Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
3dad710a
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3dad710a
编写于
11月 23, 2020
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify tf
上级
2d824799
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
307 addition
and
44 deletion
+307
-44
x2paddle/convert.py
x2paddle/convert.py
+3
-0
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
+0
-38
x2paddle/optimizer/fusion/dygraph/__init__.py
x2paddle/optimizer/fusion/dygraph/__init__.py
+2
-0
x2paddle/optimizer/fusion/dygraph/prelu_fuse_pass.py
x2paddle/optimizer/fusion/dygraph/prelu_fuse_pass.py
+33
-0
x2paddle/optimizer/fusion/dygraph/prelu_fuser.py
x2paddle/optimizer/fusion/dygraph/prelu_fuser.py
+142
-0
x2paddle/optimizer/optimizer.py
x2paddle/optimizer/optimizer.py
+1
-0
x2paddle/optimizer/tensorflow/batch_norm.py
x2paddle/optimizer/tensorflow/batch_norm.py
+4
-6
x2paddle/optimizer/tensorflow/prelu.py
x2paddle/optimizer/tensorflow/prelu.py
+122
-0
未找到文件。
x2paddle/convert.py
浏览文件 @
3dad710a
...
@@ -141,11 +141,14 @@ def tf2paddle(model_path,
...
@@ -141,11 +141,14 @@ def tf2paddle(model_path,
from
x2paddle.optimizer.tensorflow.bias
import
BiasOpt
from
x2paddle.optimizer.tensorflow.bias
import
BiasOpt
from
x2paddle.optimizer.tensorflow.transpose
import
TransposeOpt
from
x2paddle.optimizer.tensorflow.transpose
import
TransposeOpt
from
x2paddle.optimizer.tensorflow.batch_norm
import
BatchNormOpt
from
x2paddle.optimizer.tensorflow.batch_norm
import
BatchNormOpt
from
x2paddle.optimizer.tensorflow.prelu
import
PReLUOpt
bias_opt
=
BiasOpt
()
bias_opt
=
BiasOpt
()
transpose_opt
=
TransposeOpt
()
transpose_opt
=
TransposeOpt
()
batch_norm_opt
=
BatchNormOpt
()
batch_norm_opt
=
BatchNormOpt
()
prelu_opt
=
PReLUOpt
()
bias_opt
.
run
(
mapper
.
paddle_graph
)
bias_opt
.
run
(
mapper
.
paddle_graph
)
batch_norm_opt
.
run
(
mapper
.
paddle_graph
)
batch_norm_opt
.
run
(
mapper
.
paddle_graph
)
prelu_opt
.
run
(
mapper
.
paddle_graph
)
transpose_opt
.
run
(
mapper
.
paddle_graph
)
transpose_opt
.
run
(
mapper
.
paddle_graph
)
mapper
.
paddle_graph
.
gen_model
(
save_dir
)
mapper
.
paddle_graph
.
gen_model
(
save_dir
)
...
...
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
浏览文件 @
3dad710a
...
@@ -508,14 +508,6 @@ class TFOpMapper(OpMapper):
...
@@ -508,14 +508,6 @@ class TFOpMapper(OpMapper):
param
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
param
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
input_name
=
input
.
name
input_name
=
input
.
name
if
input
.
dtype
==
'bool'
:
cast_name
=
gen_name
(
'reshape'
,
'cast'
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
cast_name
],
dtype
=
"'int32'"
)
input_name
=
cast_name
if
param
.
layer_type
==
"Const"
:
if
param
.
layer_type
==
"Const"
:
shape
=
param
.
value
.
tolist
()
shape
=
param
.
value
.
tolist
()
...
@@ -540,13 +532,6 @@ class TFOpMapper(OpMapper):
...
@@ -540,13 +532,6 @@ class TFOpMapper(OpMapper):
outputs
=
[
node
.
name
],
outputs
=
[
node
.
name
],
shape
=
out_shape
.
tolist
())
shape
=
out_shape
.
tolist
())
if
input
.
dtype
==
'bool'
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
dtype
=
"'bool'"
)
def
Pad
(
self
,
node
):
def
Pad
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
paddings
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
paddings
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
...
@@ -592,14 +577,6 @@ class TFOpMapper(OpMapper):
...
