Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
2c12e94b
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2c12e94b
编写于
9月 21, 2020
作者:
J
Jason
提交者:
GitHub
9月 21, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #403 from Channingss/fix_shape_infer
Fix shape infer
上级
0b34f3eb
2ca2e71b
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
199 addition
and
136 deletion
+199
-136
x2paddle/decoder/onnx_decoder.py
x2paddle/decoder/onnx_decoder.py
+5
-1
x2paddle/decoder/onnx_shape_inference.py
x2paddle/decoder/onnx_shape_inference.py
+104
-89
x2paddle/op_mapper/onnx2paddle/opset9/opset.py
x2paddle/op_mapper/onnx2paddle/opset9/opset.py
+90
-46
未找到文件。
x2paddle/decoder/onnx_decoder.py
浏览文件 @
2c12e94b
...
...
@@ -346,8 +346,12 @@ class ONNXGraph(Graph):
#if len(value_info['shape']) == 0 or value_info[
# 'dtype'] is None or 0 in value_info['shape']:
# #TODO add node shape inference
shape
=
value_info
[
'shape'
]
for
idx
in
range
(
len
(
shape
)):
if
shape
[
idx
]
==
0
:
shape
[
idx
]
=
-
1
node
.
out_shapes
.
append
(
shape
)
node
.
dtype
=
value_info
[
'dtype'
]
node
.
out_shapes
.
append
(
value_info
[
'shape'
])
else
:
node
.
out_shapes
.
append
([])
...
...
x2paddle/decoder/onnx_shape_inference.py
浏览文件 @
2c12e94b
此差异已折叠。
点击以展开。
x2paddle/op_mapper/onnx2paddle/opset9/opset.py
浏览文件 @
2c12e94b
...
...
@@ -104,14 +104,6 @@ class OpSet9():
default_op_mapping
=
{
'Shape'
:
[
'shape'
,
[
'X'
],
[
'Out'
]],
'Clip'
:
[
'clip'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
min
=
(
np
.
asarray
(
[
255
,
255
,
127
,
255
],
dtype
=
np
.
uint8
).
view
(
np
.
float32
)[
0
]),
max
=
(
np
.
asarray
(
[
255
,
255
,
127
,
127
],
dtype
=
np
.
uint8
).
view
(
np
.
float32
)[
0
]),
)
],
'Erf'
:
[
'erf'
,
[
'X'
],
[
'Out'
]],
'Ceil'
:
[
'ceil'
,
[
'X'
],
[
'Out'
]],
'ReduceMean'
:
[
...
...
@@ -357,6 +349,7 @@ class OpSet9():
'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
)
fluid_op
=
'resize_bilinear'
attr
[
'align_corners'
]
=
False
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
...
...
@@ -745,53 +738,59 @@ class OpSet9():
param_attr
=
None
)
else
:
input_inner_indices
=
node
.
layer_name
+
'_input_inner_indices'
shape
=
val_x
.
out_shapes
[
0
]
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
indices
.
layer_name
,
output
=
indices
.
layer_name
,
param_attr
=
{
'shape'
:
indices
.
out_shapes
[
0
]})
zeros_like_val_x
=
val_x
.
layer_name
+
'_zeros'
node
.
fluid_code
.
add_layer
(
'scatter_nd'
,
'zeros_like'
,
inputs
=
val_x
,
output
=
zeros_like_val_x
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
'scatter_nd_add'
,
inputs
=
{
'
shape'
:
val_x
.
out_shapes
[
0
]
,
'
ref'
:
zeros_like_val_x
,
'index'
:
indices
,
'updates'
:
updates
},
output
=
input_inner_indices
,
param_attr
=
None
)
indices_mask
=
node
.
layer_name
+
'_indices_mask'
constant_minus_one
=
node
.
layer_name
+
'_constant_minus_one'
# full_like support create tensor shape like input tensor
node
.
fluid_code
.
add_layer
(
'f
ill_constant
'
,
inputs
=
None
,
'f
ull_like
'
,
inputs
=
updates
,
output
=
constant_minus_one
,
param_attr
=
{
'shape'
:
updates
.
out_shapes
[
0
],
'dtype'
:
string
(
updates
.
dtype
),
'value'
:
-
1
})
indices_mask
=
node
.
layer_name
+
'_indices_mask'
param_attr
=
{
'dtype'
:
string
(
updates
.
dtype
),
'fill_value'
:
-
1
})
node
.
fluid_code
.
add_layer
(
'scatter_nd'
,
'scatter_nd
_add
'
,
inputs
=
{
'
shape'
:
val_x
.
out_shapes
[
0
]
,
'
ref'
:
zeros_like_val_x
,
'index'
:
indices
,
'updates'
:
constant_minus_one
},
output
=
indices_mask
,
param_attr
=
None
)
constant_1
=
node
.
layer_name
+
'_constant_1'
constant_one
=
node
.
layer_name
+
'_constant_1'
# full_like support create tensor shape like input tensor
node
.
fluid_code
.
add_layer
(
'fill_constant'
,
inputs
=
None
,
output
=
constant_1
,
param_attr
=
{
'shape'
:
val_x
.
out_shapes
[
0
],
'dtype'
:
string
(
val_x
.
dtype
),
'value'
:
1
})
'full_like'
,
inputs
=
val_x
,
output
=
constant_one
,
param_attr
=
{
'dtype'
:
string
(
val_x
.
dtype
),
'fill_value'
:
1
})
input_out_indices_mask
=
node
.
layer_name
+
'_input_out_indices_mask'
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
{
"x"
:
indices_mask
,
"y"
:
constant_
1
},
"y"
:
constant_
one
},
output
=
input_out_indices_mask
,
param_attr
=
None
)
...
