Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
262229f5
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
262229f5
编写于
12月 15, 2020
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify onnx static
上级
9e19ff2b
变更
7
展开全部
显示空白变更内容
内联
并排
Showing
7 changed file
with
888 addition
and
1080 deletion
+888
-1080
x2paddle/convert.py
x2paddle/convert.py
+2
-10
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
+36
-34
x2paddle/op_mapper/static/onnx2paddle/onnx_op_mapper.py
x2paddle/op_mapper/static/onnx2paddle/onnx_op_mapper.py
+24
-19
x2paddle/op_mapper/static/onnx2paddle/opset9/custom_layer/__init__.py
...mapper/static/onnx2paddle/opset9/custom_layer/__init__.py
+0
-111
x2paddle/op_mapper/static/onnx2paddle/opset9/custom_layer/register.py
...mapper/static/onnx2paddle/opset9/custom_layer/register.py
+0
-55
x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py
x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py
+826
-822
x2paddle/optimizer/onnx_optimizer.py
x2paddle/optimizer/onnx_optimizer.py
+0
-29
未找到文件。
x2paddle/convert.py
浏览文件 @
262229f5
...
...
@@ -185,16 +185,8 @@ def onnx2paddle(model_path, save_dir, paddle_type, params_merge=False):
from
x2paddle.op_mapper.static.onnx2paddle.onnx_op_mapper
import
ONNXOpMapper
model
=
ONNXDecoder
(
model_path
)
mapper
=
ONNXOpMapper
(
model
)
if
paddle_type
==
"dygraph"
:
mapper
.
paddle_graph
.
build
()
mapper
.
paddle_graph
.
gen_model
(
save_dir
)
else
:
from
x2paddle.optimizer.onnx_optimizer
import
ONNXOptimizer
print
(
"Model optimizing ..."
)
optimizer
=
ONNXOptimizer
(
mapper
)
optimizer
.
delete_redundance_code
()
print
(
"Model optimized."
)
mapper
.
save_inference_model
(
save_dir
,
params_merge
)
def
pytorch2paddle
(
module
,
save_dir
,
jit_type
=
"trace"
,
input_examples
=
None
):
...
...
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
浏览文件 @
262229f5
...
...
@@ -534,7 +534,7 @@ class OpSet9():
'bias_attr'
:
string
(
val_b
.
name
)
}
dim
=
len
(
val_x
.
out_shapes
[
0
])
if
dim
==
2
or
dim
==
3
:
if
dim
==
3
:
paddle_op
=
"paddle.nn.InstanceNorm1D"
elif
dim
==
4
:
paddle_op
=
"paddle.nn.InstanceNorm2D"
...
...
@@ -1539,7 +1539,6 @@ class OpSet9():
layer_outputs
=
[
op_name
,
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
has_bias
=
len
(
node
.
layer
.
input
)
==
3
if
has_bias
:
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
...
...
@@ -1589,6 +1588,9 @@ class OpSet9():
@
print_mapping_info
def
ConvTranspose
(
self
,
node
):
op_name
=
name_generator
(
"conv"
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_b
=
None
...
...
@@ -1602,7 +1604,7 @@ class OpSet9():
assert
2
<=
convnd
<=
3
,
'only Conv2DTranspose and Conv3DTranspose supported'
num_in_channels
=
val_w
.
out_shapes
[
0
][
0
]
num_out_channels
=
val_w
.
out_shapes
[
0
][
1
]
paddle_op
=
'paddle.nn.
functional.conv{}d_t
ranspose'
.
format
(
convnd
)
paddle_op
=
'paddle.nn.
Conv{}DT
ranspose'
.
format
(
convnd
)
num_groups
=
node
.
get_attr
(
'group'
,
1
)
strides
=
node
.
get_attr
(
'strides'
,
[
1
]
*
convnd
)
...
...
