Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
2228423e
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2228423e
编写于
3月 28, 2019
作者:
J
Jason
提交者:
GitHub
3月 28, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16 from MacroBull/master
Rename onnx2paddle to onnx2fluid
上级
a4796334
f0dede1f
变更
20
展开全部
隐藏空白更改
内联
并排
Showing
20 changed file
with
4323 addition
and
1582 deletion
+4323
-1582
onnx2fluid/.gitignore
onnx2fluid/.gitignore
+1
-0
onnx2fluid/README.md
onnx2fluid/README.md
+7
-0
onnx2fluid/examples/convert_data_npz_0.py
onnx2fluid/examples/convert_data_npz_0.py
+1
-1
onnx2fluid/examples/convert_data_pb_0.py
onnx2fluid/examples/convert_data_pb_0.py
+0
-0
onnx2fluid/examples/gen_some_samples.py
onnx2fluid/examples/gen_some_samples.py
+26
-27
onnx2fluid/examples/onnx_model_zoo.sh
onnx2fluid/examples/onnx_model_zoo.sh
+35
-35
onnx2fluid/onnx2fluid/__init__.py
onnx2fluid/onnx2fluid/__init__.py
+0
-0
onnx2fluid/onnx2fluid/__main__.py
onnx2fluid/onnx2fluid/__main__.py
+93
-0
onnx2fluid/onnx2fluid/cmdline.py
onnx2fluid/onnx2fluid/cmdline.py
+42
-37
onnx2fluid/onnx2fluid/conversion.py
onnx2fluid/onnx2fluid/conversion.py
+134
-71
onnx2fluid/onnx2fluid/framework_pb2.py
onnx2fluid/onnx2fluid/framework_pb2.py
+1634
-0
onnx2fluid/onnx2fluid/onnx_utils.py
onnx2fluid/onnx2fluid/onnx_utils.py
+107
-86
onnx2fluid/onnx2fluid/symbolic.py
onnx2fluid/onnx2fluid/symbolic.py
+2041
-0
onnx2fluid/onnx2fluid/torch_export_helper.py
onnx2fluid/onnx2fluid/torch_export_helper.py
+19
-13
onnx2fluid/onnx2fluid/validation.py
onnx2fluid/onnx2fluid/validation.py
+72
-59
onnx2fluid/onnx2fluid/writer.py
onnx2fluid/onnx2fluid/writer.py
+102
-78
onnx2fluid/requirements.txt
onnx2fluid/requirements.txt
+1
-1
onnx2fluid/setup.cfg
onnx2fluid/setup.cfg
+8
-8
onnx2fluid/setup.py
onnx2fluid/setup.py
+0
-1
onnx2paddle/onnx2paddle/framework_pb2.py
onnx2paddle/onnx2paddle/framework_pb2.py
+0
-1165
未找到文件。
onnx2
paddle
/.gitignore
→
onnx2
fluid
/.gitignore
浏览文件 @
2228423e
...
@@ -57,3 +57,4 @@ coverage.xml
...
@@ -57,3 +57,4 @@ coverage.xml
/examples/*.aria2
/examples/*.aria2
/examples/*.onnx
/examples/*.onnx
/examples/*.np?
/examples/*.np?
**/.*
onnx2
paddle
/README.md
→
onnx2
fluid
/README.md
浏览文件 @
2228423e
Onnx2
paddle
Onnx2
Fluid
===
===
Inference model conversion from ONNX/PyTorch to Paddle
Inference model conversion from ONNX/PyTorch to Paddle
fluid
快速开始
快速开始
---
---
...
...
onnx2
paddle
/examples/convert_data_npz_0.py
→
onnx2
fluid
/examples/convert_data_npz_0.py
浏览文件 @
2228423e
...
@@ -22,4 +22,4 @@ output_data = data['outputs']
...
@@ -22,4 +22,4 @@ output_data = data['outputs']
inputs
=
Dict
(
zip
(
input_names
,
[
input_data
]))
inputs
=
Dict
(
zip
(
input_names
,
[
input_data
]))
outputs
=
Dict
(
zip
(
output_name
,
[
output_data
]))
outputs
=
Dict
(
zip
(
output_name
,
[
output_data
]))
np
.
savez
(
fn
,
inputs
=
inputs
,
outputs
=
outputs
)
# overwrite
np
.
savez
(
fn
,
inputs
=
inputs
,
outputs
=
outputs
)
# overwrite
onnx2
paddle
/examples/convert_data_pb_0.py
→
onnx2
fluid
/examples/convert_data_pb_0.py
浏览文件 @
2228423e
文件已移动
onnx2
paddle
/examples/gen_some_samples.py
→
onnx2
fluid
/examples/gen_some_samples.py
浏览文件 @
2228423e
...
@@ -6,7 +6,7 @@ Created on Fri Mar 22 11:19:45 2019
...