@@ -592,14 +577,6 @@ class TFOpMapper(OpMapper):
def
Shape
(
self
,
node
):
def
Shape
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
input_name
=
input
.
name
input_name
=
input
.
name
if
input
.
dtype
==
'bool'
:
cast_name
=
gen_name
(
'shape'
,
'cast'
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
cast_name
],
dtype
=
string
(
"int32"
))
input_name
=
cast_name
self
.
paddle_graph
.
add_layer
(
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.shape"
,
kernel
=
"paddle.shape"
,
inputs
=
{
"input"
:
input_name
},
inputs
=
{
"input"
:
input_name
},
...
@@ -791,26 +768,11 @@ class TFOpMapper(OpMapper):
...
@@ -791,26 +768,11 @@ class TFOpMapper(OpMapper):
axis
+=
len
(
inputs
[
0
].
out_shapes
[
0
])
axis
+=
len
(
inputs
[
0
].
out_shapes
[
0
])
input_names
=
[
i
.
name
for
i
in
inputs
]
input_names
=
[
i
.
name
for
i
in
inputs
]
for
i
,
ipt
in
enumerate
(
inputs
):
if
ipt
.
dtype
==
'bool'
:
cast_name
=
gen_name
(
'concat'
,
'cast'
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
ipt
.
name
},
outputs
=
[
cast_name
],
dtype
=
"'int32'"
)
input_names
[
i
]
=
cast_name
self
.
paddle_graph
.
add_layer
(
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.concat"
,
kernel
=
"paddle.concat"
,
inputs
=
{
"x"
:
input_names
},
inputs
=
{
"x"
:
input_names
},
outputs
=
[
node
.
name
],
outputs
=
[
node
.
name
],
axis
=
axis
)
axis
=
axis
)
if
node
.
dtype
==
'bool'
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
dtype
=
"'bool'"
)
def
StridedSlice
(
self
,
node
):
def
StridedSlice
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
...
...
x2paddle/optimizer/fusion/dygraph/__init__.py
浏览文件 @
3dad710a
...
@@ -28,6 +28,8 @@ from .fc_fuser import DygraphFcFuser
...
@@ -28,6 +28,8 @@ from .fc_fuser import DygraphFcFuser
from
.fc_fuse_pass
import
DygraphFcFusePass
from
.fc_fuse_pass
import
DygraphFcFusePass
from
.interpolate_bilinear_fuser
import
DygraphInterpolateBilinearFuser
from
.interpolate_bilinear_fuser
import
DygraphInterpolateBilinearFuser
from
.interpolate_bilinear_fuse_pass
import
DygraphInterpolateBilinearFusePass
from
.interpolate_bilinear_fuse_pass
import
DygraphInterpolateBilinearFusePass
from
.prelu_fuser
import
DygraphPReLUFuser
from
.prelu_fuse_pass
import
DygraphPReLUFusePass
from
.reshape_fuser
import
DygraphReshapeFuser
from
.reshape_fuser
import
DygraphReshapeFuser
from
.reshape_fuse_pass
import
DygraphReshapeFusePass
from
.reshape_fuse_pass
import
DygraphReshapeFusePass
from
.tf_batchnorm_fuser
import
DygraphTFBatchNormFuser
from
.tf_batchnorm_fuser
import
DygraphTFBatchNormFuser
...
...
x2paddle/optimizer/fusion/dygraph/prelu_fuse_pass.py
0 → 100644
浏览文件 @
3dad710a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
x2paddle.optimizer.pass_
import
Pass
from
x2paddle.optimizer.fusion.dygraph
import
DygraphPReLUFuser
from
x2paddle.optimizer.pass_manager
import
pass_register
@
pass_register
class
DygraphPReLUFusePass
(
Pass
):
name
=
"dygraph_prelu_fuse_pass"
def
__init__
(
self
):
Pass
.
__init__
(
self
)
def
apply
(
self
,
graph
):
fuser
=
DygraphPReLUFuser
()
fuser
.
operate
(
graph
,
match_kind
=
"edge"
)
# 用于注册
dygraph_prelu_fuse_pass
=
DygraphPReLUFusePass
()
\ No newline at end of file
x2paddle/optimizer/fusion/dygraph/prelu_fuser.py
0 → 100644
浏览文件 @
3dad710a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
import
numpy
as
np
from
collections
import
OrderedDict
from
x2paddle.optimizer.pattern_matcher
import
FuseBase
from
x2paddle.core.program
import
PaddleGraph
,
PaddleLayer
from
x2paddle.core.util
import
*
class
DygraphPReLUFuser
(
FuseBase
):
def
__init__
(
self
):
self
.
prelu_index
=
0
super
(
DygraphPReLUFuser
,
self
).
