diff --git a/x2paddle/convert.py b/x2paddle/convert.py index 3de29518f60b4876d28fd1753290084a2ca85791..05c0db208f0748a45c8f4538f54331f48bf090b7 100644 --- a/x2paddle/convert.py +++ b/x2paddle/convert.py @@ -185,16 +185,8 @@ def onnx2paddle(model_path, save_dir, paddle_type, params_merge=False): from x2paddle.op_mapper.static.onnx2paddle.onnx_op_mapper import ONNXOpMapper model = ONNXDecoder(model_path) mapper = ONNXOpMapper(model) - if paddle_type == "dygraph": - mapper.paddle_graph.build() - mapper.paddle_graph.gen_model(save_dir) - else: - from x2paddle.optimizer.onnx_optimizer import ONNXOptimizer - print("Model optimizing ...") - optimizer = ONNXOptimizer(mapper) - optimizer.delete_redundance_code() - print("Model optimized.") - mapper.save_inference_model(save_dir, params_merge) + mapper.paddle_graph.build() + mapper.paddle_graph.gen_model(save_dir) def pytorch2paddle(module, save_dir, jit_type="trace", input_examples=None): diff --git a/x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py b/x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py index 996740354770ff005e8d93f0da726eed6e59ca14..38890835903a7f939aad031c7e6e660d0a3d6bcf 100644 --- a/x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py +++ b/x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py @@ -534,7 +534,7 @@ class OpSet9(): 'bias_attr': string(val_b.name) } dim = len(val_x.out_shapes[0]) - if dim == 2 or dim == 3: + if dim == 3: paddle_op = "paddle.nn.InstanceNorm1D" elif dim == 4: paddle_op = "paddle.nn.InstanceNorm2D" @@ -1539,7 +1539,6 @@ class OpSet9(): layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) val_w = self.graph.get_input_node(node, idx=1, copy=True) - val_y = self.graph.get_node(node.layer.output[0], copy=True) has_bias = len(node.layer.input) == 3 if has_bias: val_b = self.graph.get_input_node(node, idx=2, copy=True) @@ -1589,6 +1588,9 @@ class OpSet9(): @print_mapping_info def ConvTranspose(self, node): + op_name = name_generator("conv", self.nn_name2id) + output_name = node.name + layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) val_w = self.graph.get_input_node(node, idx=1, copy=True) val_b = None @@ -1602,7 +1604,7 @@ class OpSet9(): assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported' num_in_channels = val_w.out_shapes[0][0] num_out_channels = val_w.out_shapes[0][1] - paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd) + paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd) num_groups = node.get_attr('group', 1) strides = node.get_attr('strides', [1] * convnd) @@ -1620,37 +1622,37 @@ class OpSet9(): output_size[1] = (val_x.out_shapes[0][3] - 1 ) * strides[1] - 2 * paddings[1] + dilations[1] * ( kernel_shape[1] - 1) + 1 + out_padding[1] -# layer_attrs = { -# 'in_channels': num_in_channels, -# 'out_channels': num_out_channels, -# 'output_size': output_size or None, -# 'kernel_size': kernel_shape, -# 'padding': paddings, -# 'stride': strides, -# 'dilation': dilations, -# 'groups': num_groups, -# 'weight_attr': string(val_w.name), -# 'bias_attr': None if val_b is None else string(val_b.name), -# } -# self.paddle_graph.add_layer( -# paddle_op, -# inputs={"x": val_x.name}, -# outputs=layer_outputs, -# **layer_attrs) - inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name, - "weight": val_w.name} layer_attrs = { - "stride": strides, - "dilation": dilations, - "padding": paddings, - "groups": num_groups, - "output_size": node.out_shapes[0][2:]} - if val_b is not None: - inputs_dict["bias"] = val_b.name - else: - layer_attrs["bias"] = None + 'in_channels': num_in_channels, + 'out_channels': num_out_channels, + 'output_size': output_size or None, + 'kernel_size': kernel_shape, + 'padding': paddings, + 'stride': strides, + 'dilation': dilations, + 'groups': num_groups, + 'weight_attr': string(val_w.name), + 'bias_attr': None if val_b is None else string(val_b.name), + } self.paddle_graph.add_layer( - kernel="paddle.nn.functional.conv2d_transpose", - inputs=inputs_dict, - outputs=[node.name], + paddle_op, + inputs={"x": val_x.name}, + outputs=layer_outputs, **layer_attrs) +# inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name, +# "weight": val_w.name} +# layer_attrs = { +# "stride": strides, +# "dilation": dilations, +# "padding": paddings, +# "groups": num_groups, +# "output_size": node.out_shapes[0][2:]} +# if val_b is not None: +# inputs_dict["bias"] = val_b.name +# else: +# layer_attrs["bias"] = None +# self.paddle_graph.add_layer( +# kernel="paddle.nn.functional.conv2d_transpose", +# inputs=inputs_dict, +# outputs=[node.name], +# **layer_attrs) diff --git a/x2paddle/op_mapper/static/onnx2paddle/onnx_op_mapper.py b/x2paddle/op_mapper/static/onnx2paddle/onnx_op_mapper.py index 18dbab60dd6a4b7a65c71efcd54cf39a1fd6284d..ba25787f9372a773a18670f34df0c4b407e13e9c 100644 --- a/x2paddle/op_mapper/static/onnx2paddle/onnx_op_mapper.py +++ b/x2paddle/op_mapper/static/onnx2paddle/onnx_op_mapper.py @@ -12,9 +12,11 @@ # See the License for the specific language governing permissions and # limitations under the License. -from x2paddle.op_mapper.static.onnx2paddle.opset9 import OpSet9, custom_layers +import sys +from x2paddle.op_mapper.static.onnx2paddle.opset9 import OpSet9 from x2paddle.core.op_mapper import OpMapper -from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode +from x2paddle.decoder.onnx_decoder import ONNXGraphNode +from x2paddle.core.program import PaddleGraph class ONNXOpMapper(OpMapper): @@ -23,33 +25,36 @@ class ONNXOpMapper(OpMapper): self.support_op_sets = [9, ] self.default_op_set = 9 self.graph = decoder.graph + self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="static", source_type="onnx") + self.paddle_graph.outputs = self.graph.output_nodes self.opset = self.create_opset(decoder) if not self.op_checker(): - raise Exception("Model are not supported yet.") - #mapping op + raise Exception("Model is not supported yet.") + print("Total nodes: {}".format( sum([ isinstance(node, ONNXGraphNode) for name, node in self.graph.node_map.items() ]))) - print("Nodes converting ...") - for node_name in self.graph.topo_sort: + for i, node_name in enumerate(self.graph.topo_sort): + sys.stderr.write("\rConverting node {} ... ".format(i + 1)) node = self.graph.get_node(node_name) op = node.layer_type if hasattr(self.opset, op): func = getattr(self.opset, op) func(node) - elif op in self.opset.default_op_mapping: + elif op in self.opset.directly_map_ops: self.opset.directly_map(node) - elif op in custom_layers: - self.opset.deal_custom_layer(node) elif op in self.opset.elementwise_ops: self.opset.elementwise_map(node) - print("Nodes converted.") - self.weights = self.opset.weights - self.omit_nodes = self.opset.omit_nodes - self.used_custom_layers = self.opset.used_custom_layers + print("\nNodes converted.") + self.paddle_graph.set_name(self.graph.graph_name) + self.paddle_graph.set_parameters(self.opset.params) + self.paddle_graph.set_inputs_info(self.opset.inputs_info) + self.paddle_graph.inputs = self.graph.input_nodes + self.paddle_graph.outputs = self.graph.output_nodes + def op_checker(self): unsupported_ops = set() @@ -57,17 +62,17 @@ class ONNXOpMapper(OpMapper): node = self.graph.get_node(node_name) op = node.layer_type if not hasattr(self.opset, op) and \ - op not in self.opset.default_op_mapping and \ - op not in custom_layers and \ + op not in self.opset.directly_map_ops and \ op not in self.opset.elementwise_ops: unsupported_ops.add(op) if len(unsupported_ops) == 0: return True else: - print("There are {} ops not supported yet, list as below".format( - len(unsupported_ops))) + if len(unsupported_ops) > 0: + print("\n========= {} OPs are not supported yet ===========".format( + len(unsupported_ops))) for op in unsupported_ops: - print(op) + print("========== {} ============".format(op)) return False def create_opset(self, decoder): @@ -88,4 +93,4 @@ class ONNXOpMapper(OpMapper): 'Now, onnx2paddle support convert onnx model opset_verison {},' 'opset_verison of your onnx model is {}, automatically treated as op_set: {}.' .format(self.support_op_sets, decoder.op_set, run_op_set)) - return eval(opset)(decoder) + return eval(opset)(decoder, self.paddle_graph) diff --git a/x2paddle/op_mapper/static/onnx2paddle/opset9/custom_layer/__init__.py b/x2paddle/op_mapper/static/onnx2paddle/opset9/custom_layer/__init__.py deleted file mode 100644 index 24fe91780ae8d19bfa55b9d86e951570a2a044c9..0000000000000000000000000000000000000000 --- a/x2paddle/op_mapper/static/onnx2paddle/opset9/custom_layer/__init__.py +++ /dev/null @@ -1,111 +0,0 @@ -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License" -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from .register import get_registered_layers - -custom_layers = get_registered_layers() - - -def set_args(f, params): - """ set args for function 'f' using the parameters in node.layer.param - Args: - f (function): a python function object - params (object): a object contains attributes needed by f's arguments - Returns: - arg_names (list): a list of argument names - kwargs (dict): a dict contains needed arguments - """ - argc = f.__code__.co_argcount - arg_list = f.