@@ -6,7 +6,7 @@ Created on Fri Mar 22 11:19:45 2019
@author: Macrobull
@author: Macrobull
Not all ops in this file are supported by both Pytorch and ONNX
Not all ops in this file are supported by both Pytorch and ONNX
This only demostrates the conversion/validation workflow from Pytorch to ONNX to Paddle
This only demostrates the conversion/validation workflow from Pytorch to ONNX to Paddle
fluid
"""
"""
...
@@ -16,12 +16,10 @@ import torch
...
@@ -16,12 +16,10 @@ import torch
import
torch.nn
as
nn
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
torch.nn.functional
as
F
from
onnx2paddle.torch_export_helper
import
export_onnx_with_validation
from
onnx2fluid.torch_export_helper
import
export_onnx_with_validation
idx
=
0
idx
=
0
######### example: RNN ########
######### example: RNN ########
#
#
#class Model(nn.Module):
#class Model(nn.Module):
...
@@ -44,7 +42,6 @@ idx = 0
...
@@ -44,7 +42,6 @@ idx = 0
# ['x'], ['y'],
# ['x'], ['y'],
# verbose=True, training=False)
# verbose=True, training=False)
######### example: random ########
######### example: random ########
#
#
#class Model(nn.Module):
#class Model(nn.Module):
...
@@ -66,9 +63,9 @@ idx = 0
...
@@ -66,9 +63,9 @@ idx = 0
# ['x'], ['y'],
# ['x'], ['y'],
# verbose=True, training=False)
# verbose=True, training=False)
######## example: fc ########
######## example: fc ########
class
Model
(
nn
.
Module
):
class
Model
(
nn
.
Module
):
def
__init__
(
self
):
def
__init__
(
self
):
super
(
Model
,
self
).
__init__
()
super
(
Model
,
self
).
__init__
()
...
@@ -85,13 +82,12 @@ xb = torch.rand((2, 3))
...
@@ -85,13 +82,12 @@ xb = torch.rand((2, 3))
yp
=
model
(
xb
)
yp
=
model
(
xb
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
model
,
(
xb
,
),
't'
+
str
(
idx
),
export_onnx_with_validation
(
[
'x'
],
[
'y'
],
model
,
(
xb
,
),
't'
+
str
(
idx
),
[
'x'
],
[
'y'
],
verbose
=
True
,
training
=
False
)
verbose
=
True
,
training
=
False
)
######## example: compare ########
######## example: compare ########
class
Model
(
nn
.
Module
):
class
Model
(
nn
.
Module
):
def
__init__
(
self
):
def
__init__
(
self
):
super
(
Model
,
self
).
__init__
()
super
(
Model
,
self
).
__init__
()
...
@@ -110,12 +106,15 @@ xb1 = torch.rand((2, 3))
...
@@ -110,12 +106,15 @@ xb1 = torch.rand((2, 3))
ya
,
yb
,
yc
=
model
(
xb0
,
xb1
)
ya
,
yb
,
yc
=
model
(
xb0
,
xb1
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
model
,
(
xb0
,
xb1
),
't'
+
str
(
idx
),
export_onnx_with_validation
(
[
'x0'
,
'x1'
],
[
'ya'
,
'yb'
,
'yc'
],
model
,
(
xb0
,
xb1
),
verbose
=
True
,
training
=
False
)
't'
+
str
(
idx
),
[
'x0'
,
'x1'
],
[
'ya'
,
'yb'
,
'yc'
],
verbose
=
True
,
training
=
False
)
######## example: affine_grid ########
######## example: affine_grid ########
class
Model
(
nn
.
Module
):
class
Model
(
nn
.
Module
):
def
__init__
(
self
):
def
__init__
(
self
):
super
(
Model
,
self
).
__init__
()
super
(
Model
,
self
).
__init__
()
...
@@ -130,13 +129,15 @@ theta = torch.rand((2, 2, 3))
...
@@ -130,13 +129,15 @@ theta = torch.rand((2, 2, 3))
grid
=
model
(
theta
)
grid
=
model
(
theta
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
model
,
(
theta
,
),
't'
+
str
(
idx
),
export_onnx_with_validation
(
[
'theta'
],
[
'grid'
],
model
,
(
theta
,
),
verbose
=
True
,
training
=
False
)
't'
+
str
(
idx
),
[
'theta'
],
[
'grid'
],
verbose
=
True
,
training
=
False
)
######## example: conv2d_transpose ########
######## example: conv2d_transpose ########
class
Model
(
nn
.
Module
):
class
Model
(
nn
.
Module
):
def
__init__
(
self
):
def
__init__
(
self
):
super
(
Model
,
self
).
__init__
()
super
(
Model
,
self
).
__init__
()
...
@@ -155,12 +156,12 @@ xb = torch.rand((2, 3, 4, 5))
...
