
)
pattern_block
.
add_layer
(
"prim.exception"
,
inputs
=
{},
outputs
=
[
gen_name
(
15
)],
input
=
"Exception"
)
pattern_block
.
add_layer
(
"prim.equal"
,
inputs
=
{},
outputs
=
[
gen_name
(
14
)],
input
=
None
)
if_layer1
.
add_block
(
pattern_block
)
pattern_block
=
PaddleGraph
(
parent_layer
=
if_layer1
,
graph_type
=
"dygraph"
)
pattern_block
.
add_layer
(
"prim.shape"
,
inputs
=
{
"input"
:
"interpolate-input-0"
},
outputs
=
[
gen_name
(
18
)])
pattern_block
.
add_layer
(
"prim.len"
,
inputs
=
{
"input"
:
gen_name
(
18
)},
outputs
=
[
gen_name
(
18
)])
pattern_block
.
add_layer
(
"prim.eq"
,
inputs
=
{
"x"
:
gen_name
(
18
)},
outputs
=
[
gen_name
(
19
)],
y
=
4
)
pattern_block
.
add_layer
(
"prim.if"
,
inputs
=
{
"input"
:
gen_name
(
19
)},
outputs
=
[
gen_name
(
20
)])
if_layer2
=
pattern_block
.
layers
[
list
(
pattern_block
.
layers
.
keys
())[
-
1
]]
pattern_block_block
=
PaddleGraph
(
parent_layer
=
if_layer2
,
graph_type
=
"dygraph"
)
pattern_block_block
.
add_layer
(
"prim.getitem"
,
inputs
=
{
"list"
:
gen_name
(
11
)},
outputs
=
[
gen_name
(
21
)],
element
=
0
)
pattern_block_block
.
add_layer
(
"prim.getitem"
,
inputs
=
{
"list"
:
gen_name
(
11
)},
outputs
=
[
gen_name
(
22
)],
element
=
1
)
pattern_block_block
.
add_layer
(
"prim.isinstance"
,
inputs
=
{
"input"
:
"interpolate-input-3"
},
outputs
=
[
"interpolate-input-0_isinstance"
],
cls
=
"paddle.fluid.Variable"
)
pattern_block_block
.
add_layer
(
"prim.if"
,
{
"input"
:
"interpolate-input-0_isinstance"
},
outputs
=
[
"interpolate-input-0_if1"
])
if_layer_isinstance
=
pattern_block_block
.
layers
[
list
(
pattern_block_block
.
layers
.
keys
())[
-
1
]]
pattern_block_block_block
=
PaddleGraph
(
if_layer_isinstance
,
graph_type
=
"dygraph"
)
pattern_block_block_block
.
add_layer
(
"prim.var2list"
,
inputs
=
{
"input"
:
"interpolate-input-3"
},
outputs
=
[
"interpolate-input-3"
])
if_layer_isinstance
.
add_block
(
pattern_block_block_block
)
pattern_block_block_block
=
PaddleGraph
(
if_layer_isinstance
,
graph_type
=
"dygraph"
)
if_layer_isinstance
.
add_block
(
pattern_block_block_block
)
if_layer_isinstance
.
inputs
[
"input-0"
]
=
"interpolate-input-3"
pattern_block_block
.
add_layer
(
"paddle.nn.functional.interpolate"
,
inputs
=
{
"input"
:
"interpolate-input-0"
,
"size"
:
"interpolate-input-3"
,
"scale_factor"
:
gen_name
(
21
)
},
outputs
=
[
gen_name
(
23
)])
pattern_block_block
.
add_layer
(
"prim.equal"
,
inputs
=
{
"input"
:
gen_name
(
23
)},
outputs
=
[
gen_name
(
20
)])
if_layer2
.
add_block
(
pattern_block_block
)
pattern_block_block
=
PaddleGraph
(
if_layer2
,
graph_type
=
"dygraph"
)
pattern_block_block
.
add_layer
(
"prim.shape"
,
inputs
=
{
"input"
:
"interpolate-input-0"
},
outputs
=
[
gen_name
(
24
)])
pattern_block_block
.
add_layer
(
"prim.len"
,
inputs
=
{
"input"
:
gen_name
(
24
)},
outputs
=
[
gen_name
(
24
)])
pattern_block_block
.
add_layer
(
"prim.eq"
,
inputs
=
{
"x"
:
gen_name
(
24
)},
outputs
=
[
gen_name
(
25
)],
y
=
5
)
pattern_block_block
.
add_layer
(
"prim.if"
,
inputs
=
{
"input"
:
gen_name
(
25
)},
outputs
=
[
gen_name
(
26
)])
if_layer3
=
pattern_block_block
.
layers
[
list
(
pattern_block_block
.
layers
.
keys
())[
-
1
]]
pattern_block_block_block
=
PaddleGraph
(
parent_layer
=
if_layer3
,
graph_type
=
"dygraph"
)
pattern_block_block_block
.
add_layer
(
"prim.exception"
,
inputs
=
{},
outputs
=
[
gen_name
(
27
)],
input
=
"Exception"
)
if_layer3
.
add_block
(
pattern_block_block_block
)
pattern_block_block_block
=
PaddleGraph
(
parent_layer
=
if_layer3
,
graph_type
=
"dygraph"
)
pattern_block_block_block
.
add_layer
(
"prim.exception"
,
inputs
=
{},
outputs
=
[
gen_name
(
28
)],
input
=
"Exception"
)
if_layer3
.
add_block
(
pattern_block_block_block
)
pattern_block_block
.
add_layer
(
"prim.equal"
,
inputs
=
{},
outputs
=
[
gen_name
(
20
)],
input
=
None
)
if_layer2
.
add_block
(
pattern_block_block
)
if_layer2
.
inputs
.
update
({
"input-0"
:
"interpolate-input-0"
,
"input-1"
:
"interpolate-input-3"
,
"input-2"
:
"interpolate-input-3"
,
"input-3"
:
gen_name
(
11
),
"input-5"
:
gen_name
(
11
),
})
pattern_block
.
add_layer
(
"prim.equal"
,
inputs
=
{
"input"
:
gen_name
(
20
)},
outputs
=
[
gen_name
(
14
)])
if_layer1
.
add_block
(
pattern_block
)
if_layer1
.
inputs
.
update
({
'input-2'
:
'interpolate-input-0'
,
'input-4'
:
gen_name
(
11
),
'input-6'
:
gen_name
(
11
),
'input-8'
:
'interpolate-input-0'
,
'input-9'
:
'interpolate-input-3'
,
'input-10'
:
'interpolate-input-0'
})
pattern
.
build
(
inputs
=
{
"input-0"
:
"interpolate-input-0"
,
"input-1"
:
"interpolate-input-1"
,
"input-2"
:
"interpolate-input-2"
,
"input-3"
:
"interpolate-input-3"
,
"input-4"
:
"interpolate-input-4"
})
self
.
patterns
.
append
(
pattern
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录