__code__.co_varnames[0:argc] - kwargs = {} - for arg_name in arg_list: - if hasattr(params, arg_name) and params is not None: - kwargs[arg_name] = getattr(params, arg_name) - return arg_list, kwargs - - -def has_layer(layer_type): - """ test whether this layer exists in custom layer - """ - return layer_type in custom_layers - - -def get_params(layer, layer_type): - import re - if layer_type.lower() == "deconvolution" or layer_type.lower( - ) == "convolutiondepthwise": - param_name = '_'.join(('convolution', 'param')) - elif layer_type.lower() == "normalize": - param_name = '_'.join(('norm', 'param')) - elif len(layer_type) - len(re.sub("[A-Z]", "", layer_type)) >= 2: - s = '' - tmp_name = '' - for i, ch in enumerate(layer_type): - if i == 0: - s += ch.lower() - continue - elif ch.isupper() and layer_type[i - 1].islower(): - tmp_name += (s + '_') - s = '' - s += ch.lower() - tmp_name += s - param_name = '_'.join((tmp_name, 'param')) - else: - param_name = '_'.join((layer_type.lower(), 'param')) - return getattr(layer, param_name, None) - - -def compute_output_shape(node): - """ compute the output shape of custom layer - """ - layer_type = node.layer_type - assert layer_type in custom_layers, "layer[%s] not exist in custom layers" % ( - layer_type) - shape_func = custom_layers[layer_type]['shape'] - layer = node.layer - params = get_params(layer, layer_type) - arg_names, kwargs = set_args(shape_func, params) - input_shape = node.input_shape - return shape_func(input_shape, **kwargs) - - -def make_custom_layer(node): - """ get the code which implement the custom layer function - """ - layer_type = node.layer_type - assert layer_type in custom_layers, "layer[%s] not exist in custom layers" % ( - layer_type) - layer_func = custom_layers[layer_type]['layer'] - import inspect - return inspect.getsource(layer_func), layer_func - - -def make_custom_child_func(node): - """ get the code which implement the custom layer function - """ - layer_type = node.layer_type - child_func = custom_layers[layer_type]['child_func'] - if child_func is None: - return None, child_func - import inspect - return inspect.getsource(child_func), child_func - - -def deal_weights(node, data=None): - """ deal the weights of the custom layer - """ - layer_type = node.layer_type - weights_func = custom_layers[layer_type]['weights'] - name = node.layer_name - return weights_func(name, data) diff --git a/x2paddle/op_mapper/static/onnx2paddle/opset9/custom_layer/register.py b/x2paddle/op_mapper/static/onnx2paddle/opset9/custom_layer/register.py deleted file mode 100644 index 37a593648a0b8717eb22cde7f1bc8b85c4990e39..0000000000000000000000000000000000000000 --- a/x2paddle/op_mapper/static/onnx2paddle/opset9/custom_layer/register.py +++ /dev/null @@ -1,55 +0,0 @@ -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License" -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" this module provides 'register' for registering customized layers -""" - -g_custom_layers = {} - - -def register(kind, shape, layer, child_func, weights): - """ register a custom layer or a list of custom layers - - Args: - @kind (str or list): type name of the layer - @shape (function): a function to generate the shape of layer's output - @layer (function): a function to generate the paddle code of layer - @weights (function): a function to deal with weights data - - Returns: - None - """ - assert type(shape).__name__ == 'function', 'shape should be a function' - assert type(layer).__name__ == 'function', 'layer should be a function' - - if type(kind) is str: - kind = [kind] - else: - assert type( - kind) is list, 'invalid param "kind" for register, not a list or str' - - for k in kind: - assert type( - k) is str, 'invalid param "kind" for register, not a list of str' - assert k not in g_custom_layers, 'this type[%s] has already been registered' % ( - k) - g_custom_layers[k] = { - 'shape': shape, - 'layer': layer, - 'child_func': child_func, - 'weights': weights - } - - -def get_registered_layers(): - return g_custom_layers diff --git a/x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py b/x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py index 9d18577fd3d9c6b46d2f33266562f018a852c686..a941dfe7cfa73fd1b5d5050b7acabaa67ae3a645 100644 --- a/x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py +++ b/x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py @@ -27,6 +27,8 @@ import logging as _logging from collections import OrderedDict import math import os +import copy +import sys import shutil _logger = _logging.getLogger(__name__) @@ -85,182 +87,118 @@ def print_mapping_info(func): class OpSet9(): elementwise_ops = { - 'Add': 'elementwise_add', - 'Div': 'elementwise_div', - 'Sub': 'elementwise_sub', - 'Mul': 'elementwise_mul', - 'Pow': 'elementwise_pow', + 'Add': 'paddle.add', + 'Div': 'paddle.divide', + 'Sub': 'fluid.layers.elementwise_sub', + 'Mul': 'paddle.multiply', + 'Pow': 'paddle.pow', } - default_op_mapping_field_values = OrderedDict() - default_op_mapping_field_values['FLUID_OP'] = '' - default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None - default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None - default_op_mapping_field_values['ATTR_MAPPING'] = dict() - default_op_mapping_field_values['DEFAULTS'] = dict() - default_op_mapping_field_values['INPUT_PERM'] = None - default_op_mapping_field_values['OUTPUT_PERM'] = None - default_op_mapping_field_values['FILL_NAME_FIELD'] = True - - default_op_mapping = { - 'Shape': ['shape', ['X'], ['Out']], - 'Erf': ['erf', ['X'], ['Out']], - 'Ceil': ['ceil', ['X'], ['Out']], - 'ReduceMean': [ - 'reduce_mean', ['X'], ['Out'], dict( - axes='dim', keepdims='keep_dim'), dict(keep_dim=1) - ], - 'ReduceSum': [ - 'reduce_sum', ['X'], ['Out'], dict( - axes='dim', keepdims='keep_dim'), dict(keep_dim=1) - ], - 'ReduceMin': [ - 'reduce_min', ['X'], ['Out'], dict( - axes='dim', keepdims='keep_dim'), dict(keep_dim=1) - ], - 'ReduceMax': [ - 'reduce_max', ['X'], ['Out'], dict( - axes='dim', keepdims='keep_dim'), dict(keep_dim=1) - ], - #active function - 'Relu': ['relu', ['X'], ['Out']], - 'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)], - 'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)], - 'ThresholdedRelu': [ - 'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'), - dict(alpha=1.) - ], - 'Tanh': ['tanh', ['X'], ['Out']], - 'Sigmoid': ['sigmoid', ['X'], ['Out']], - 'HardSigmoid': [ - 'hard_sigmoid', ['X'], ['Out'], dict( - alpha='slope', beta='offset'), dict( - slope=.2, offset=.5) - ], - 'Softsign': ['softsign', ['X'], ['Out']], - 'Softplus': ['softplus', ['X'], ['Out']], - 'Exp': ['exp', ['X'], ['Out']], - 'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)], - 'Sqrt': ['sqrt', ['X'], ['Out']], - 'Floor': ['floor', ['X'], ['Out']], - 'Abs': ['abs', ['X'], ['Out']], + directly_map_ops = { + 'Ceil': ['paddle.ceil'], + # reduce function + 'ReduceMean': ['paddle.mean', + dict(axes='axis', keepdims='keepdim'), + dict(keepdims=1)], + 'ReduceSum': ['paddle.sum', + dict(axes='axis', keepdims='keepdim'), + dict(keepdims=1)], + 'ReduceMin': ['paddle.min', + dict(axes='axis', keepdims='keepdim'), + dict(keepdim=1)], + 'ReduceMax': ['paddle.max', + dict(axes='axis', keepdims='keepdim'), + dict(keepdim=1)], + # active function + 'Relu': ['paddle.nn.functional.relu'], + 'LeakyRelu': ['paddle.nn.functional.leaky_relu', + dict(alpha='negative_slope'), + dict(negative_slope=.01)], + 'Elu': ['paddle.nn.functional.elu', + dict(alpha='alpha'), + dict(alpha=1.)], + 'ThresholdedRelu': ['paddle.nn.functional.thresholded_relu', + dict(alpha='threshold'), + dict(alpha=1.)], + 'Tanh': ['paddle.nn.functional.tanh'], + 'Sigmoid': ['paddle.nn.functional.sigmoid'], + 'Softsign': ['paddle.nn.functional.softsign'], + 'Softplus': ['paddle.nn.functional.softplus', + dict(threshold='threshold'), + dict(threshold=float(sys.maxsize))], + 'Exp': ['paddle.exp'], + 'Softmax': ['paddle.nn.functional.softmax', + dict(axis='axis'), + dict(axis=1)], + 'Sqrt': ['paddle.sqrt'], + 'Floor': ['paddle.floor'], + 'Abs': ['paddle.abs'], + 'Erf': ['paddle.erf'], } - default_ioa_constraint = {} - - def __init__(self, decoder): + def __init__(self, decoder, paddle_graph): super(OpSet9, self).__init__() self.graph = decoder.graph - self.input_shapes = [] - self.weights = dict() - self.omit_nodes = list() - self.used_custom_layers = dict() + self.paddle_graph = paddle_graph + self.input_index = 0 + self.inputs_info = dict() + self.params = dict() @print_mapping_info - def directly_map(self, node, name='', *args, **kwargs): + def directly_map(self, node, *args, **kwargs): inputs = node.layer.input - outputs = node.layer.output - op_type = node.layer_type - attrs = node.attr_map - info = self.default_op_mapping[op_type] - info.extend( - list(self.default_op_mapping_field_values.values())[len(info):]) - ( - fluid_op, - fluid_input_args, - fluid_output_args, - attr_mapping, - default_attrs, - input_perm, - output_perm, - fill_name_field, ) = info - - if fluid_op in self.default_ioa_constraint: - for predicate, message in self.default_ioa_constraint[fluid_op]: - assert predicate(inputs, outputs, attrs), message - - mapped_attrs = { - attr_mapping.get(key, key): value - for key, value in attrs.items() - } - if '' in mapped_attrs: - mapped_attrs.pop('') - if '_' in mapped_attrs: - mapped_attrs.pop('_') - fluid_attrs = default_attrs.copy() - fluid_attrs.update(mapped_attrs) - inputs = inputs if input_perm is None else list( - map(lambda i: inputs[i], input_perm)) - val_inps = [] - for idx, ipt in enumerate(inputs): - val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True)) - - val_outs = outputs if output_perm is None else list( - map(lambda i: outputs[i], output_perm)) - attr = fluid_attrs - assert len(val_inps) == 1, 'directly_map error with multi inputs' - if fluid_op not in ['shape', 'erf']: - attr['name'] = string(node.layer_name) - node.fluid_code.add_layer( - fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr) - if fluid_op in ['shape']: - node.fluid_code.add_layer( - 'cast', - inputs=val_outs[0], - output=val_outs[0], - param_attr={'dtype': string('int64')}) - - @print_mapping_info - def deal_custom_layer(self, node): - op = node.layer_type - custom_code, func = make_custom_layer(node) - child_func_code, child_func = make_custom_child_func(node) - params = get_params(node.layer, node.layer_type) - arg_names, kwargs = set_args(func, params) - kwargs['name'] = string(node.layer_name) - node.fluid_code.add_layer( - func.