@@ -155,12 +156,12 @@ xb = torch.rand((2, 3, 4, 5))
yp
=
model
(
xb
)
yp
=
model
(
xb
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
model
,
(
xb
,
),
't'
+
str
(
idx
),
export_onnx_with_validation
(
[
'x'
],
[
'y'
],
model
,
(
xb
,
),
't'
+
str
(
idx
),
[
'x'
],
[
'y'
],
verbose
=
True
,
training
=
False
)
verbose
=
True
,
training
=
False
)
######## example: conv2d ########
######## example: conv2d ########
class
Model
(
nn
.
Module
):
class
Model
(
nn
.
Module
):
def
__init__
(
self
):
def
__init__
(
self
):
super
(
Model
,
self
).
__init__
()
super
(
Model
,
self
).
__init__
()
...
@@ -181,10 +182,8 @@ xb = torch.rand((2, 3, 4, 5))
...
@@ -181,10 +182,8 @@ xb = torch.rand((2, 3, 4, 5))
yp
=
model
(
xb
)
yp
=
model
(
xb
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
model
,
(
xb
,
),
't'
+
str
(
idx
),
export_onnx_with_validation
(
[
'x'
],
[
'y'
],
model
,
(
xb
,
),
't'
+
str
(
idx
),
[
'x'
],
[
'y'
],
verbose
=
True
,
training
=
False
)
verbose
=
True
,
training
=
False
)
######### example: conv1d ########
######### example: conv1d ########
#
#
...
@@ -210,6 +209,7 @@ export_onnx_with_validation(model, (xb, ), 't' + str(idx),
...
@@ -210,6 +209,7 @@ export_onnx_with_validation(model, (xb, ), 't' + str(idx),
######## example: empty ########
######## example: empty ########
class
Model
(
nn
.
Module
):
class
Model
(
nn
.
Module
):
def
__init__
(
self
):
def
__init__
(
self
):
super
(
Model
,
self
).
__init__
()
super
(
Model
,
self
).
__init__
()
...
@@ -223,6 +223,5 @@ xb = torch.rand((2, 3))
...
@@ -223,6 +223,5 @@ xb = torch.rand((2, 3))
yp
=
model
(
xb
)
yp
=
model
(
xb
)
idx
+=
1
idx
+=
1
print
(
'index: '
,
idx
)
print
(
'index: '
,
idx
)
export_onnx_with_validation
(
model
,
(
xb
,
),
't'
+
str
(
idx
),
export_onnx_with_validation
(
[
'y'
],
[
'y'
],
model
,
(
xb
,
),
't'
+
str
(
idx
),
[
'y'
],
[
'y'
],
verbose
=
True
,
training
=
False
)
verbose
=
True
,
training
=
False
)
onnx2
paddle
/examples/onnx_model_zoo.sh
→
onnx2
fluid
/examples/onnx_model_zoo.sh
浏览文件 @
2228423e
#! /usr/bin/env sh
#! /usr/bin/env sh
get_url
=
"
proxychains4
aria2c -c -s8 -x8"
get_url
=
"aria2c -c -s8 -x8"
base_url
=
"https://s3.amazonaws.com/download.onnx/models/opset_9/"
base_url
=
"https://s3.amazonaws.com/download.onnx/models/opset_9/"
flags
=
"-
d
e -o /tmp/export/"
flags
=
"-e -o /tmp/export/"
bvlc_alexnet
()
bvlc_alexnet
()
{
{
...
@@ -18,13 +18,13 @@ bvlc_alexnet()
...
@@ -18,13 +18,13 @@ bvlc_alexnet()
do
do
echo
"converting
$npz
..."
echo
"converting
$npz
..."
python convert_data_npz_0.py
"
$npz
"
"data_0"
"prob_1"
python convert_data_npz_0.py
"
$npz
"
"data_0"
"prob_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$npz
done
done
for
pb_dir
in
$bn_tar
/
*
/
for
pb_dir
in
$bn_tar
/
*
/
do
do
echo
"converting
$pb_dir
..."
echo
"converting
$pb_dir
..."
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
echo
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
...
@@ -42,7 +42,7 @@ bvlc_googlenet()
...
@@ -42,7 +42,7 @@ bvlc_googlenet()
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
...
@@ -60,7 +60,7 @@ bvlc_reference_caffenet()
...
@@ -60,7 +60,7 @@ bvlc_reference_caffenet()
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
...
@@ -69,7 +69,7 @@ bvlc_reference_rcnn_ilsvrc13()
...
@@ -69,7 +69,7 @@ bvlc_reference_rcnn_ilsvrc13()
bn_tar
=
"bvlc_reference_rcnn_ilsvrc13"
bn_tar
=
"bvlc_reference_rcnn_ilsvrc13"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_model
=
"
$bn_tar
/model.onnx"
fn_model
=
"
$bn_tar
/model.onnx"
$get_url
"
$base_url$fn_tar
"
$get_url
"
$base_url$fn_tar
"
echo
"extracting ..."
echo
"extracting ..."
tar
xf
"
$fn_tar
"
tar
xf
"
$fn_tar
"
...