@@ -1620,37 +1622,37 @@ class OpSet9():
output_size
[
1
]
=
(
val_x
.
out_shapes
[
0
][
3
]
-
1
)
*
strides
[
1
]
-
2
*
paddings
[
1
]
+
dilations
[
1
]
*
(
kernel_shape
[
1
]
-
1
)
+
1
+
out_padding
[
1
]
# layer_attrs = {
# 'in_channels': num_in_channels,
# 'out_channels': num_out_channels,
# 'output_size': output_size or None,
# 'kernel_size': kernel_shape,
# 'padding': paddings,
# 'stride': strides,
# 'dilation': dilations,
# 'groups': num_groups,
# 'weight_attr': string(val_w.name),
# 'bias_attr': None if val_b is None else string(val_b.name),
# }
# self.paddle_graph.add_layer(
# paddle_op,
# inputs={"x": val_x.name},
# outputs=layer_outputs,
# **layer_attrs)
inputs_dict
=
{
'x'
:
val_x
if
isinstance
(
val_x
,
str
)
else
val_x
.
name
,
"weight"
:
val_w
.
name
}
layer_attrs
=
{
"stride"
:
strides
,
"dilation"
:
dilations
,
"padding"
:
paddings
,
"groups"
:
num_groups
,
"output_size"
:
node
.
out_shapes
[
0
][
2
:]}
if
val_b
is
not
None
:
inputs_dict
[
"bias"
]
=
val_b
.
name
else
:
layer_attrs
[
"bias"
]
=
None
'in_channels'
:
num_in_channels
,
'out_channels'
:
num_out_channels
,
'output_size'
:
output_size
or
None
,
'kernel_size'
:
kernel_shape
,
'padding'
:
paddings
,
'stride'
:
strides
,
'dilation'
:
dilations
,
'groups'
:
num_groups
,
'weight_attr'
:
string
(
val_w
.
name
),
'bias_attr'
:
None
if
val_b
is
None
else
string
(
val_b
.
name
),
}
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.functional.conv2d_transpose"
,
inputs
=
inputs_dict
,
outputs
=
[
node
.
name
],
paddle_op
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
# inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name,
# "weight": val_w.name}
# layer_attrs = {
# "stride": strides,
# "dilation": dilations,
# "padding": paddings,
# "groups": num_groups,
# "output_size": node.out_shapes[0][2:]}
# if val_b is not None:
# inputs_dict["bias"] = val_b.name
# else:
# layer_attrs["bias"] = None
# self.paddle_graph.add_layer(
# kernel="paddle.nn.functional.conv2d_transpose",
# inputs=inputs_dict,
# outputs=[node.name],
# **layer_attrs)
x2paddle/op_mapper/static/onnx2paddle/onnx_op_mapper.py
浏览文件 @
262229f5
...
...
@@ -12,9 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
x2paddle.op_mapper.static.onnx2paddle.opset9
import
OpSet9
,
custom_layers
import
sys
from
x2paddle.op_mapper.static.onnx2paddle.opset9
import
OpSet9
from
x2paddle.core.op_mapper
import
OpMapper
from
x2paddle.decoder.onnx_decoder
import
ONNXGraph
,
ONNXGraphNode
,
ONNXGraphDataNode
from
x2paddle.decoder.onnx_decoder
import
ONNXGraphNode
from
x2paddle.core.program
import
PaddleGraph
class
ONNXOpMapper
(
OpMapper
):
...
...
@@ -23,33 +25,36 @@ class ONNXOpMapper(OpMapper):
self
.
support_op_sets
=
[
9
,
]
self
.
default_op_set
=
9
self
.
graph
=
decoder
.
graph
self
.
paddle_graph
=
PaddleGraph
(
parent_layer
=
None
,
graph_type
=
"static"
,
source_type
=
"onnx"
)
self
.
paddle_graph
.
outputs
=
self
.
graph
.
output_nodes
self
.
opset
=
self
.
create_opset
(
decoder
)
if
not
self
.
op_checker
():
raise
Exception
(
"Model
are
not supported yet."
)
#mapping op
raise
Exception
(
"Model
is
not supported yet."
)
print
(
"Total nodes: {}"
.
format
(
sum
([
isinstance
(
node
,
ONNXGraphNode
)
for
name
,
node
in
self
.
graph
.
node_map
.
items
()
])))
print
(
"Nodes converting ..."
)
for
node_name
in
self
.
graph
.
topo_sort
:
for
i
,
node_name
in
enumerate
(
self
.
graph
.
topo_sort
):
sys
.
stderr
.
write
(
"
\r
Converting node {} ... "
.
format
(
i
+
1
))
node
=
self
.
graph
.
get_node
(
node_name
)
op
=
node
.
layer_type
if
hasattr
(
self
.
opset
,
op
):
func
=
getattr
(
self
.
opset
,
op
)
func
(
node
)
elif
op
in
self
.
opset
.
d
efault_op_mapping
:
elif
op
in
self
.
opset
.
d
irectly_map_ops
:
self
.
opset
.
directly_map
(
node
)
elif
op
in
custom_layers
:
self
.
opset
.
deal_custom_layer
(
node
)
elif
op
in
self
.
opset
.
elementwise_ops
:
self
.
opset
.
elementwise_map
(
node
)
print
(
"Nodes converted."