__init__
(
graph_type
=
"dygraph"
)
def
build_pattern
(
self
):
""" 描述需要替换的prelu图结构。
prelu层模式python实现代码示例:
conv2_alphas = self.conv2_alphas
conv2_mul_1_y = paddle.full(dtype='float32', shape=[1], fill_value=0.5)
conv2_Relu = self.relu1(conv2_Conv2D)
conv2_Abs = paddle.abs(x=conv2_Conv2D)
conv2_sub = fluid.layers.elementwise_sub(x=conv2_Conv2D, y=conv2_Abs)
conv2_mul = paddle.multiply(x=conv2_alphas, y=conv2_sub, axis=1)
conv2_mul_1 = paddle.multiply(x=conv2_mul, y=conv2_mul_1_y, axis=1)
conv2_add = paddle.add(x=conv2_Relu, y=conv2_mul_1)
"""
def
gen_name
(
id
):
return
"x"
+
str
(
id
)
self
.
pattern
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
gen_name
(
0
)])
self
.
pattern
.
add_layer
(
"paddle.full"
,
inputs
=
{},
outputs
=
[
gen_name
(
1
)],
shape
=
[
1
],
fill_value
=
0.5
)
self
.
pattern
.
add_layer
(
"paddle.nn.ReLU"
,
inputs
=
{
"x"
:
"prelu-input-0"
},
outputs
=
[
gen_name
(
2
)])
self
.
pattern
.
add_layer
(
"paddle.abs"
,
inputs
=
{
"x"
:
"prelu-input-0"
},
outputs
=
[
gen_name
(
3
)])
self
.
pattern
.
add_layer
(
"fluid.layers.elementwise_sub"
,
inputs
=
{
"x"
:
"prelu-input-0"
,
"y"
:
gen_name
(
3
)},
outputs
=
[
gen_name
(
4
)])
self
.
pattern
.
add_layer
(
"paddle.multiply"
,
inputs
=
{
"x"
:
gen_name
(
0
),
"y"
:
gen_name
(
4
)},
outputs
=
[
gen_name
(
5
)])
self
.
pattern
.
add_layer
(
"paddle.multiply"
,
inputs
=
{
"x"
:
gen_name
(
5
),
"y"
:
gen_name
(
1
)},
outputs
=
[
gen_name
(
6
)])
self
.
pattern
.
add_layer
(
"paddle.add"
,
inputs
=
{
"x"
:
gen_name
(
2
),
"y"
:
gen_name
(
6
)},
outputs
=
[
gen_name
(
7
)])
self
.
pattern
.
build
(
inputs
=
{
"input-0"
:
"prelu-input-0"
,
})
def
insert_new_layer
(
self
,
graph
,
parameters
,
matches
):
new_layers
,
last_layer_id
=
self
.
gen_new_layer
(
matches
,
parameters
,
graph
)
matches_copy
=
copy
.
deepcopy
(
matches
)
for
layer_id
,
layer
in
matches_copy
.
items
():
for
i
in
range
(
3
):
if
layer_id
==
new_layers
[
i
].
id
:
matches
.
pop
(
new_layers
[
i
].
id
)
prefix_layers
=
OrderedDict
()
mid_layers
=
OrderedDict
()
suffix_layers
=
OrderedDict
()
is_need_id
=
False
for
layer_id
,
layer
in
graph
.
layers
.
items
():
if
is_need_id
:
suffix_layers
[
layer_id
]
=
layer
else
:
if
layer_id
==
last_layer_id
:
for
i
in
range
(
3
):
mid_layers
[
new_layers
[
i
].
id
]
=
new_layers
[
i
]
is_need_id
=
True
prefix_layers
[
layer_id
]
=
layer
prefix_layers
.
update
(
mid_layers
)
prefix_layers
.
update
(
suffix_layers
)
graph
.