...
@@ -831,27 +830,35 @@ class OpSet9():
if
len
(
node
.
inputs
)
>
1
:
starts
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
ends
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
starts_value
=
_const_weight_or_none
(
starts
)
ends_value
=
_const_weight_or_none
(
ends
)
if
len
(
node
.
inputs
)
>
3
:
axes
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
axes
=
_const_weight_or_none
(
axes
,
necessary
=
True
)
if
len
(
node
.
inputs
)
>
4
:
steps
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
,
copy
=
True
)
steps
=
_const_weight_or_none
(
steps
)
if
steps
is
not
None
:
assert
steps
==
1
,
"Only support convert op:Slice, which attribute:steps == 1"
attr
=
{
"axes"
:
axes
,
"starts"
:
starts
.
layer_name
,
"ends"
:
ends
.
layer_name
}
starts_value
=
_const_weight_or_none
(
starts
)
ends_value
=
_const_weight_or_none
(
ends
)
if
starts_value
is
not
None
and
ends_value
is
not
None
:
self
.
omit_nodes
.
append
(
starts
.
layer_name
)
self
.
omit_nodes
.
append
(
ends
.
layer_name
)
starts_value
=
starts_value
.
copy
()
ends_value
=
ends_value
.
copy
()
#for idx in range(len(ends_value)):
# if ends_value[idx] > 2**31 - 1:
# ends_value[idx] = 2**31 - 1
#print(val_x.out_shapes)
for
idx
in
range
(
len
(
ends_value
)):
if
ends_value
[
idx
]
>
2
**
31
-
1
:
if
starts_value
[
idx
]
>=
val_x
.
out_shapes
[
0
][
axes
[
idx
]]:
starts_value
[
idx
]
=
val_x
.
out_shapes
[
0
][
axes
[
idx
]]
-
1
ends_value
[
idx
]
=
val_x
.
out_shapes
[
0
][
axes
[
idx
]]
starts_value
[
idx
]
=
val_x
.
out_shapes
[
0
][
axes
[
idx
]]
-
1
elif
ends_value
[
idx
]
>
2
**
31
-
1
:
ends_value
[
idx
]
=
2
**
31
-
1
attr
=
{
"axes"
:
axes
,
...
...
@@ -869,12 +876,12 @@ class OpSet9():
attr
[
'starts'
]
=
starts_cast
if
ends
.
dtype
!=
'int32'
:
ends_cast
=
ends
.
layer_name
+
'_cast'
node
.
fluid_code
.
add_layer
(
'cast'
,
inputs
=
ends
,
output
=
ends_cast
,
param_attr
=
{
'dtype'
:
string
(
'int32'
)})
attr
[
'ends'
]
=
ends_cast
node
.
fluid_code
.
add_layer
(
'cast'
,
inputs
=
ends
,
output
=
ends_cast
,
param_attr
=
{
'dtype'
:
string
(
'int32'
)})
attr
[
'ends'
]
=
ends_cast
else
:
starts
=
node
.
get_attr
(
'starts'
)
ends
=
node
.
get_attr
(
'ends'
)
...
...
@@ -884,8 +891,13 @@ class OpSet9():
ends
[
idx
]
=
2
**
31
-
1
attr
=
{
"axes"
:
axes
,
"starts"
:
starts
,
"ends"
:
ends
}
node
.
fluid_code
.
add_layer
(
'slice'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
if
steps
is
not
None
:
attr
[
'strides'
]
=
steps
node
.
fluid_code
.
add_layer
(
'strided_slice'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
else
:
node
.
fluid_code
.
add_layer
(
'slice'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
ConstantOfShape
(
self
,
node
):
...
...
@@ -907,6 +919,38 @@ class OpSet9():
node
.
fluid_code
.
add_layer
(
'fill_constant'
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Clip
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
max_value
,
min_value
=
None
,
None
if
len
(
node
.
inputs
)
==
1
:
max_value
=
node
.
get_attr
(
'max'
)
min_value
=
node
.
get_attr
(
'min'
)
attr
=
{
'max'
:
max_value
,
'min'
:
min_value
,
}
node
.
fluid_code
.
add_layer
(
'clip'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
else
:
max_ipt
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
min_ipt
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
max_value
=
_const_weight_or_none
(
max_ipt
)
min_value
=
_const_weight_or_none
(
min_ipt
)
self
.
omit_nodes
.
append
(
max_ipt
.
layer_name
)
self
.
omit_nodes
.
append
(
min_ipt
.
layer_name
)
if
max_value
.
shape
==
(
1
,
):
max_value
=
max_value
[
0
]
if
min_value
.
shape
==
(
1
,
):
min_value
=
min_value
[
0
]
if
max_value
is
not
None
and
min_value
is
not
None
:
attr
=
{
'max'
:
max_value
,
'min'
:
min_value
}
node
.
fluid_code
.
add_layer
(
'clip'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
else
:
raise
@
print_mapping_info
def
Split
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录