)
self
.
weights
=
self
.
opset
.
weights
self
.
omit_nodes
=
self
.
opset
.
omit_nodes
self
.
used_custom_layers
=
self
.
opset
.
used_custom_layers
print
(
"
\n
Nodes converted."
)
self
.
paddle_graph
.
set_name
(
self
.
graph
.
graph_name
)
self
.
paddle_graph
.
set_parameters
(
self
.
opset
.
params
)
self
.
paddle_graph
.
set_inputs_info
(
self
.
opset
.
inputs_info
)
self
.
paddle_graph
.
inputs
=
self
.
graph
.
input_nodes
self
.
paddle_graph
.
outputs
=
self
.
graph
.
output_nodes
def
op_checker
(
self
):
unsupported_ops
=
set
()
...
...
@@ -57,17 +62,17 @@ class ONNXOpMapper(OpMapper):
node
=
self
.
graph
.
get_node
(
node_name
)
op
=
node
.
layer_type
if
not
hasattr
(
self
.
opset
,
op
)
and
\
op
not
in
self
.
opset
.
default_op_mapping
and
\
op
not
in
custom_layers
and
\
op
not
in
self
.
opset
.
directly_map_ops
and
\
op
not
in
self
.
opset
.
elementwise_ops
:
unsupported_ops
.
add
(
op
)
if
len
(
unsupported_ops
)
==
0
:
return
True
else
:
print
(
"There are {} ops not supported yet, list as below"
.
format
(
if
len
(
unsupported_ops
)
>
0
:
print
(
"
\n
========= {} OPs are not supported yet ==========="
.
format
(
len
(
unsupported_ops
)))
for
op
in
unsupported_ops
:
print
(
op
)
print
(
"========== {} ============"
.
format
(
op
)
)
return
False
def
create_opset
(
self
,
decoder
):
...
...
@@ -88,4 +93,4 @@ class ONNXOpMapper(OpMapper):
'Now, onnx2paddle support convert onnx model opset_verison {},'
'opset_verison of your onnx model is {}, automatically treated as op_set: {}.'
.
format
(
self
.
support_op_sets
,
decoder
.
op_set
,
run_op_set
))
return
eval
(
opset
)(
decoder
)
return
eval
(
opset
)(
decoder
,
self
.
paddle_graph
)
x2paddle/op_mapper/static/onnx2paddle/opset9/custom_layer/__init__.py
已删除
100644 → 0
浏览文件 @
9e19ff2b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.register
import
get_registered_layers
custom_layers
=
get_registered_layers
()
def
set_args
(
f
,
params
):
""" set args for function 'f' using the parameters in node.layer.param
Args:
f (function): a python function object
params (object): a object contains attributes needed by f's arguments
Returns:
arg_names (list): a list of argument names
kwargs (dict): a dict contains needed arguments
"""
argc
=
f
.
__code__
.
co_argcount
arg_list
=
f
.
__code__
.
co_varnames
[
0
:
argc
]
kwargs
=
{}
for
arg_name
in
arg_list
:
if
hasattr
(
params
,
arg_name
)
and
params
is
not
None
:
kwargs
[
arg_name
]
=
getattr
(
params
,
arg_name
)
return
arg_list
,
kwargs
def
has_layer
(
layer_type
):
""" test whether this layer exists in custom layer
"""
return
layer_type
in
custom_layers
def
get_params
(
layer
,
layer_type
):
import
re
if
layer_type
.
lower
()
==
"deconvolution"
or
layer_type
.
lower
(
)
==
"convolutiondepthwise"
:
param_name
=
'_'
.
join
((
'convolution'
,
'param'
))
elif
layer_type
.
lower
()
==
"normalize"
:
param_name
=
'_'
.
join
((
'norm'
,
'param'
))
elif
len
(
layer_type
)
-
len
(
re
.
sub
(
"[A-Z]"
,
""
,
layer_type
))
>=
2
:
s
=
''
tmp_name
=
''
for
i
,
ch
in
enumerate
(
layer_type
):
if
i
==
0
:
s
+=
ch
.