layers
=
prefix_layers
def
gen_new_layer
(
self
,
matches
,
parameters
,
graph
):
layer_id_list
=
list
(
matches
.
keys
())
layer_id_list
.
sort
(
key
=
int
)
for
layer_id
,
layer
in
matches
.
items
():
if
layer
.
kernel
==
"paddle.nn.ReLU"
:
input_name
=
layer
.
inputs
[
"x"
]
if
layer
.
kernel
==
"self.create_parameter"
:
param_name
=
layer
.
outputs
[
0
]
if
layer
.
kernel
==
"paddle.add"
:
output_name
=
layer
.
outputs
[
0
]
transpose0
=
PaddleLayer
(
id
=
layer_id_list
[
-
1
]
+
"_1"
,
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
"{}_transpose_for_prelu"
.
format
(
input_name
)],
perm
=
[
0
,
3
,
1
,
2
])
prelu_name
=
"merge_prelu{}"
.
format
(
self
.
prelu_index
)
self
.
prelu_index
+=
1
param
=
parameters
[
param_name
]
c
=
param
.
shape
[
0
]
prelu
=
PaddleLayer
(
id
=
layer_id_list
[
-
1
]
+
"_2"
,
kernel
=
"paddle.nn.PReLU"
,
inputs
=
{
"input"
:
"{}_transpose_for_prelu"
.
format
(
input_name
)},
outputs
=
[
prelu_name
,
"{}_prelu"
.
format
(
input_name
)],
num_parameters
=
c
,
weight_attr
=
string
(
param_name
))
transpose1
=
PaddleLayer
(
id
=
layer_id_list
[
-
1
]
+
"_3"
,
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
"{}_prelu"
.
format
(
input_name
)},
outputs
=
[
output_name
],
perm
=
[
0
,
2
,
3
,
1
])
return
[
transpose0
,
prelu
,
transpose1
],
layer_id_list
[
-
1
]
x2paddle/optimizer/optimizer.py
浏览文件 @
3dad710a
...
@@ -41,6 +41,7 @@ class GraphOptimizer(object):
...
@@ -41,6 +41,7 @@ class GraphOptimizer(object):
self
.
passes
=
[
self
.
passes
=
[
"dygraph_conv2d_add_fuse_pass"
,
"dygraph_conv2d_add_fuse_pass"
,
"dygraph_tf_batchnorm_fuse_pass"
,
"dygraph_tf_batchnorm_fuse_pass"
,
"dygraph_prelu_fuse_pass"
,
"transpose_eliminate_pass"
"transpose_eliminate_pass"
]
]
else
:
else
:
...
...
x2paddle/optimizer/tensorflow/batch_norm.py
浏览文件 @
3dad710a
...
@@ -20,10 +20,12 @@ class BatchNormOpt:
...
@@ -20,10 +20,12 @@ class BatchNormOpt:
input_ids0
=
graph
.
edges_in
[
layer_id
]
input_ids0
=
graph
.
edges_in
[
layer_id
]
mul_layer0
=
graph
.
layers
[
input_ids0
[
0
]]
mul_layer0
=
graph
.
layers
[
input_ids0
[
0
]]
sub_layer0
=
graph
.
layers
[
input_ids0
[
1
]]
sub_layer0
=
graph
.
layers
[
input_ids0
[
1
]]
if
mul_layer0
.
kernel
!=
"fluid.layers.elementwise_mul"
:
if
mul_layer0
.
kernel
!=
"fluid.layers.elementwise_mul"
:
continue
continue
if
sub_layer0
.
kernel
!=
"fluid.layers.elementwise_sub"
:
if
sub_layer0
.
kernel
!=
"fluid.layers.elementwise_sub"
:
continue
continue
axis
=
mul_layer0
.
attrs
.
get
(
'axis'
,
-
1
)
axis
=
mul_layer0
.
attrs
.
get
(
'axis'
,
-
1
)
if
axis
!=
-
1
and
axis
!=
3
:
if
axis
!=
-
1
and
axis
!=
3
:
continue
continue
...
@@ -116,7 +118,7 @@ class BatchNormOpt:
...