@@ -77,8 +77,8 @@ bvlc_reference_rcnn_ilsvrc13()
...
@@ -77,8 +77,8 @@ bvlc_reference_rcnn_ilsvrc13()
for
pb_dir
in
$bn_tar
/
*
/
for
pb_dir
in
$bn_tar
/
*
/
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"
softmaxout
_1"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"
fc_rcnn
_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
...
@@ -87,7 +87,7 @@ inception_v1()
...
@@ -87,7 +87,7 @@ inception_v1()
bn_tar
=
"inception_v1"
bn_tar
=
"inception_v1"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_model
=
"
$bn_tar
/model.onnx"
fn_model
=
"
$bn_tar
/model.onnx"
$get_url
"
$base_url$fn_tar
"
$get_url
"
$base_url$fn_tar
"
echo
"extracting ..."
echo
"extracting ..."
tar
xf
"
$fn_tar
"
tar
xf
"
$fn_tar
"
...
@@ -96,14 +96,14 @@ inception_v1()
...
@@ -96,14 +96,14 @@ inception_v1()
do
do
echo
"converting
$npz
..."
echo
"converting
$npz
..."
python convert_data_npz_0.py
"
$npz
"
"data_0"
"prob_1"
python convert_data_npz_0.py
"
$npz
"
"data_0"
"prob_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$npz
done
done
for
pb_dir
in
$bn_tar
/
*
/
for
pb_dir
in
$bn_tar
/
*
/
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
...
@@ -112,7 +112,7 @@ inception_v2()
...
@@ -112,7 +112,7 @@ inception_v2()
bn_tar
=
"inception_v2"
bn_tar
=
"inception_v2"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_model
=
"
$bn_tar
/model.onnx"
fn_model
=
"
$bn_tar
/model.onnx"
$get_url
"
$base_url$fn_tar
"
$get_url
"
$base_url$fn_tar
"
echo
"extracting ..."
echo
"extracting ..."
tar
xf
"
$fn_tar
"
tar
xf
"
$fn_tar
"
...
@@ -121,14 +121,14 @@ inception_v2()
...
@@ -121,14 +121,14 @@ inception_v2()
do
do
echo
"converting
$npz
..."
echo
"converting
$npz
..."
python convert_data_npz_0.py
"
$npz
"
"data_0"
"prob_1"
python convert_data_npz_0.py
"
$npz
"
"data_0"
"prob_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$npz
done
done
for
pb_dir
in
$bn_tar
/
*
/
for
pb_dir
in
$bn_tar
/
*
/
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
...
@@ -137,7 +137,7 @@ resnet50()
...
@@ -137,7 +137,7 @@ resnet50()
bn_tar
=
"resnet50"
bn_tar
=
"resnet50"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_model
=
"
$bn_tar
/model.onnx"
fn_model
=
"
$bn_tar
/model.onnx"
$get_url
"
$base_url$fn_tar
"
$get_url
"
$base_url$fn_tar
"
echo
"extracting ..."
echo
"extracting ..."
tar
xf
"
$fn_tar
"
tar
xf
"
$fn_tar
"
...
@@ -146,14 +146,14 @@ resnet50()
...
@@ -146,14 +146,14 @@ resnet50()
do
do
echo
"converting
$npz
..."
echo
"converting
$npz
..."
python convert_data_npz_0.py
"
$npz
"
"gpu_0/data_0"
"gpu_0/softmaxout_1"
python convert_data_npz_0.py
"
$npz
"
"gpu_0/data_0"
"gpu_0/softmaxout_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$npz
done
done
for
pb_dir
in
$bn_tar
/
*
/
for
pb_dir
in
$bn_tar
/
*
/
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"gpu_0/data_0"
"gpu_0/softmaxout_1"
python convert_data_pb_0.py
"
$pb_dir
"
"gpu_0/data_0"
"gpu_0/softmaxout_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
...
@@ -162,7 +162,7 @@ shufflenet()
...
@@ -162,7 +162,7 @@ shufflenet()
bn_tar
=
"shufflenet"
bn_tar
=
"shufflenet"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_model
=
"
$bn_tar
/model.onnx"
fn_model
=
"
$bn_tar
/model.onnx"
$get_url
"
$base_url$fn_tar
"
$get_url
"
$base_url$fn_tar
"
echo
"extracting ..."
echo
"extracting ..."
tar
xf
"
$fn_tar
"
tar
xf
"
$fn_tar
"
...
@@ -171,7 +171,7 @@ shufflenet()
...
@@ -171,7 +171,7 @@ shufflenet()
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"gpu_0/data_0"
"gpu_0/softmaxout_1"
python convert_data_pb_0.py
"
$pb_dir
"
"gpu_0/data_0"
"gpu_0/softmaxout_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
...
@@ -180,7 +180,7 @@ squeezenet()
...