__code__.co_name, - inputs=node.inputs, - output=node, - param_attr=kwargs, - is_custom_layer=True) - if op not in self.used_custom_layers: - self.used_custom_layers[op] = custom_code - if op + '_child_func' not in self.used_custom_layers: - if child_func_code is not None: - self.used_custom_layers[op + - '_child_func'] = child_func_code - + assert len(inputs) == 1, 'directly_map error with multi inputs' + input = self.graph.get_input_node(node, idx=0, copy=True) + onnx_attrs = node.attr_map + if '' in onnx_attrs: + onnx_attrs.pop('') + if '_' in onnx_attrs: + onnx_attrs.pop('_') + op_info = self.directly_map_ops[node.layer_type] + paddle_op = op_info[0] + layer_attrs = dict() + if len(op_info) > 1: + attrs_name_map_dict = op_info[1] + for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items(): + if onnx_attr_name in onnx_attrs: + layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name] + else: + layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name] + self.paddle_graph.add_layer( + kernel=paddle_op, + inputs={"x": input.name}, + outputs=[node.name], + **layer_attrs) + @print_mapping_info def elementwise_map(self, node): - assert node.layer_type in self.elementwise_ops op_type = self.elementwise_ops[node.layer_type] - val_x = self.graph.get_input_node(node, idx=0, copy=True) val_y = self.graph.get_input_node(node, idx=1, copy=True) - inputs = {'x': val_x, 'y': val_y} - node.fluid_code.add_layer( - op_type, inputs=inputs, output=node, param_attr=None) - + inputs_dict = {'x': val_x.name, + 'y': val_y.name} + self.paddle_graph.add_layer( + op_type, + inputs=inputs_dict, + outputs=[node.name]) + @print_mapping_info def place_holder(self, node): - self.input_shapes.append(node.out_shapes[0]) - shape = node.out_shapes[0] for i, dim_shape in enumerate(shape): if dim_shape == 0 and i == 0: shape[i] = 1 if dim_shape == 0 and i != 0: assert 'shape of input is not assigned' - attr = { - "dtype": string(node.dtype), - "shape": shape, - "name": string(node.layer_name), - "append_batch_size": 'False' - } - - node.fluid_code.add_layer( - "data", inputs=None, output=node, param_attr=attr) + self.paddle_graph.add_layer( + kernel="paddle.static.data", + inputs={}, + outputs=[node.name], + dtype=string(node.dtype), + shape=shape, + name=string(node.name)) + self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype] + self.input_index += 1 @print_mapping_info def create_parameter(self, node, parameter=None): @@ -269,30 +207,23 @@ class OpSet9(): dtype = node.dtype shape = node.out_shapes[0] if len(node.weight.shape) == 0: - shape = [1] - self.weights[node.layer_name] = node.weight - attr = { - 'dtype': string(dtype), - 'shape': shape, - 'name': string(node.layer_name), - 'default_initializer': 'Constant(0.0)' - } - if dtype == 'bool': - attr['dtype'] = string('int64') - node.fluid_code.add_layer( - "create_parameter", inputs=None, output=node, param_attr=attr) - node.fluid_code.add_layer( - "cast", - inputs=node, - output=node, - param_attr={'dtype': string('bool')}) - elif dtype == 'uint8': - attr['dtype'] = string('float32') - node.fluid_code.add_layer( - "create_parameter", inputs=None, output=node, param_attr=attr) + self.paddle_graph.add_layer( + "paddle.full", + inputs={}, + outputs=[node.name], + dtype=string(dtype), + shape=[1], + fill_value=node.weight) else: - node.fluid_code.add_layer( - "create_parameter", inputs=None, output=node, param_attr=attr) + self.params[node.name] = node.weight + self.paddle_graph.add_layer( + kernel="paddle.static.create_parameter", + inputs={}, + outputs=[node.name], + dtype=string(dtype), + shape=shape, + name=string(node.name), + default_initializer="paddle.nn.initializer.Constant(value=0.0)") def _pad_if_asymmetric(self, node, pads, val_name): # pads: SSEE assert len(pads) & 1 == 0 @@ -309,49 +240,89 @@ class OpSet9(): def _interpolate(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) - inputs = {'input': val_x} + inputs = {'x': val_x.name} if node.layer_type == 'Resize': if len(node.layer.input) == 2: # opset 10 val_scales = self.graph.get_input_node(node, idx=1, copy=True) - inputs['scale'] = val_scales + inputs['scale_factor'] = val_scales.name elif len(node.layer.input) == 3: # opset 11 val_scales = self.graph.get_input_node(node, idx=2, copy=True) - inputs['scale'] = val_scales + inputs['scale_factor'] = val_scales.name elif len(node.layer.input) == 4: # opset 11 val_sizes = self.graph.get_input_node(node, idx=3, copy=True) - var_nc, var_hw = val_sizes.layer_name + '_nc', val_sizes.layer_name + '_hw' - node.fluid_code.add_layer( - 'split', - inputs=val_sizes, - output=var_nc + ',' + var_hw, - param_attr={ - 'dim': 0, - 'num_or_sections': [2, 2], - }) - node.fluid_code.add_layer( - "cast", - inputs=var_hw, - output=var_hw, - param_attr={'dtype': string('int32')}) + var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw' + self.paddle_graph.add_layer( + 'paddle.split', + inputs={"x": val_sizes.name}, + outputs=[var_nc, var_hw], + num_or_sections=[2, 2], + axis=0) + self.paddle_graph.add_layer( + "paddle.cast", + inputs={"x": var_hw}, + outputs=[var_hw], + dtype=string('int32')) +# inputs['size'] = var_hw + + # TODO(syf): all use inputs['out_shape'] = var_hw + ipt = inputs.pop("x") + inputs["input"] = ipt + mode = node.get_attr('mode', 'nearest') + attrs = {"align_corners": False} + self.paddle_graph.add_layer( + kernel="fluid.layers.resize_nearest", + inputs=inputs, + outputs=[node.name], + **attrs) + return elif node.layer_type == 'Upsample': val_scales = self.graph.get_input_node(node, idx=1, copy=True) inputs['scale'] = val_scales - attr = {'name': string(node.layer_name)} mode = node.get_attr('mode', 'nearest') - fluid_op = 'resize_{}'.format(mode) - if 'linear' in mode: - print( - 'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear' - ) - fluid_op = 'resize_bilinear' - attr['align_corners'] = False - node.fluid_code.add_layer( - fluid_op, inputs=inputs, output=node, param_attr=attr) + attrs = {"align_corners": False, + "mode": string(mode), + "align_mode": 1} + self.paddle_graph.add_layer( + kernel="paddle.nn.functional.interpolate", + inputs=inputs, + outputs=[node.name], + **attrs) + + @print_mapping_info + def HardSigmoid(self, node): + val_x = self.graph.get_input_node(node, idx=0, copy=True) + alpha = node.get_attr('alpha', 0.2) + beta = node.get_attr('beta', 0.5) + self.paddle_graph.add_layer( + kernel="paddle.scale", + inputs={"x": val_x.name}, + outputs=[node.name + "_val"], + scale=alpha, + bias=beta) + self.paddle_graph.add_layer( + kernel="paddle.clip", + inputs={"x": node.name + "_val"}, + outputs=[node.name], + min=0.0, + max=1.0) + + @print_mapping_info + def Shape(self, node): + val_x = self.graph.get_input_node(node, idx=0, copy=True) + self.paddle_graph.add_layer( + kernel="paddle.shape", + inputs={"input": val_x.name}, + outputs=[node.name]) + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={"x": node.name}, + outputs=[node.name], + dtype=string('int64')) @print_mapping_info def RoiAlign(self, node): @@ -362,18 +333,18 @@ class OpSet9(): pooled_width = node.get_attr('output_width') spatial_scale = node.get_attr('spatial_scale') sampling_ratio = node.get_attr('sampling_ratio') - attr = { + layer_attrs = { 'pooled_height': pooled_height, 'pooled_width': pooled_width, 'spatial_scale': spatial_scale, 'sampling_ratio': sampling_ratio, } - node.fluid_code.add_layer( - 'roi_align', - inputs={'input': val_x, - 'rois': val_rois}, - output=node, - param_attr=attr) + self.paddle_graph.add_layer( + 'fluid.layers.roi_align', + inputs={'input': val_x.name, + 'rois': val_rois.name}, + outputs=[node.name], + **layer_attrs) @print_mapping_info def MaxRoiPool(self, node): @@ -382,17 +353,17 @@ class OpSet9(): spatial_scale = node.get_attr('spatial_scale') pooled_height, pooled_width = node.get_attr('pooled_shape') - attr = { + layer_attrs = { 'pooled_height': pooled_height, 'pooled_width': pooled_width, 'spatial_scale': spatial_scale, } - node.fluid_code.add_layer( - 'roi_pool', - inputs={'input': val_x, - 'rois': val_rois}, - output=node, - param_attr=attr) + self.paddle_graph.add_layer( + 'fluid.layers.roi_pool', + inputs={'input': val_x.name, + 'rois': val_rois.name}, + outputs=[node.name], + **layer_attrs) @print_mapping_info def Pad(self, node, op_independent=True): @@ -403,7 +374,8 @@ class OpSet9(): data_shape = val_x.out_shapes[0] output_shape = node.out_shapes[0] assume_pad2d = False - attr = {} + layer_attrs = {} + layer_attrs['mode'] = string(mode) paddings = [] if len(pads) == 4: assume_pad2d |= mode != 'constant' @@ -412,12 +384,12 @@ class OpSet9(): if output_shape: assume_pad2d |= output_shape and len(output_shape) == 4 # NCHW if assume_pad2d: - fluid_op = 'pad2d' - attr['data_format'] = string('NCHW') - attr['mode'] = string(mode) + paddle_op = 'paddle.nn.functional.pad' + layer_attrs['data_format'] = string('NCHW') + layer_attrs['value'] = value else: - attr = {'pad_value': value} - fluid_op = 'pad' + paddle_op = 