@@ -116,7 +118,7 @@ class BatchNormOpt:
other
=
graph
.
layers
[
input_ids6
[
1
]]
other
=
graph
.
layers
[
input_ids6
[
1
]]
if
variance
.
kernel
!=
"fluid.layers.create_parameter"
:
if
variance
.
kernel
!=
"fluid.layers.create_parameter"
:
continue
continue
if
other
.
kernel
!=
"fluid.layers.
create_parameter
"
:
if
other
.
kernel
!=
"fluid.layers.
fill_constant
"
:
continue
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids6
[
0
],
[]))
!=
1
:
if
len
(
graph
.
edges_out
.
get
(
input_ids6
[
0
],
[]))
!=
1
:
continue
continue
...
@@ -127,10 +129,6 @@ class BatchNormOpt:
...
@@ -127,10 +129,6 @@ class BatchNormOpt:
variance_shape
=
graph
.
parameters
[
variance
.
outputs
[
0
]].
shape
variance_shape
=
graph
.
parameters
[
variance
.
outputs
[
0
]].
shape
if
variance_shape
!=
beta_shape
:
if
variance_shape
!=
beta_shape
:
continue
continue
if
other
.
outputs
[
0
]
not
in
graph
.
parameters
:
continue
if
graph
.
parameters
[
other
.
outputs
[
0
]].
size
!=
1
:
continue
ids
=
set
([
ids
=
set
([
layer_id
,
mul_layer0
.
id
,
sub_layer0
.
id
,
mul_layer1
.
id
,
beta
.
id
,
layer_id
,
mul_layer0
.
id
,
sub_layer0
.
id
,
mul_layer1
.
id
,
beta
.
id
,
...
@@ -163,7 +161,7 @@ class BatchNormOpt:
...
@@ -163,7 +161,7 @@ class BatchNormOpt:
kernel
=
"fluid.layers.batch_norm"
,
kernel
=
"fluid.layers.batch_norm"
,
inputs
=
{
"input"
:
"transpose_for_bn"
},
inputs
=
{
"input"
:
"transpose_for_bn"
},
outputs
=
layer
.
outputs
,
outputs
=
layer
.
outputs
,
epsilon
=
graph
.
parameters
[
other
.
outputs
[
0
]
],
epsilon
=
other
.
attrs
[
"value"
],
param_attr
=
"'{}'"
.
format
(
gamma
.
outputs
[
0
]),
param_attr
=
"'{}'"
.
format
(
gamma
.
outputs
[
0
]),
bias_attr
=
"'{}'"
.
format
(
beta
.
outputs
[
0
]),
bias_attr
=
"'{}'"
.
format
(
beta
.
outputs
[
0
]),
moving_mean_name
=
"'{}'"
.
format
(
mean
.
outputs
[
0
]),
moving_mean_name
=
"'{}'"
.
format
(
mean
.
outputs
[
0
]),
...
...
x2paddle/optimizer/tensorflow/prelu.py
0 → 100644
浏览文件 @
3dad710a
import
copy
import
numpy
as
np
from
collections
import
OrderedDict
from
x2paddle.core.program
import
PaddleLayer
from
x2paddle.core.util
import
*
class
PReLUOpt
:
def
__init__
(
self
):
pass
def
run
(
self
,
graph
):
print
(
"Optimize: PReLUOpt..."
)
layers
=
copy
.
deepcopy
(
graph
.
layers
)
for
layer_id
,
layer
in
layers
.
items
():
if
layer
.
kernel
!=
"fluid.layers.elementwise_add"
:
continue
axis
=
layer
.
attrs
.
get
(
'axis'
,
-
1
)
if
axis
!=
-
1
and
axis
!=
3
:
continue
input_ids0
=
graph
.
edges_in
[
layer_id
]
relu_layer0
=
graph
.
layers
[
input_ids0
[
0
]]
mul_layer0
=
graph
.
layers
[
input_ids0
[
1
]]
if
relu_layer0
.
kernel
!=
"fluid.layers.relu"
:
continue
if
mul_layer0
.
kernel
!=
"fluid.layers.elementwise_mul"
:
continue
axis
=
mul_layer0
.
attrs
.
get
(
'axis'
,
-
1
)
if
axis
!=
-
1
and
axis
!=
3
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids0
[
0
],
[]))
!=
1
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids0
[
1
],
[]))
!=
1
:
continue
input_ids1_0
=
graph
.