@@ -180,7 +180,7 @@ squeezenet()
bn_tar
=
"squeezenet"
bn_tar
=
"squeezenet"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_model
=
"
$bn_tar
/model.onnx"
fn_model
=
"
$bn_tar
/model.onnx"
$get_url
"
$base_url$fn_tar
"
$get_url
"
$base_url$fn_tar
"
echo
"extracting ..."
echo
"extracting ..."
tar
xf
"
$fn_tar
"
tar
xf
"
$fn_tar
"
...
@@ -189,7 +189,7 @@ squeezenet()
...
@@ -189,7 +189,7 @@ squeezenet()
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"softmaxout_1"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"softmaxout_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
...
@@ -198,7 +198,7 @@ tiny_yolov2()
...
@@ -198,7 +198,7 @@ tiny_yolov2()
bn_tar
=
"tiny_yolov2"
bn_tar
=
"tiny_yolov2"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_model
=
"
$bn_tar
/model.onnx"
fn_model
=
"
$bn_tar
/model.onnx"
$get_url
"https://onnxzoo.blob.core.windows.net/models/opset_8/tiny_yolov2/
$fn_tar
"
$get_url
"https://onnxzoo.blob.core.windows.net/models/opset_8/tiny_yolov2/
$fn_tar
"
echo
"extracting ..."
echo
"extracting ..."
tar
xf
"
$fn_tar
"
tar
xf
"
$fn_tar
"
...
@@ -207,7 +207,7 @@ tiny_yolov2()
...
@@ -207,7 +207,7 @@ tiny_yolov2()
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"image"
"grid"
python convert_data_pb_0.py
"
$pb_dir
"
"image"
"grid"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
-x
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
-x
done
done
}
}
...
@@ -216,7 +216,7 @@ vgg19()
...
@@ -216,7 +216,7 @@ vgg19()
bn_tar
=
"vgg19"
bn_tar
=
"vgg19"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_model
=
"
$bn_tar
/model.onnx"
fn_model
=
"
$bn_tar
/model.onnx"
$get_url
"
$base_url$fn_tar
"
$get_url
"
$base_url$fn_tar
"
echo
"extracting ..."
echo
"extracting ..."
tar
xf
"
$fn_tar
"
tar
xf
"
$fn_tar
"
...
@@ -225,7 +225,7 @@ vgg19()
...
@@ -225,7 +225,7 @@ vgg19()
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python convert_data_pb_0.py
"
$pb_dir
"
"data_0"
"prob_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
...
@@ -234,7 +234,7 @@ zfnet512()
...
@@ -234,7 +234,7 @@ zfnet512()
bn_tar
=
"zfnet512"
bn_tar
=
"zfnet512"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_tar
=
"
$bn_tar
.tar.gz"
fn_model
=
"
$bn_tar
/model.onnx"
fn_model
=
"
$bn_tar
/model.onnx"
$get_url
"
$base_url$fn_tar
"
$get_url
"
$base_url$fn_tar
"
echo
"extracting ..."
echo
"extracting ..."
tar
xf
"
$fn_tar
"
tar
xf
"
$fn_tar
"
...
@@ -243,20 +243,20 @@ zfnet512()
...
@@ -243,20 +243,20 @@ zfnet512()
do
do
echo
"converting
$pb_dir
"
echo
"converting
$pb_dir
"
python convert_data_pb_0.py
"
$pb_dir
"
"gpu_0/data_0"
"gpu_0/softmax_1"
python convert_data_pb_0.py
"
$pb_dir
"
"gpu_0/data_0"
"gpu_0/softmax_1"
python
-m
onnx2
paddle
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
python
-m
onnx2
fluid
$flags
"
$fn_model
"
-t
$(
dirname
"
$pb_dir
/x"
)
.npz
done
done
}
}
bvlc_alexnet
# data error
bvlc_alexnet
bvlc_googlenet
# desc error
bvlc_googlenet
bvlc_reference_caffenet
bvlc_reference_caffenet
bvlc_reference_rcnn_ilsvrc13
bvlc_reference_rcnn_ilsvrc13
inception_v1
###
inception_v1
inception_v2
###
inception_v2
resnet50
# data error
resnet50
shufflenet
###
shufflenet
squeezenet
squeezenet
tiny_yolov2
# not supported
tiny_yolov2
# not supported
vgg19
vgg19
zfnet512
# data error
zfnet512
onnx2
paddle/onnx2paddle
/__init__.py
→
onnx2
fluid/onnx2fluid
/__init__.py
浏览文件 @
2228423e
文件已移动
onnx2
paddle/onnx2paddle
/__main__.py
→
onnx2
fluid/onnx2fluid
/__main__.py
浏览文件 @
2228423e
...
@@ -5,7 +5,7 @@
...
@@ -5,7 +5,7 @@
#
#
################################################################################
################################################################################
"""
"""
本文件允许模块包以python -m onnx2
paddle
方式直接执行。
本文件允许模块包以python -m onnx2
fluid
方式直接执行。
Authors: Macrobull
Authors: Macrobull
Date: 2019/02/22 10:25:46
Date: 2019/02/22 10:25:46
...