'fluid.layers.pad' + layer_attrs["pad_value"] = value if len(pads) == 4: paddings = np.array(pads).reshape( (-1, 2)).transpose().flatten().tolist() # SSEE -> SESE @@ -425,51 +397,52 @@ class OpSet9(): paddings = np.array(pads).reshape( (-1, 4)).transpose().flatten().tolist() # SSEE -> SESE if sum(paddings[:4]) == 0: - fluid_op = 'pad2d' + paddle_op = 'paddle.nn.functional.pad' paddings = paddings[4:] - attr['mode'] = string(mode) - attr['paddings'] = paddings + layer_attrs['value'] = value + if 'pad_value' in layer_attrs: + layer_attrs.pop('pad_value') + tmp_paddings = copy.deepcopy(paddings) + paddings[0] = tmp_paddings[2] + paddings[1] = tmp_paddings[3] + paddings[2] = tmp_paddings[0] + paddings[3] = tmp_paddings[1] + if paddle_op == 'paddle.nn.functional.pad': + layer_attrs['pad'] = paddings + else: + layer_attrs['paddings'] = paddings if op_independent: - attr['name'] = string(node.layer_name) - node.fluid_code.add_layer( - fluid_op, inputs=val_x, output=node, param_attr=attr) + self.paddle_graph.add_layer( + paddle_op, + inputs={'x': val_x.name}, + outputs=[node.name], + **layer_attrs) else: - attr['name'] = string(node.layer_name + '_paded') - node.fluid_code.add_layer( - fluid_op, - inputs=val_x, - output=node.layer_name + '_paded', - param_attr=attr) - return node.layer_name + '_paded' + self.paddle_graph.add_layer( + paddle_op, + inputs={'x': val_x.name}, + outputs=[node.name + '_paded'], + **layer_attrs) + return node.name + '_paded' @print_mapping_info def Unsqueeze(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) axes = node.get_attr('axes') - attr = {'axes': axes, 'name': string(node.layer_name)} + layer_attrs = {'axis': axes} if len(val_x.out_shapes[0]) == 0: - if node.layer_name: - node.fluid_code.add_layer( - 'reshape', - inputs=val_x, - output=node, - param_attr={'shape': [1]}) + if node.name: + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={"x": val_x.name}, + outputs=[node.name], + shape=[1]) else: - if str(val_x.dtype) == 'bool': - val_x_cast = val_x.layer_name + '_cast' - node.fluid_code.add_layer( - 'cast', - inputs=val_x, - output=val_x_cast, - param_attr={'dtype': string('int64')}) - node.fluid_code.add_layer( - 'unsqueeze', - inputs=val_x_cast, - output=node, - param_attr=attr) - else: - node.fluid_code.add_layer( - 'unsqueeze', inputs=val_x, output=node, param_attr=attr) + self.paddle_graph.add_layer( + 'paddle.unsqueeze', + inputs={"x": val_x.name}, + outputs=[node.name], + **layer_attrs) @print_mapping_info def Shrink(self, node): @@ -477,9 +450,11 @@ class OpSet9(): bias = node.get_attr('bias') lambd = node.get_attr('lambd') assert bias == 0.0, 'not support bias!=0' - attr = {'threshold': lambd, 'name': node.layer_name} - node.fluid_code.add_layer( - 'hard_shrink', inputs=val_x, output=node, param_attr=attr) + self.paddle_graph.add_layer( + 'paddle.nn.functional.hardshrink', + inputs={"x": val_x.name}, + outputs=[node.name], + threshold=lambd) @print_mapping_info def Constant(self, node): @@ -500,29 +475,28 @@ class OpSet9(): _logger.warning('in (Constant -> %s): ' 'attribute "shape" of %s not inferred, ' 'using value as 1-D tensor may lead to fails', - val_output.layer_name, val_output.layer_name) + val_output.name, val_output.name) if len(value) == 1: value = value.tolist() - shape = [1] value = value[0] - if dtype.name == 'int64': - dtype = 'int32' - attr = {'shape': shape, 'dtype': string(dtype), 'value': value} - node.fluid_code.add_layer( - 'fill_constant', inputs=None, output=node, param_attr=attr) + self.paddle_graph.add_layer( + "paddle.full", + inputs={}, + outputs=[node.name], + dtype=string(dtype), + shape=[1], + fill_value=value) else: - if dtype.name == 'uint8': - dtype = 'int64' value = np.reshape(value, shape) - self.weights[node.layer_name] = value - attr = { - 'dtype': string(dtype), - 'shape': shape, - 'name': string(node.layer_name), - 'default_initializer': 'Constant(0.0)' - } - node.fluid_code.add_layer( - "create_parameter", inputs=None, output=node, param_attr=attr) + self.params[node.name] = value + self.paddle_graph.add_layer( + kernel="paddle.static.create_parameter", + inputs={}, + outputs=[node.name], + dtype=string(dtype), + shape=shape, + name=string(node.name), + default_initializer="paddle.nn.initializer.Constant(value=0.0)") @print_mapping_info def Resize(self, node): @@ -534,40 +508,57 @@ class OpSet9(): @print_mapping_info def InstanceNormalization(self, node): + op_name = name_generator("instanse_norm", self.nn_name2id) + output_name = node.name + layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) val_scale = self.graph.get_input_node(node, idx=1, copy=True) val_b = self.graph.get_input_node(node, idx=2, copy=True) epsilon = node.get_attr('epsilon', 1e-5) - attr = { + layer_attrs = { 'epsilon': epsilon, - 'param_attr': string(val_scale.layer_name), - 'bias_attr': string(val_b.layer_name) } - node.fluid_code.add_layer( - "instance_norm", inputs=val_x, output=node, param_attr=attr) + dim = len(val_x.out_shapes[0]) + if dim ==2 : + layer_attrs["data_format"] = "NC" + elif dim == 3: + layer_attrs["data_format"] = "NCL" + elif dim == 4: + layer_attrs["data_format"] = "NCHW" + elif dim == 5: + layer_attrs["data_format"] = "NCDHW" + else: + raise Exception("The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization.") + self.paddle_graph.add_layer( + paddle_op, + inputs={"x": val_x.name, + "weight": val_scale.name, + "bias": val_b.name}, + outputs=layer_outputs, + **layer_attrs) @print_mapping_info def Expand(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_shape = self.graph.get_input_node(node, idx=1, copy=True) val_x_dtype = val_x.dtype - name_ones = node.layer_name + '_ones' + name_ones = node.name + '_ones' attr_ones = { - 'shape': val_shape.layer_name, + 'shape': val_shape.name, 'dtype': string(val_x_dtype), - 'value': 1 + 'fill_value': 1 } - node.fluid_code.add_layer( - 'fill_constant', - inputs=None, - output=name_ones, - param_attr=attr_ones) - inputs = {'x': name_ones, 'y': val_x} - node.fluid_code.add_layer( - 'elementwise_mul', - inputs=inputs, - output=node.layer_name, - param_attr=None) + self.paddle_graph.add_layer( + 'paddle.full', + inputs={}, + outputs=[name_ones], + **attr_ones) + inputs_dict = {'x': name_ones, + 'y': val_x.name} + self.paddle_graph.add_layer( + 'paddle.multiply', + inputs=inputs_dict, + outputs=[node.name]) @print_mapping_info def Gather(self, node): @@ -579,147 +570,140 @@ class OpSet9(): # indices_shape) <= 2, "Gather op don't support dim of indice >2 " if axis == 0 and len(indices_shape) <= 1: if len(val_x.out_shapes[0]) <= 1: - node.fluid_code.add_layer( - 'gather', - inputs={'input': val_x, - 'index': indices}, - output=node, - param_attr=None) + self.paddle_graph.add_layer( + 'paddle.gather', + inputs={'x': val_x.name, + 'index': indices.name}, + outputs=[node.name]) elif len(val_x.out_shapes[0]) > 1: if len(indices_shape) == 0: - gather_ = node.layer_name + '_1' - node.fluid_code.add_layer( - 'gather', - inputs={'input': val_x, - 'index': indices}, - output=gather_, - param_attr=None) - node.fluid_code.add_layer( - 'squeeze', - inputs={'input': gather_, - 'axes': [0]}, - output=node, - param_attr=None) + gather_ = node.name + '_1' + self.paddle_graph.add_layer( + 'paddle.gather', + inputs={'x': val_x.name, + 'index': indices.name}, + outputs=[gather_]) + self.paddle_graph.add_layer( + 'paddle.squeeze', + inputs={'x': gather_}, + outputs=[node.name], + axis=[0]) else: - node.fluid_code.add_layer( - 'gather', - inputs={'input': val_x, - 'index': indices}, - output=node, - param_attr=None) + self.paddle_graph.add_layer( + 'paddle.gather', + inputs={'x': val_x.name, + 'index': indices.name}, + outputs=[node.name]) elif axis > 0 and len(indices_shape) <= 1: perm = list(range(len(val_x.out_shapes[0]))) perm = [axis] + perm[:axis] + perm[axis + 1:] - attr_trans = {'perm': perm} - name_trans = val_x.layer_name + '_trans' - node.fluid_code.add_layer( - 'transpose', - inputs=val_x, - output=name_trans, - param_attr=attr_trans) - node.fluid_code.add_layer( - 'gather', - inputs={'input': name_trans, - 'index': indices}, - output=node, - param_attr=None) - node.fluid_code.add_layer( - 'transpose', inputs=node, output=node, param_attr=attr_trans) + name_trans = val_x.name + '_trans' + self.paddle_graph.add_layer( + 'paddle.transpose', + inputs={"x": val_x.name}, + outputs=[name_trans], + perm=perm) + self.paddle_graph.add_layer( + 'paddle.gather', + inputs={'x': name_trans, + 'index': indices.name}, + outputs=[node.name]) + self.paddle_graph.add_layer( + 'paddle.transpose', + inputs={"x": node.name}, + outputs=[node.name], + perm=perm) if len(indices_shape) < 1: - node.fluid_code.add_layer( - 'squeeze', - inputs={'input': node, - 'axes': [axis]}, - output=node, - param_attr=None) + self.paddle_graph.add_layer( + 'paddle.squeeze', + inputs={'x': node.name}, + outputs=[node.name], + axis=[axis]) elif axis == 0 and len(indices_shape) > 1: if val_x.out_shapes[0] is not None and isinstance( val_x, ONNXGraphDataNode): - indices_cast = indices.layer_name + '_cast' - node.fluid_code.add_layer( - 'cast', - inputs=indices, - output=indices_cast, - param_attr={'dtype': string('int64')}) - node.fluid_code.add_layer( - 'embedding', - inputs=indices_cast, - output=node, - use_fluid=True, - param_attr={ - 'param_attr': string(val_x.layer_name), - 'size': val_x.out_shapes[0] - }) + indices_cast = indices.name + '_cast' + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={"x": indices.name}, + outputs=indices_cast, + dtype=string('int64')) + op_name = name_generator("embedding", self.nn_name2id) + output_name = node.name + layer_outputs = [op_name, output_name] + self.paddle_graph.add_layer( + 'paddle.nn.Embedding', + inputs={"x": indices_cast}, + outputs=layer_outputs, + param_attr=string(val_x.name), + size=val_x.out_shapes[0]) else: from functools import reduce reshape_shape = reduce(lambda x, y: x * y, indices_shape) - indices_reshape = indices.layer_name + '_shape' - node.fluid_code.add_layer( - 'reshape', - inputs=indices, - output=indices_reshape, - param_attr={'shape': [reshape_shape, ]}) + indices_reshape = indices.name + '_shape' + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={"x": indices.name}, + outputs=[indices_reshape], + shape=[reshape_shape, ]) perm = list(range(len(val_x.out_shapes[0]))) - node.fluid_code.add_layer( - 'gather', - inputs={'input': val_x, + self.paddle_graph.add_layer( + 'paddle.gather', + inputs={'x': val_x.name, 'index': indices_reshape}, - output=node, - param_attr=None) + outputs=[node.name]) val_x_shape = val_x.out_shapes[0] reshaped_shape = [] for i in perm: reshaped_shape.append(indices_shape[i]) for i in val_x_shape[:axis] + val_x_shape[axis + 1:]: reshaped_shape.append(i) - node.fluid_code.add_layer( - 'reshape', - inputs=node, - output=node, - param_attr={'shape': reshaped_shape}) + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={"x": node.name}, + outputs=[node.name], + shape=reshaped_shape) elif axis > 0 and len(indices_shape) > 1: from functools import reduce reshape_shape = reduce(lambda x, y: x * y, indices_shape) - indices_reshape = indices.layer_name + '_shape' - node.fluid_code.add_layer( - 'reshape', - inputs=indices, - output=indices_reshape, - param_attr={'shape': [reshape_shape, ]}) + indices_reshape = indices.name + '_shape' + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={"x": indices.name}, + outputs=[indices_reshape], + shape=[reshape_shape, ]) perm = list(range(len(val_x.out_shapes[0]))) perm = [axis] + perm[:axis] + perm[axis + 1:] - attr_trans = {'perm': perm} - name_trans = val_x.layer_name + '_transpose' - node.fluid_code.add_layer( - 'transpose', - inputs=val_x, - output=name_trans, - param_attr=attr_trans) - node.fluid_code.add_layer( - 'gather', - inputs={'input': name_trans, + name_trans = val_x.name + '_transpose' + self.paddle_graph.add_layer( + 'paddle.transpose', + inputs={"x": val_x.name}, + outputs=[name_trans], + perm=perm) + self.paddle_graph.add_layer( + 'paddle.gather', + inputs={'x': name_trans, 'index': indices_reshape}, - output=node, - param_attr=None) - input_transpose = node.layer_name + '_transpose' - node.fluid_code.add_layer( - 'transpose', - inputs=node, - output=input_transpose, - param_attr=attr_trans) + outputs=[node.name]) + input_transpose = node.name + '_transpose' + self.paddle_graph.add_layer( + 'paddle.transpose', + inputs={"x": node.name}, + outputs=[input_transpose], + perm=perm) val_x_shape = val_x.out_shapes[0] reshaped_shape = [] for i in perm: reshaped_shape.append(indices_shape[i]) for i in val_x_shape[:axis] + val_x_shape[axis + 1:]: reshaped_shape.append(i) - node.fluid_code.add_layer( - 'reshape', - inputs=input_transpose, - output=node, - param_attr={'shape': reshaped_shape}) + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={"x": input_transpose}, + outputs=[node.name], + shape=reshaped_shape) @print_mapping_info def ScatterND(self, node): @@ -727,85 +711,78 @@ class OpSet9(): indices = self.graph.get_input_node(node, idx=1, copy=True) updates = self.graph.get_input_node(node, idx=2, copy=True) if len(indices.out_shapes[0]) == 1: - node.fluid_code.add_layer( - 'scatter', - inputs={'input': val_x, - 'index': indices, - 'updates': updates}, - output=node, - param_attr=None) + self.paddle_graph.add_layer( + 'paddle.scatter', + inputs={'x': val_x.name, + 'index': indices.name, + 'updates': updates.name}, + outputs=[node.name]) else: - input_inner_indices = node.layer_name + '_input_inner_indices' + input_inner_indices = node.name + '_input_inner_indices' shape = val_x.out_shapes[0] - node.fluid_code.add_layer( - 'reshape', - inputs=indices.layer_name, - output=indices.layer_name, - param_attr={'shape': indices.out_shapes[0]}) - - zeros_like_val_x = val_x.layer_name + '_zeros' - node.fluid_code.add_layer( - 'zeros_like', - inputs=val_x, - output=zeros_like_val_x, - param_attr=None) - node.fluid_code.add_layer( - 'scatter_nd_add', + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={"x": indices.name}, + outputs=[indices.name], + shape=indices.out_shapes[0]) + + zeros_like_val_x = val_x.name + '_zeros' + self.paddle_graph.add_layer( + 'paddle.zeros_like', + inputs={"x": val_x.name}, + outputs=[zeros_like_val_x]) + self.paddle_graph.add_layer( + 'paddle.scatter_nd_add', inputs={ - 'ref': zeros_like_val_x, - 'index': indices, - 'updates': updates + 'x': zeros_like_val_x, + 'index': indices.name, + 'updates': updates.name }, - output=input_inner_indices, - param_attr=None) - indices_mask = node.layer_name + '_indices_mask' - constant_minus_one = node.layer_name + '_constant_minus_one' + outputs=[input_inner_indices]) + indices_mask = node.name + '_indices_mask' + constant_minus_one = node.name + '_constant_minus_one' # full_like support create tensor shape like input tensor - node.fluid_code.add_layer( - 'full_like', - inputs=updates, - output=constant_minus_one, - param_attr={'dtype': string(updates.dtype), - 'fill_value': -1}) - node.fluid_code.add_layer( - 'scatter_nd_add', + self.paddle_graph.add_layer( + 'paddle.full_like', + inputs={"x": updates.name}, + outputs=[constant_minus_one], + dtype=string(updates.dtype), + fill_value=-1) + self.paddle_graph.add_layer( + 'paddle.scatter_nd_add', inputs={ - 'ref': zeros_like_val_x, - 'index': indices, + 'x': zeros_like_val_x, + 'index': indices.name, 'updates': constant_minus_one }, - output=indices_mask, - param_attr=None) - constant_one = node.layer_name + '_constant_1' + outputs=[indices_mask]) + constant_one = node.name + '_constant_1' # full_like support create tensor shape like input tensor - node.fluid_code.add_layer( - 'full_like', - inputs=val_x, - output=constant_one, - param_attr={'dtype': string(val_x.dtype), - 'fill_value': 1}) - input_out_indices_mask = node.layer_name + '_input_out_indices_mask' - node.fluid_code.add_layer( - "elementwise_add", + self.paddle_graph.add_layer( + 'paddle.full_like', + inputs={"x": val_x.name}, + outputs=[constant_one], + dtype=string(val_x.dtype), + fill_value=1) + input_out_indices_mask = node.name + '_input_out_indices_mask' + self.paddle_graph.add_layer( + "paddle.add", inputs={"x": indices_mask, "y": constant_one}, - output=input_out_indices_mask, - param_attr=None) + outputs=[input_out_indices_mask]) - input_out_indices = node.layer_name + '_input_out_indices' - node.fluid_code.add_layer( - "elementwise_mul", - inputs={"x": val_x, + input_out_indices = node.name + '_input_out_indices' + self.paddle_graph.add_layer( + "paddle.multiply", + inputs={"x": val_x.name, "y": input_out_indices_mask}, - output=input_out_indices, - param_attr=None) + outputs=[input_out_indices]) - node.fluid_code.add_layer( - "elementwise_add", + self.paddle_graph.add_layer( + "paddle.add", inputs={"x": input_inner_indices, "y": input_out_indices}, - output=node, - param_attr=None) + outputs=[node.name]) @print_mapping_info def Range(self, node): @@ -813,18 +790,20 @@ class OpSet9(): val_limit = self.graph.get_input_node(node, idx=1, copy=True) val_delta = self.graph.get_input_node(node, idx=2, copy=True) dtype = val_start.dtype - inputs = {'start': val_start, 'end': val_limit, 'step': val_delta} - node.fluid_code.add_layer( - 'range', + inputs = {'start': val_start.name, + 'end': val_limit.name, + 'step': val_delta.name} + self.paddle_graph.add_layer( + 'paddle.arange', inputs=inputs, - output=node, - param_attr={'dtype': string(dtype)}) + outputs=[node.name], + dtype=string(dtype)) @print_mapping_info def Slice(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) starts, ends, axes, steps = None, None, None, None - attr = {} + layer_attrs = {} if len(node.inputs) > 1: starts = self.graph.get_input_node(node, idx=1, copy=True) ends = self.graph.get_input_node(node, idx=2, copy=True) @@ -837,14 +816,12 @@ class OpSet9(): if len(node.inputs) > 4: steps = self.graph.get_input_node(node, idx=4, copy=True) steps = _const_weight_or_none(steps) - attr = { + layer_attrs = { "axes": axes, - "starts": starts.layer_name, - "ends": ends.layer_name + "starts": starts.name, + "ends": ends.name } if starts_value is not None and ends_value is not None: - self.omit_nodes.append(starts.layer_name) - self.omit_nodes.append(ends.layer_name) starts_value = starts_value.copy() ends_value = ends_value.copy() #for idx in range(len(ends_value)): @@ -858,28 +835,28 @@ class OpSet9(): starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1 elif ends_value[idx] > 2**31 - 1: ends_value[idx] = 2**31 - 1 - attr = { + layer_attrs = { "axes": axes, "starts": starts_value, "ends": ends_value } else: if starts.dtype != 'int32': - starts_cast = starts.layer_name + '_cast' - node.fluid_code.add_layer( - 'cast', - inputs=starts, - output=starts_cast, - param_attr={'dtype': string('int32')}) - attr['starts'] = starts_cast + starts_cast = starts.name + '_cast' + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={"x": starts.name}, + outputs=[starts_cast], + dtype=string('int32')) + layer_attrs['starts'] = starts_cast if ends.dtype != 'int32': - ends_cast = ends.layer_name + '_cast' - node.fluid_code.add_layer( - 'cast', - inputs=ends, - output=ends_cast, - param_attr={'dtype': string('int32')}) - attr['ends'] = ends_cast + ends_cast = ends.name + '_cast' + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={"x": ends.name}, + outputs=[ends_cast], + dtype=string('int32')) + layer_attrs['ends'] = ends_cast else: starts = node.get_attr('starts') ends = node.get_attr('ends') @@ -887,15 +864,21 @@ class OpSet9(): for idx in range(len(ends)): if ends[idx] > 2**31 - 1: ends[idx] = 2**31 - 1 - attr = {"axes": axes, "starts": starts, "ends": ends} + layer_attrs = {"axes": axes, "starts": starts, "ends": ends} if steps is not None: - attr['strides'] = steps - node.fluid_code.add_layer( - 'strided_slice', inputs=val_x, output=node, param_attr=attr) + layer_attrs['strides'] = steps + self.paddle_graph.add_layer( + 'paddle.strided_slice', + inputs={"x": val_x.name}, + outputs=[node.name], + **layer_attrs) else: - node.fluid_code.add_layer( - 'slice', inputs=val_x, output=node, param_attr=attr) + self.paddle_graph.add_layer( + 'paddle.slice', + inputs={"input": val_x.name}, + outputs=[node.name], + **layer_attrs) @print_mapping_info def ConstantOfShape(self, node): @@ -909,13 +892,16 @@ class OpSet9(): 'this is not supported') if len(value) == 1: value = value[0] - attr = { - 'shape': val_shape.layer_name, + layer_attrs = { + 'shape': val_shape.name, 'dtype': string(dtype), - 'value': value + 'fill_value': value } - node.fluid_code.add_layer( - 'fill_constant', inputs=None, output=node, param_attr=attr) + self.paddle_graph.add_layer( + "paddle.full", + inputs={}, + outputs=[node.name], + **layer_attrs) @print_mapping_info def Clip(self, node): @@ -925,104 +911,90 @@ class OpSet9(): if len(node.inputs) == 1: max_value = node.get_attr('max') min_value = node.get_attr('min') - attr = { + layer_attrs = { 'max': max_value, 'min': min_value, } - node.fluid_code.add_layer( - 'clip', inputs=val_x, output=node, param_attr=attr) + self.paddle_graph.add_layer( + 'paddle.clip', + inputs={"x": val_x.name}, + outputs=[node.name], + **layer_attrs) else: max_ipt = self.graph.get_input_node(node, idx=1, copy=True) min_ipt = self.graph.get_input_node(node, idx=2, copy=True) max_value = _const_weight_or_none(max_ipt) min_value = _const_weight_or_none(min_ipt) - self.omit_nodes.append(max_ipt.layer_name) - self.omit_nodes.append(min_ipt.layer_name) if max_value.shape == (1, ): max_value = max_value[0] if min_value.shape == (1, ): min_value = min_value[0] if max_value is not None and min_value is not None: - attr = {'max': max_value, 'min': min_value} - node.fluid_code.add_layer( - 'clip', inputs=val_x, output=node, param_attr=attr) + layer_attrs = {'max': max_value, 'min': min_value} + self.paddle_graph.add_layer( + 'paddle.clip', + inputs={"x": val_x.name}, + outputs=[node.name], + **layer_attrs) else: raise @print_mapping_info def Split(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) - val_y = self.graph.get_node(node.layer.output[0], copy=True) - - fluid_op = 'split' + paddle_op = 'split' split = node.get_attr('split') axis = node.get_attr('axis', 0) - attr = { + layer_attrs = { 'num_or_sections': split, - 'dim': axis, - 'name': string(node.layer_name) + 'axis': axis, } - - node.fluid_code.add_layer( - 'split', inputs=val_x, output=val_y, param_attr=attr) + outputs_list = list() + if isinstance(split, list) or isinstance(split, tuple): + for i in range(len(split)): + outputs_list.append("{}_p{}".format(node.layer_name, i)) + else: + outputs_list.append(node.name) + self.paddle_graph.add_layer( + 'paddle.split', + inputs={"x": val_x.name}, + outputs=outputs_list, + **layer_attrs) @print_mapping_info def Reshape(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_shape = self.graph.get_input_node(node, idx=1, copy=True) val_reshaped = self.graph.get_node(node.layer.output[0], copy=True) - attr = {} shape_value = _const_weight_or_none(val_shape) shape_dims = len(val_shape.out_shapes[0]) if shape_value is not None: - node.fluid_code.add_layer( - 'reshape', - inputs={'x': val_x}, - output=node, - param_attr={'shape': shape_value.tolist()}) + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={'x': val_x.name}, + outputs=[node.name], + shape=shape_value.tolist()) elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[ 0]): - node.fluid_code.add_layer( - 'reshape', - inputs={'x': val_x, - 'shape': node.out_shapes[0]}, - output=node, - param_attr=attr) - elif val_shape.dtype == 'int64': - val_shape_cast = val_shape.layer_name + '_cast' - node.fluid_code.add_layer( - 'cast', - inputs=val_shape, - output=val_shape_cast, - param_attr={'dtype': string('int32')}) - # shape may be [], come form Gather by scalar indices - if len(val_shape.out_shapes[0]) > 0: - node.fluid_code.add_layer( - 'reshape', - inputs=val_shape_cast, - output=val_shape_cast, - param_attr={'shape': val_shape.out_shapes[0]}) - node.fluid_code.add_layer( - 'reshape', - inputs={'x': val_x, - 'shape': val_shape_cast}, - output=node, - param_attr=attr) + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={'x': val_x.name}, + outputs=[node.name], + shape=node.out_shapes[0]) else: # shape may be [], come form Gather by scalar indices if len(val_shape.out_shapes[0]) > 0: - node.fluid_code.add_layer( - 'reshape', - inputs=val_shape, - output=val_shape, - param_attr={'shape': val_shape.out_shapes[0]}) - node.fluid_code.add_layer( - 'reshape', - inputs={'x': val_x, - 'shape': val_shape}, - output=node, - param_attr=attr) + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={'x': val_shape.name}, + outputs=[val_shape.name], + shape=val_shape.out_shapes[0]) + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={'x': val_x.name, + 'shape': val_shape.name}, + outputs=node) @print_mapping_info def Cast(self, node): @@ -1036,14 +1008,18 @@ class OpSet9(): output_dtype = val_output.dtype if output_dtype: assert dtype == output_dtype, 'dtype of to unmatches output' - attr = {'dtype': string(dtype)} - node.fluid_code.add_layer( - 'cast', inputs=val_input, output=node, param_attr=attr) + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={'x': val_input.name}, + outputs=[node.name], + dtype=string(dtype)) @print_mapping_info def Not(self, node): val_input = self.graph.get_input_node(node, idx=0, copy=True) - node.fluid_code.add_layer('logical_not', inputs=val_input, output=node) + self.paddle_graph.add_layer('paddle.logical_not', + inputs={'x': val_input.name}, + outputs=[node.name]) @print_mapping_info def AveragePool(self, node): @@ -1056,8 +1032,6 @@ class OpSet9(): pad_mode = node.get_attr("pads") ceil_mode = bool(node.get_attr('ceil_mode', 0)) pads = node.get_attr('pads', [0] * (poolnd * 2)) - fluid_op = 'pool{}d'.format(poolnd) - assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported' paddings, val_x = self._pad_if_asymmetric(node, pads, val_x) @@ -1069,44 +1043,60 @@ class OpSet9(): strides[1]) paddings = pad_h + pad_w - attr = { + paddle_op = 'fluid.layers.pool{}d'.format(poolnd) + assert 2 <= poolnd <= 3, 'only pool2d and pool3d are supported' + layer_attrs = { "pool_size": kernel_shape, "pool_type": string('avg'), "pool_stride": strides, "pool_padding": paddings, "ceil_mode": ceil_mode, "exclusive": 'True', - "name": string(node.layer_name) + "name": string(node.name) } - - node.fluid_code.add_layer( - fluid_op, inputs=val_x, output=node, param_attr=attr) + self.paddle_graph.add_layer( + paddle_op, + inputs={'input': val_x if isinstance(val_x, str) else val_x.name}, + outputs=[node.name], + **layer_attrs) + # TODO(syf): op has diff @print_mapping_info def Concat(self, node): - inputs = [] + inputs_list = [] dtypes = set() for i in range(len(node.layer.input)): ipt = self.graph.get_input_node(node, idx=i, copy=True) - if isinstance(ipt, str): - inputs.append(ipt) - else: - inputs.append(ipt.layer_name) - dtypes.add(ipt.dtype) + inputs_list.append(ipt.name) + dtypes.add(ipt.dtype) if len(dtypes) > 1: assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.' axis = node.get_attr('axis') - attr = {'axis': axis} - node.fluid_code.add_layer( - 'concat', inputs=inputs, output=node, param_attr=attr) + self.paddle_graph.add_layer( + 'paddle.concat', + inputs={"x": inputs_list}, + outputs=[node.name], + axis=axis) @print_mapping_info def Flatten(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) + output_shape = node.out_shapes[0] axis = node.get_attr('axis', 1) - attr = {"axis": str(axis), "name": string(node.layer_name)} - node.fluid_code.add_layer( - 'flatten', inputs=val_x, output=node, param_attr=attr) + shape_list = [1, 1] + if axis == 0: + for s in output_shape: + shape_list[1] *= s + else: + for s in output_shape[:axis]: + shape_list[0] *= s + for s in output_shape[axis:]: + shape_list[1] *= s + self.paddle_graph.add_layer( + 'paddle.reshape', + inputs={"x": val_x.name}, + outputs=[node.name], + shape=shape_list) @print_mapping_info def Gemm(self, node): @@ -1118,65 +1108,68 @@ class OpSet9(): beta = node.get_attr('beta', 1.) # optional trans_a = bool(node.get_attr('transA', 0)) # optional trans_b = bool(node.get_attr('transB', 0)) # optional - val_mm = node.layer_name + '_mm' - matmul_inputs = {"x": val_a, "y": val_b} + val_mm = node.name + '_mm' + matmul_inputs = {"x": val_a.name, + "y": val_b.name} attr_matmul = { "transpose_x": trans_a, "transpose_y": trans_b, - "alpha": alpha, - "name": string(val_mm) } - node.fluid_code.add_layer( - 'matmul', + self.paddle_graph.add_layer( + 'paddle.matmul', inputs=matmul_inputs, - output=val_mm, - param_attr=attr_matmul) + outputs=[val_mm], + **attr_matmul) + self.paddle_graph.add_layer( + "paddle.scale", + inputs={"x": val_mm}, + outputs=[val_mm], + scale=alpha) if