edges_in
[
input_ids0
[
0
]]
input_ids1_1
=
graph
.
edges_in
[
input_ids0
[
1
]]
fill_layer
=
graph
.
layers
[
input_ids1_1
[
1
]]
mul_layer1
=
graph
.
layers
[
input_ids1_1
[
0
]]
if
fill_layer
.
kernel
!=
"fluid.layers.fill_constant"
:
continue
if
mul_layer1
.
kernel
!=
"fluid.layers.elementwise_mul"
:
continue
axis
=
mul_layer1
.
attrs
.
get
(
'axis'
,
-
1
)
if
axis
!=
-
1
and
axis
!=
0
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids1_1
[
1
],
[]))
!=
1
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids1_0
[
0
],
[]))
!=
3
:
continue
input_ids2
=
graph
.
edges_in
[
input_ids1_1
[
0
]]
alpha
=
graph
.
layers
[
input_ids2
[
0
]]
sub_layer
=
graph
.
layers
[
input_ids2
[
1
]]
if
alpha
.
kernel
!=
"fluid.layers.create_parameter"
:
continue
if
sub_layer
.
kernel
!=
"fluid.layers.elementwise_sub"
:
continue
axis
=
sub_layer
.
attrs
.
get
(
'axis'
,
-
1
)
if
axis
!=
-
1
and
axis
!=
3
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids2
[
0
],
[]))
!=
1
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids2
[
1
],
[]))
!=
1
:
continue
if
alpha
.
outputs
[
0
]
not
in
graph
.
parameters
:
continue
input_ids3
=
graph
.
edges_in
[
input_ids2
[
1
]]
add_layer
=
graph
.
layers
[
input_ids3
[
0
]]
abs_layer
=
graph
.
layers
[
input_ids3
[
1
]]
if
abs_layer
.
kernel
!=
"fluid.layers.abs"
:
continue
if
len
(
graph
.
edges_out
.
get
(
input_ids3
[
1
],
[]))
!=
1
:
continue
ids
=
set
([
layer
.
id
,
relu_layer0
.
id
,
mul_layer0
.
id
,
fill_layer
.
id
,
mul_layer1
.
id
,
alpha
.
id
,
sub_layer
.
id
,
abs_layer
.
id
])
for
id
in
ids
:
del
graph
.
layers
[
id
]
if
id
in
graph
.
edges_in
:
del
graph
.
edges_in
[
id
]
if
id
in
graph
.
edges_out
:
del
graph
.
edges_out
[
id
]
copy_layers
=
copy
.
deepcopy
(
graph
.
layers
)
graph
.
layers
=
OrderedDict
()
for
k
,
v
in
copy_layers
.
items
():
if
k
!=
add_layer
.
id
:
graph
.
layers
[
k
]
=
v
continue
graph
.
layers
[
k
]
=
v
transpose0
=
PaddleLayer
(
id
=
'{}_1'
.
format
(
k
),
kernel
=
"fluid.layers.transpose"
,
inputs
=
{
"x"
:
v
.
outputs
[
0
]},
outputs
=
[
"transpose_for_prelu"
],
perm
=
[
0
,
3
,
1
,
2
])
prelu
=
PaddleLayer
(
id
=
'{}_2'
.
format
(
k
),
kernel
=
"fluid.layers.prelu"
,
inputs
=
{
"x"
:
"transpose_for_prelu"
},
outputs
=
layer
.
outputs
,
mode
=
string
(
"channel"
),
param_attr
=
"'{}'"
.
format
(
alpha
.
outputs
[
0
]))
transpose1
=
PaddleLayer
(
id
=
layer_id
,
kernel
=
"fluid.layers.transpose"
,
inputs
=
{
"x"
:
layer
.
outputs
[
0
]},
outputs
=
layer
.
outputs
,
perm
=
[
0
,
2
,
3
,
1
])
graph
.
layers
[
transpose0
.
id
]
=
transpose0
graph
.
layers
[
prelu
.
id
]
=
prelu
graph
.
layers
[
transpose1
.
id
]
=
transpose1
graph
.
parameters
[
alpha
.
outputs
[
0
]]
=
np
.
expand_dims
(
graph
.
parameters
[
alpha
.
outputs
[
0
]],
axis
=
(
0
,
2
,
3
))
graph
.
build
()
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录