lower
()
continue
elif
ch
.
isupper
()
and
layer_type
[
i
-
1
].
islower
():
tmp_name
+=
(
s
+
'_'
)
s
=
''
s
+=
ch
.
lower
()
tmp_name
+=
s
param_name
=
'_'
.
join
((
tmp_name
,
'param'
))
else
:
param_name
=
'_'
.
join
((
layer_type
.
lower
(),
'param'
))
return
getattr
(
layer
,
param_name
,
None
)
def
compute_output_shape
(
node
):
""" compute the output shape of custom layer
"""
layer_type
=
node
.
layer_type
assert
layer_type
in
custom_layers
,
"layer[%s] not exist in custom layers"
%
(
layer_type
)
shape_func
=
custom_layers
[
layer_type
][
'shape'
]
layer
=
node
.
layer
params
=
get_params
(
layer
,
layer_type
)
arg_names
,
kwargs
=
set_args
(
shape_func
,
params
)
input_shape
=
node
.
input_shape
return
shape_func
(
input_shape
,
**
kwargs
)
def
make_custom_layer
(
node
):
""" get the code which implement the custom layer function
"""
layer_type
=
node
.
layer_type
assert
layer_type
in
custom_layers
,
"layer[%s] not exist in custom layers"
%
(
layer_type
)
layer_func
=
custom_layers
[
layer_type
][
'layer'
]
import
inspect
return
inspect
.
getsource
(
layer_func
),
layer_func
def
make_custom_child_func
(
node
):
""" get the code which implement the custom layer function
"""
layer_type
=
node
.
layer_type
child_func
=
custom_layers
[
layer_type
][
'child_func'
]
if
child_func
is
None
:
return
None
,
child_func
import
inspect
return
inspect
.
getsource
(
child_func
),
child_func
def
deal_weights
(
node
,
data
=
None
):
""" deal the weights of the custom layer
"""
layer_type
=
node
.
layer_type
weights_func
=
custom_layers
[
layer_type
][
'weights'
]
name
=
node
.
layer_name
return
weights_func
(
name
,
data
)
x2paddle/op_mapper/static/onnx2paddle/opset9/custom_layer/register.py
已删除
100644 → 0
浏览文件 @
9e19ff2b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" this module provides 'register' for registering customized layers
"""
g_custom_layers
=
{}
def
register
(
kind
,
shape
,
layer
,
child_func
,
weights
):
""" register a custom layer or a list of custom layers
Args:
@kind (str or list): type name of the layer
@shape (function): a function to generate the shape of layer's output
@layer (function): a function to generate the paddle code of layer
@weights (function): a function to deal with weights data
Returns:
None
"""
assert
type
(
shape
).
__name__
==
'function'
,
'shape should be a function'
assert
type
(
layer
).
__name__
==
'function'
,
'layer should be a function'
if
type
(
kind
)
is
str
:
kind
=
[
kind
]
else
:
assert
type
(
kind
)
is
list
,
'invalid param "kind" for register, not a list or str'
for
k
in
kind
:
assert
type
(
k
)
is
str
,
'invalid param "kind" for register, not a list of str'
assert
k
not
in
g_custom_layers
,
'this type[%s] has already been registered'
%
(
k
)
g_custom_layers
[
k
]
=
{
'shape'
:
shape
,
'layer'
:
layer
,
'child_func'
:
child_func
,
'weights'
:
weights
}
def
get_registered_layers
():
return
g_custom_layers
x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py
浏览文件 @
262229f5
此差异已折叠。
点击以展开。
x2paddle/optimizer/onnx_optimizer.py
已删除
100644 → 0
浏览文件 @
9e19ff2b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO useless node remove
class
ONNXOptimizer
(
object
):
def
__init__
(
self
,
op_mapper
):
self
.
op_mapper
=
op_mapper
self
.
graph
=
op_mapper
.
graph
def
delete_redundance_code
(
self
):
for
node_name
in
self
.
graph
.
topo_sort
:
if
node_name
in
self
.
op_mapper
.
omit_nodes
:
node
=
self
.
graph
.
get_node
(
node_name
)
omit_freq
=
self
.
op_mapper
.
omit_nodes
.
count
(
node_name
)
if
len
(
node
.
outputs
)
<=
omit_freq
:
node
.
fluid_code
.
clear
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录