beta != 0: if beta == 1.: - add_inputs = {"x": val_mm, "y": val_c} - attr = {"name": string(node.layer_name)} - node.fluid_code.add_layer( - "elementwise_add", + add_inputs = {"x": val_mm, + "y": val_c.name} + self.paddle_graph.add_layer( + "paddle.add", inputs=add_inputs, - output=node, - param_attr=attr) + outputs=[node.name]) else: - var_beta = node.layer_name + '_beta' - matmul_beta_inputs = {"x": val_c, "y": var_beta} - node.fluid_code.add_layer( - "Constant", - inputs=matmul_beta_inputs, - output=var_beta, - param_attr={'value': beta}) - + var_beta = node.name + '_beta' + self.paddle_graph.add_layer( + "paddle.scale", + inputs={"x": val_c.name}, + outputs=[var_beta], + scale=beta) add_inputs = {"x": val_mm, "y": var_beta} - attr = {"name": string(node.layer_name)} - node.fluid_code.add_layer( - "elementwise_add", + self.paddle_graph.add_layer( + "paddle.add", inputs=add_inputs, - output=node, - param_attr=attr) + outputs=[node.name]) @print_mapping_info def Sum(self, node): val_inps = node.layer.input - inputs = { + inputs_dict = { "x": self.graph.get_input_node( - node, idx=0, copy=True), + node, idx=0, copy=True).name, "y": self.graph.get_input_node( - node, idx=1, copy=True), + node, idx=1, copy=True).name, } - node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node) + self.paddle_graph.add_layer("paddle.add", + inputs=inputs_dict, + outputs=[node.name]) for idx, ipt in enumerate(val_inps[2:]): y = self.graph.get_input_node(node, idx=idx, copy=True) - inputs = { - "x": node.layer_name, - "y": y, + inputs_dict = { + "x": node.name, + "y": y.name, } - node.fluid_code.add_layer( - "elementwise_add", inputs=inputs, output=node) + self.paddle_graph.add_layer( + "paddle.add", + inputs=inputs_dict, + outputs=[node.name]) @print_mapping_info def MatMul(self, node): @@ -1184,21 +1177,26 @@ class OpSet9(): val_y = self.graph.get_input_node(node, idx=1, copy=True) x_shape = val_x.out_shapes[0] y_shape = val_y.out_shapes[0] - inputs = {"x": val_x, "y": val_y} + inputs_dict = {"x": val_x.name, + "y": val_y.name} if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1: - y_squeeze = val_y.layer_name + '_squeeze' - node.fluid_code.add_layer( - "squeeze", - inputs=val_y, - output=y_squeeze, - param_attr={'axes': [0]}) - inputs['y'] = y_squeeze - node.fluid_code.add_layer( - "matmul", inputs=inputs, output=node, param_attr=None) + y_squeeze = val_y.name + '_squeeze' + self.paddle_graph.add_layer( + "paddle.squeeze", + inputs={"x": val_y.name}, + outputs=[y_squeeze], + axis=[0]) + inputs_dict['y'] = y_squeeze + self.paddle_graph.add_layer( + "paddle.matmul", + inputs=inputs_dict, + outputs=[node.name]) else: - node.fluid_code.add_layer( - "matmul", inputs=inputs, output=node, param_attr=None) - + self.paddle_graph.add_layer( + "paddle.matmul", + inputs=inputs_dict, + outputs=[node.name]) + @print_mapping_info def BatchNormalization(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) @@ -1207,108 +1205,98 @@ class OpSet9(): val_mean = self.graph.get_input_node(node, idx=3, copy=True) val_var = self.graph.get_input_node(node, idx=4, copy=True) - self.omit_nodes.append(val_scale.layer_name) - self.omit_nodes.append(val_b.layer_name) - self.omit_nodes.append(val_mean.layer_name) - self.omit_nodes.append(val_var.layer_name) - momentum = node.get_attr('momentum', .9) epsilon = node.get_attr('epsilon', 1e-5) # Attribute: spatial is used in BatchNormalization-1,6,7 spatial = bool(node.get_attr('spatial')) - attr = { + layer_attrs = { "momentum": momentum, "epsilon": epsilon, - "data_layout": string('NCHW'), - "is_test": True, - "param_attr": string(val_scale.layer_name), - "bias_attr": string(val_b.layer_name), - "moving_mean_name": string(val_mean.layer_name), - "moving_variance_name": string(val_var.layer_name), - "use_global_stats": spatial, - "name": string(node.layer_name) } - node.fluid_code.add_layer( - "batch_norm", inputs=val_x, output=node, param_attr=attr) - + self.paddle_graph.add_layer( + "paddle.nn.functional.batch_norm", + inputs={"x": val_x.name, + "weight": val_scale.name, + "bias": val_b.name, + "running_mean": val_mean.name, + "running_var": val_var.name}, + outputs=[node.name], + **layer_attrs) + @print_mapping_info def Transpose(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) perm = node.get_attr('perm') - attr = {'perm': perm, "name": string(node.layer_name)} - node.fluid_code.add_layer( - "transpose", inputs=val_x, output=node, param_attr=attr) - - @print_mapping_info - def Relu(self, node): - val_x = self.graph.get_input_node(node, idx=0, copy=True) - attr = {"name": string(node.layer_name)} - node.fluid_code.add_layer( - "relu", inputs=val_x, output=node, param_attr=attr) + self.paddle_graph.add_layer( + "paddle.transpose", + inputs={"x": val_x.name}, + outputs=[node.name], + perm=perm) @print_mapping_info def PRelu(self, node): + op_name = name_generator("prelu", self.nn_name2id) + output_name = node.name + layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) val_slope = self.graph.get_input_node(node, idx=1, copy=True) mode = 'channel' shape_slope = val_slope.out_shapes[0] - if shape_slope == [1]: mode = 'all' elif len(shape_slope) > 2: - mode = 'element' + raise Exception("The 'element' mode is not supported yet!") if mode == 'channel' and len(shape_slope) == 1: # paddle params shape need be [1, channel] slope_data = _const_weight_or_none(val_slope) slope_data = np.reshape(slope_data, [1] + shape_slope) - self.weights[val_slope.layer_name] = slope_data - - self.omit_nodes.append(val_slope.layer_name) - attr = { - "param_attr": string(val_slope.layer_name), - 'mode': string(mode) - } - node.fluid_code.add_layer( - "prelu", inputs=val_x, output=node, param_attr=attr) + self.params[val_slope.name] = slope_data + + self.paddle_graph.add_layer( + "paddle.nn.functional.prelu", + inputs={"x": val_x.name, + "weight": val_slope.name}, + outputs=[node.name]) @print_mapping_info def Squeeze(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) axes = node.get_attr('axes') - attr = {'axes': axes, "name": string(node.layer_name)} if len(val_x.out_shapes[0]) == 1: - node.fluid_code.add_layer( - "cast", - inputs=val_x, - output=node, - param_attr={'dtype': string(val_x.dtype)}) + self.paddle_graph.add_layer( + "paddle.cast", + inputs={"x": val_x.name}, + outputs=[node.name], + dtype=string(val_x.dtype)) else: - node.fluid_code.add_layer( - "squeeze", inputs=val_x, output=node, param_attr=attr) + self.paddle_graph.add_layer( + "paddle.squeeze", + inputs={"x": val_x.name}, + outputs=[node.name], + axis=axes) @print_mapping_info def Equal(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_y = self.graph.get_input_node(node, idx=1, copy=True) - node.fluid_code.add_layer( - "equal", - inputs={'x': val_x, - 'y': val_y}, - output=node, - param_attr=None) + self.paddle_graph.add_layer( + "paddle.equal", + inputs={'x': val_x.name, + 'y': val_y.name}, + outputs=[node.name]) @print_mapping_info def Greater(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_y = self.graph.get_input_node(node, idx=1, copy=True) - node.fluid_code.add_layer( - "greater_than", - inputs={'x': val_x, - 'y': val_y}, - output=node, + self.paddle_graph.add_layer( + "paddle.greater_than", + inputs={'x': val_x.name, + 'y': val_y.name}, + outputs=node, param_attr=None) @print_mapping_info @@ -1317,72 +1305,80 @@ class OpSet9(): val_x = self.graph.get_input_node(node, idx=1, copy=True) val_y = self.graph.get_input_node(node, idx=2, copy=True) - not_condition = condition.layer_name + '_not' - node.fluid_code.add_layer( - "logical_not", - inputs=condition, - output=not_condition, - param_attr=None) + not_condition = condition.name + '_not' + self.paddle_graph.add_layer( + "paddle.logical_not", + inputs={"x": condition.name}, + outputs=[not_condition]) cast_not_condition = not_condition + '_cast' - node.fluid_code.add_layer( - "cast", - inputs=not_condition, - output=cast_not_condition, - param_attr={'dtype': string(val_x.dtype)}) - cast_condition = condition.layer_name + '_cast' - node.fluid_code.add_layer( - "cast", - inputs=condition, - output=cast_condition, - param_attr={'dtype': string(val_x.dtype)}) - mul_val_x = val_x.layer_name + '_mul' - node.fluid_code.add_layer( - "elementwise_mul", - inputs={'x': val_x, + self.paddle_graph.add_layer( + "paddle.cast", + inputs={"x": not_condition}, + outputs=[cast_not_condition], + dtype=string(val_x.dtype)) + cast_condition = condition.name + '_cast' + self.paddle_graph.add_layer( + "paddle.cast", + inputs={"x": condition.name}, + outputs=[cast_condition], + dtype=string(val_x.dtype)) + mul_val_x = val_x.name + '_mul' + self.paddle_graph.add_layer( + "paddle.multiply", + inputs={'x': val_x.name, 'y': cast_condition}, - output=mul_val_x, - param_attr=None) - mul_val_y = val_y.layer_name + '_mul' - node.fluid_code.add_layer( - "elementwise_mul", - inputs={'x': val_y, + outputs=[mul_val_x]) + mul_val_y = val_y.name + '_mul' + self.paddle_graph.add_layer( + "paddle.multiply", + inputs={'x': val_y.name, 'y': cast_not_condition}, - output=mul_val_y, - param_attr=None) + outputs=[mul_val_y]) - node.fluid_code.add_layer( - "elementwise_add", + self.paddle_graph.add_layer( + "paddle.add", inputs={'x': mul_val_x, 'y': mul_val_y}, - output=node, - param_attr=None) + outputs=[node.name]) @print_mapping_info def NonZero(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_x_dim = len(val_x.out_shapes[0]) if val_x_dim == 1: - node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x) - node.fluid_code.add_layer( - "transpose", - inputs=val_x, - output=node, - param_attr={'perm': [1, 