@@ -21,43 +21,67 @@ import argparse
...
@@ -21,43 +21,67 @@ import argparse
import
logging
import
logging
import
sys
import
sys
parser
=
argparse
.
ArgumentParser
(
parser
=
argparse
.
ArgumentParser
(
description
=
'onnx2paddle'
,
description
=
'onnx2fluid'
,
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
,
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
,
)
)
parser
.
add_argument
(
'model'
,
nargs
=
1
,
parser
.
add_argument
(
help
=
'path to model.onnx'
,
'model'
,
)
nargs
=
1
,
parser
.
add_argument
(
'--debug'
,
'-d'
,
action
=
'store_true'
,
help
=
'path to model.onnx'
,
help
=
'enable debug logging and checking'
,
)
)
parser
.
add_argument
(
parser
.
add_argument
(
'--output-dir'
,
'-o'
,
type
=
str
,
default
=
''
,
'--debug'
,
help
=
'output directory'
,
'-d'
,
)
action
=
'store_true'
,
parser
.
add_argument
(
'--test_data'
,
'-t'
,
type
=
str
,
default
=
''
,
help
=
'enable debug logging and checking'
,
help
=
'I/O golden data for validation, e.g. test.npy, test.npz'
,
)
)
parser
.
add_argument
(
parser
.
add_argument
(
'--embed_params'
,
'-e'
,
action
=
'store_true'
,
'--output_dir'
,
help
=
'try to embed parameters for trainable Paddle layers'
,
'-o'
,
)
type
=
str
,
parser
.
add_argument
(
'--pedantic'
,
action
=
'store_true'
,
default
=
True
,
default
=
''
,
help
=
'accept and convert only standard ONNX opset'
,
help
=
'output directory'
,
)
)
parser
.
add_argument
(
'--no-pedantic'
,
'-x'
,
action
=
'store_false'
,
parser
.
add_argument
(
dest
=
'pedantic'
,
'--test_data'
,
help
=
'process non-standard ONNX ops, this may lead to fails'
,
'-t'
,
)
type
=
str
,
parser
.
add_argument
(
'--precision'
,
'-p'
,
type
=
int
,
default
=
4
,
default
=
''
,
help
=
'assertion decimal for validation'
,
help
=
'I/O golden data for validation, e.g. test.npy, test.npz'
,
)
)
parser
.
add_argument
(
'--embed_params'
,
'-e'
,
action
=
'store_true'
,
help
=
'try to embed parameters for trainable Paddle fluid layers'
,
)
parser
.
add_argument
(
'--pedantic'
,
action
=
'store_true'
,
default
=
True
,
help
=
'accept and convert only standard ONNX opset'
,
)
parser
.
add_argument
(
'--no-pedantic'
,
'-x'
,
action
=
'store_false'
,
dest
=
'pedantic'
,
help
=
'process non-standard ONNX ops, this may lead to fails'
,
)
parser
.
add_argument
(
'--precision'
,
'-p'
,
type
=
int
,
default
=
4
,
help
=
'assertion decimal for validation'
,
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
logging_format
=
'[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message)s'
logging_format
=
'[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message)s'
logging_level
=
logging
.
DEBUG
if
args
.
debug
else
logging
.
INFO
logging_level
=
logging
.
DEBUG
if
args
.
debug
else
logging
.
INFO
logging
.
basicConfig
(
format
=
logging_format
,
level
=
logging_level
)
logging
.
basicConfig
(
format
=
logging_format
,
level
=
logging_level
)
try
:
try
:
from
.
import
cmdline
from
.
import
cmdline
except
ImportError
:
except
ImportError
:
...
@@ -66,5 +90,4 @@ except ImportError:
...
@@ -66,5 +90,4 @@ except ImportError:
# imports
# imports
main
=
cmdline
.
main
main
=
cmdline
.
main
sys
.
exit
(
main
(
**
args
.
__dict__
))
sys
.
exit
(
main
(
**
args
.
__dict__
))
onnx2
paddle/onnx2paddle
/cmdline.py
→
onnx2
fluid/onnx2fluid
/cmdline.py
浏览文件 @
2228423e
...
@@ -21,7 +21,6 @@ import logging
...
@@ -21,7 +21,6 @@ import logging
import
shutil
import
shutil
import
zipfile
import
zipfile
__all__
=
[
__all__
=
[
'main'
,
'main'
,
]
]
...
@@ -42,7 +41,7 @@ def main(**kwargs):
...
@@ -42,7 +41,7 @@ def main(**kwargs):
# imports
# imports
convert
=
conversion
.
convert
convert
=
conversion
.
convert
logger
=
logging
.
getLogger
(
'onnx2
paddle
'
)
logger
=
logging
.
getLogger
(
'onnx2
fluid
'
)
debug
=
kwargs
.
get
(
'debug'
,
False
)
debug
=
kwargs
.
get
(
'debug'
,
False
)
# prepare arguments
# prepare arguments
...