0]}) + self.paddle_graph.add_layer( + "paddle.nonzero", + inputs={"x": val_x.name}, + outputs=[val_x.name]) + self.paddle_graph.add_layer( + "paddle.transpose", + inputs={"x": val_x.name}, + outputs=[node.layer_naem], + perm=[1, 0]) if val_x_dim > 1: - node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x) - node.fluid_code.add_layer( - "split", - inputs=val_x, - output=val_x, - param_attr={'num_or_sections': 1, - 'dim': val_x_dim}) - node.fluid_code.add_layer("concat", inputs=val_x, output=node) + self.paddle_graph.add_layer( + "paddle.nonzero", + inputs={"x": val_x.name}, + outputs=[val_x.name]) + self.paddle_graph.add_layer( + "paddle.split", + inputs={"x": val_x.name}, + outputs=[val_x.name], + num_or_sections=1, + axis=val_x_dim) + self.paddle_graph.add_layer( + "paddle.concat", + inputs={"x": val_x.name}, + outputs=[node.name]) @print_mapping_info def Identity(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) - node.fluid_code.add_layer("assign", inputs=val_x, output=node) - + self.paddle_graph.add_layer( + "paddle.assign", + inputs={"x": val_x.name}, + outputs=[node.name]) + @print_mapping_info def Tile(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) @@ -1390,14 +1386,13 @@ class OpSet9(): repeats = _const_weight_or_none(val_repeats) if repeats is None: - repeats = val_repeats.layer_name + repeats = val_repeats.name if val_repeats.dtype != 'int32': - attr = {"dtype": string("int32")} - node.fluid_code.add_layer( - "cast", - inputs=repeats, - output="{}.tmp".format(repeats), - param_attr=attr) + self.paddle_graph.add_layer( + "paddle.cast", + inputs={"x": repeats}, + outputs=["{}.tmp".format(repeats)], + dtype=string("int32")) repeats = "{}.tmp".format(repeats) elif isinstance(repeats, int): @@ -1405,10 +1400,13 @@ class OpSet9(): attr = { 'expand_times': repeats, - "name": string(node.layer_name), + "name": string(node.name), } - node.fluid_code.add_layer( - "expand", inputs=val_x, output=node, param_attr=attr) + self.paddle_graph.add_layer( + "paddle.tile", + inputs={"x": val_x.name}, + outputs=[node.name], + repeat_times=repeats) @print_mapping_info def MaxPool(self, node): @@ -1423,8 +1421,8 @@ class OpSet9(): pad_mode = node.get_attr("pads") ceil_mode = bool(node.get_attr('ceil_mode', 0)) # optional pads = node.get_attr('pads', [0] * (poolnd * 2)) # optional - fluid_op = 'pool{}d'.format(poolnd) - assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported' + paddle_op = 'paddle.nn.functional.max_pool{}d'.format(poolnd) + assert 1 <= poolnd <= 3, 'only max_pool1d, max_pool2d and max_pool3d are supported' paddings, val_x = self._pad_if_asymmetric(node, pads, val_x) @@ -1435,64 +1433,72 @@ class OpSet9(): pad_w = _get_same_padding(input_shape[3], kernel_shape[1], strides[1]) paddings = pad_h + pad_w - - attr = { - "pool_size": kernel_shape, - "pool_type": string("max"), - "pool_stride": strides, - "pool_padding": paddings, + + layer_attrs = { + "kernel_size": kernel_shape, + "stride": strides, + "padding": paddings, "ceil_mode": ceil_mode, - "name": string(node.layer_name), - "exclusive": False } - node.fluid_code.add_layer( - fluid_op, inputs=val_x, output=node, param_attr=attr) - - def _global_pool(self, node): - val_x = self.graph.get_input_node(node, idx=0, copy=True) - val_y = self.graph.get_node(node.layer.output[0], copy=True) - fluid_op = 'pool2d' - pool_type = None - if node.layer.op_type == 'GlobalMaxPool': - pool_type = 'max' - elif node.layer.op_type == 'GlobalAveragePool': - pool_type = 'avg' - - attr = { - "pool_type": string(pool_type), - "global_pooling": True, - "name": string(node.layer_name) - } - node.fluid_code.add_layer( - fluid_op, inputs=val_x, output=node, param_attr=attr) + self.paddle_graph.add_layer( + paddle_op, + inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, + outputs=[node.name], + **layer_attrs) @print_mapping_info def GlobalMaxPool(self, node): - self._global_pool(node) - + val_x = self.graph.get_input_node(node, idx=0, copy=True) + input_shape = val_x.out_shapes[0] + if len(input_shape) == 4: + poolnd = 2 + elif len(input_shape) == 5: + poolnd = 3 + elif len(input_shape) == 3: + poolnd = 1 + paddle_op = 'paddle.nn.functional.adaptive_max_pool{}d'.format(poolnd) + assert 1 <= poolnd <= 3, 'only adaptive_max_pool1d, adaptive_max_pool2d and adaptive_max_pool3d are supported' + output_shape = node.out_shapes[0] + self.paddle_graph.add_layer( + paddle_op, + inputs={'x': val_x.name}, + outputs=[node.name], + output_size=output_shape[2:]) + @print_mapping_info def GlobalAveragePool(self, node): - self._global_pool(node) + val_x = self.graph.get_input_node(node, idx=0, copy=True) + input_shape = val_x.out_shapes[0] + if len(input_shape) == 4: + poolnd = 2 + elif len(input_shape) == 5: + poolnd = 3 + elif len(input_shape) == 3: + poolnd = 1 + paddle_op = 'paddle.nn.functional.adaptive_avg_pool{}d'.format(poolnd) + assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported' + output_shape = node.out_shapes[0] + self.paddle_graph.add_layer( + paddle_op, + inputs={'x': val_x.name}, + outputs=[node.name], + output_size=output_shape[2:]) @print_mapping_info def Conv(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_w = self.graph.get_input_node(node, idx=1, copy=True) - val_y = self.graph.get_node(node.layer.output[0], copy=True) - - self.omit_nodes.append(val_w.layer_name) - has_bias = len(node.layer.input) == 3 if has_bias: val_b = self.graph.get_input_node(node, idx=2, copy=True) - self.omit_nodes.append(val_b.layer_name) auto_pad = node.get_attr('auto_pad', 'NOTSET') kernel_shape = node.get_attr('kernel_shape') convnd = len(kernel_shape) assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported' num_out_channels = val_w.out_shapes[0][0] - fluid_op = 'conv{}d'.format(convnd) + num_in_channels = val_w.out_shapes[0][1] + paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd) num_groups = node.get_attr('group', 1) strides = node.get_attr('strides', [1] * convnd) @@ -1509,22 +1515,23 @@ class OpSet9(): strides[1]) paddings = pad_h + pad_w - attr = { - "num_filters": num_out_channels, - "filter_size": kernel_shape, + layer_attrs = { "stride": strides, "padding": paddings, "dilation": dilations, "groups": num_groups, - 'param_attr': string(val_w.layer_name), - "name": string(node.layer_name) + } + layer_inputs = { + "x": val_x.name, + "weight": val_w.name } if has_bias: - attr["bias_attr"] = string(val_b.layer_name) - else: - attr["bias_attr"] = False - node.fluid_code.add_layer( - fluid_op, inputs=val_x, output=node, param_attr=attr) + layer_inputs["bias"] = val_b.name + self.paddle_graph.add_layer( + paddle_op, + inputs=layer_inputs, + outputs=[node.name], + **layer_attrs) @print_mapping_info def ConvTranspose(self, node): @@ -1533,19 +1540,15 @@ class OpSet9(): val_b = None if len(node.layer.input) > 2: val_b = self.graph.get_input_node(node, idx=2, copy=True) - self.omit_nodes.append(val_b.layer_name) - self.omit_nodes.append(val_w.layer_name) - - val_y = self.graph.get_node(node.layer.output[0], copy=True) - auto_pad = node.get_attr('auto_pad', 'NOTSET') out_padding = node.get_attr('output_padding', [0, 0]) kernel_shape = node.get_attr('kernel_shape') assert kernel_shape, 'kernel_shape not inferred' convnd = len(kernel_shape) assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported' + num_in_channels = val_w.out_shapes[0][0] num_out_channels = val_w.out_shapes[0][1] - fluid_op = 'conv{}d_transpose'.format(convnd) + paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd) num_groups = node.get_attr('group', 1) strides = node.get_attr('strides', [1] * convnd) @@ -1563,17 +1566,18 @@ class OpSet9(): output_size[1] = (val_x.out_shapes[0][3] - 1 ) * strides[1] - 2 * paddings[1] + dilations[1] * ( kernel_shape[1] - 1) + 1 + out_padding[1] - attr = { - 'num_filters': num_out_channels, - 'output_size': output_size or None, - 'filter_size': kernel_shape, - 'padding': paddings, - 'stride': strides, - 'dilation': dilations, - 'groups': num_groups, - 'param_attr': string(val_w.layer_name), - 'bias_attr': None if val_b is None else string(val_b.layer_name), - 'name': string(node.layer_name), - } - node.fluid_code.add_layer( - fluid_op, inputs=val_x, output=node, param_attr=attr) + layer_inputs = {'x': val_x.name, + "weight": val_w.name} + layer_attrs = { + "stride": strides, + "dilation": dilations, + "padding": paddings, + "groups": num_groups, + "output_size": node.out_shapes[0][2:]} + if val_b is not None: + layer_inputs["bias"] = val_b.name + self.paddle_graph.add_layer( + kernel="paddle.nn.functional.conv2d_transpose", + inputs=layer_inputs, + outputs=[node.name], + **layer_attrs) \ No newline at end of file diff --git a/x2paddle/optimizer/onnx_optimizer.py b/x2paddle/optimizer/onnx_optimizer.py deleted file mode 100644 index 4059258267310094d238bc01fe6b70d38dc5e3f1..0000000000000000000000000000000000000000 --- a/x2paddle/optimizer/onnx_optimizer.py +++ /dev/null @@ -1,29 +0,0 @@ -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License" -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# TODO useless node remove - - -class ONNXOptimizer(object): - def __init__(self, op_mapper): - self.op_mapper = op_mapper - self.graph = op_mapper.graph - - def delete_redundance_code(self): - for node_name in self.graph.topo_sort: - if node_name in self.op_mapper.omit_nodes: - node = self.graph.get_node(node_name) - omit_freq = self.op_mapper.omit_nodes.count(node_name) - if len(node.outputs) <= omit_freq: - node.fluid_code.clear()