@@ -58,13 +57,15 @@ def main(**kwargs):
...
@@ -58,13 +57,15 @@ def main(**kwargs):
onnx_opset_pedantic
=
kwargs
.
get
(
'pedantic'
,
True
)
onnx_opset_pedantic
=
kwargs
.
get
(
'pedantic'
,
True
)
# convert
# convert
convert
(
filename
,
save_dir
,
convert
(
model_basename
=
model_basename
,
filename
,
model_func_name
=
model_func_name
,
save_dir
,
embed_params
=
embed_params
,
model_basename
=
model_basename
,
onnx_opset_version
=
onnx_opset_version
,
model_func_name
=
model_func_name
,
onnx_opset_pedantic
=
onnx_opset_pedantic
,
embed_params
=
embed_params
,
debug
=
debug
)
onnx_opset_version
=
onnx_opset_version
,
onnx_opset_pedantic
=
onnx_opset_pedantic
,
debug
=
debug
)
# validate
# validate
passed
=
True
passed
=
True
...
@@ -80,21 +81,23 @@ def main(**kwargs):
...
@@ -80,21 +81,23 @@ def main(**kwargs):
# in fact fluid can not fully clear the context
# in fact fluid can not fully clear the context
# continuous validation may be inaccurate
# continuous validation may be inaccurate
precision
=
10
**
-
kwargs
.
get
(
'precision'
,
4
)
precision
=
10
**
-
kwargs
.
get
(
'precision'
,
4
)
logger
.
info
(
'starting validation on desc ...'
)
logger
.
info
(
'starting validation on desc ...'
)
passed
&=
validate
(
shutil
.
os
.
path
.
join
(
save_dir
,
'__model__'
),
passed
&=
validate
(
golden_data_filename
,
shutil
.
os
.
path
.
join
(
save_dir
,
'__model__'
),
precision
=
precision
,
golden_data_filename
,
)
precision
=
precision
,
)
logger
.
info
(
'starting validation on code ...'
)
logger
.
info
(
'starting validation on code ...'
)
passed
&=
validate
(
shutil
.
os
.
path
.
join
(
save_dir
,
model_basename
),
passed
&=
validate
(
golden_data_filename
,
shutil
.
os
.
path
.
join
(
save_dir
,
model_basename
),
model_func_name
=
model_func_name
,
golden_data_filename
,
precision
=
precision
,
model_func_name
=
model_func_name
,
save_inference_model
=
debug
,
# this overwrite desc file for test
precision
=
precision
,
)
save_inference_model
=
debug
,
# this overwrite desc file for test
)
if
not
passed
:
if
not
passed
:
logger
.
error
(
'validation failed, exit'
)
logger
.
error
(
'validation failed, exit'
)
...
@@ -112,20 +115,22 @@ def main(**kwargs):
...
@@ -112,20 +115,22 @@ def main(**kwargs):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
logging
.
basicConfig
(
logging
.
basicConfig
(
format
=
'[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message)s'
,
format
=
level
=
logging
.
DEBUG
,
'[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message)s'
,
)
level
=
logging
.
DEBUG
,
)
# main(model=['../examples/t5.onnx'],
# output_dir='/tmp/export/',
# main(model=['../examples/t5.onnx'],
# embed_params=False,
# output_dir='/tmp/export/',
# pedantic=False,
# embed_params=False,
# test_data='../examples/t5.npz',
# pedantic=False,
# debug=True)
# test_data='../examples/t5.npz',
# debug=True)
main
(
model
=
[
'../examples/shufflenet/model.onnx'
],
output_dir
=
'/tmp/export/'
,
main
(
embed_params
=
True
,
model
=
[
'../examples/inception_v2/model.onnx'
],
pedantic
=
False
,
output_dir
=
'/tmp/export/'
,
test_data
=
'../examples/shufflenet/test_data_set_0.npz'
,
embed_params
=
True
,
debug
=
True
)
pedantic
=
False
,
test_data
=
'../examples/inception_v2/test_data_set_2.npz'
,
debug
=
True
)
onnx2
paddle/onnx2paddle
/conversion.py
→
onnx2
fluid/onnx2fluid
/conversion.py
浏览文件 @
2228423e
...
@@ -12,19 +12,21 @@ from __future__ import division
...
@@ -12,19 +12,21 @@ from __future__ import division
import
logging
import
logging
import
shutil
import
shutil
__all__
=
[
__all__
=
[
'convert'
,
'convert'
,
]
]
def
convert
(
onnx_model_filename
,
save_dir
,
def
convert
(
onnx_model_filename
,
model_basename
=
'model.py'
,
model_func_name
=
'inference'
,
save_dir
,
model_basename
=
'model.py'
,
model_func_name
=
'inference'
,
embed_params
=
False
,
embed_params
=
False
,
onnx_opset_version
=
9
,
onnx_opset_pedantic
=
True
,
onnx_opset_version
=
9
,
onnx_opset_pedantic
=
True
,
debug
=
False
):
debug
=
False
):
"""
"""
convert an ONNX model to Paddle Python code and desc pb
convert an ONNX model to Paddle
fluid
Python code and desc pb
"""
"""
import
onnx
import
onnx
...
@@ -59,10 +61,11 @@ def convert(onnx_model_filename, save_dir,
...
@@ -59,10 +61,11 @@ def convert(onnx_model_filename, save_dir,
logger
.
info
(
'checking model ...'
)
logger
.
info
(
'checking model ...'
)
check_model
(
onnx_model
)
check_model
(
onnx_model
)
logger
.
debug
(
'using opset version: %d'
,
onnx_opset_version
)
logger
.
debug
(
'using opset version: %d'
,
onnx_opset_version
)
if
onnx_opset_pedantic
:
# WORKAROUND: RuntimeError: No Adapter For OP
if
onnx_opset_pedantic
:
# WORKAROUND: RuntimeError: No Adapter For OP
onnx_model
=
convert_version
(
onnx_model
,
onnx_opset_version
)
onnx_model
=
convert_version
(
onnx_model
,
onnx_opset_version
)
else
:
# TODO: add new argument for this option
else
:
# TODO: add new argument for this option
logger
.
warning
(
'opset conversion skipped for onnx_opset_pedantic is OFF'
)
logger
.
warning
(
'opset conversion skipped for onnx_opset_pedantic is OFF'
)
onnx_model
=
polish_model
(
onnx_model
)
onnx_model
=
polish_model
(
onnx_model
)
except
ValidationError
as
e
:
except
ValidationError
as
e
:
if
onnx_opset_pedantic
:
if
onnx_opset_pedantic
:
...
@@ -90,13 +93,13 @@ def convert(onnx_model_filename, save_dir,
...
@@ -90,13 +93,13 @@ def convert(onnx_model_filename, save_dir,
onnx
.
save
(
model
,
debug_model_filename
+
'.optimized_and_inffered.onnx'
)
onnx
.
save
(
model
,
debug_model_filename
+
'.optimized_and_inffered.onnx'
)
# onnx.save(model, '/tmp/export/optimized_and_inffered.onnx')
# onnx.save(model, '/tmp/export/optimized_and_inffered.onnx')
# I/O instances
# I/O instances
onnx_graph
=
onnx_model
.
graph
onnx_graph
=
onnx_model
.
graph
paddle
_program
=
Program
()
fluid
_program
=
Program
()
paddle
_writer
=
Writer
()
fluid
_writer
=
Writer
()
# model components
# model components
# graph_name = onnx_graph.name
# graph_name = onnx_graph.name
graph_inputs
=
[
value
.
name
for
value
in
onnx_graph
.
input
]
graph_inputs
=
[
value
.
name
for
value
in
onnx_graph
.
input
]
graph_outputs
=
[
value
.
name
for
value
in
onnx_graph
.
output
]
graph_outputs
=
[
value
.
name
for
value
in
onnx_graph
.
output
]
graph_params
=
[]
graph_params
=
[]
...
@@ -107,29 +110,37 @@ def convert(onnx_model_filename, save_dir,
...
@@ -107,29 +110,37 @@ def convert(onnx_model_filename, save_dir,
for
name
,
weight
in
graph_weights
(
onnx_graph
):
for
name
,
weight
in
graph_weights
(
onnx_graph
):
value_info
=
graph_value_infos
[
name
]
value_info
=
graph_value_infos
[
name
]
value_info
[
'embeded_as'
]
=
[]
value_info
[
'embeded_as'
]
=
[]
value_info
[
'get_weight'
]
=
lambda
:
weight
.
tolist
()
# lazy getter
value_info
[
'get_weight'
]
=
(
lambda
w
:
lambda
:
w
.
tolist
())(
weight
)
# lazy getter
logger
.
info
(
'conversion started'
)
logger
.
info
(
'conversion started'
)
# op set conversion
# op set conversion
# topo = 'backward' if embed_params else 'forward'
# topo = 'backward' if embed_params else 'forward'
topo
=
'forward'
topo
=
'forward'
for
name
,
domain
,
op_type
,
inputs
,
outputs
,
attrs
in
graph_ops
(
onnx_graph
,
topo
=
topo
):
for
name
,
domain
,
op_type
,
inputs
,
outputs
,
attrs
in
graph_ops
(
onnx_graph
,
topo
=
topo
):
logger
.
debug
(
'translating op %s %s::%s ...'
,
name
,
domain
,
op_type
)
logger
.
debug
(
'translating op %s %s::%s ...'
,
name
,
domain
,
op_type
)
if
domain
==
DEFAULT_OP_DOMAIN
:
if
domain
==
DEFAULT_OP_DOMAIN
:
domain
=
''
domain
=
''
try
:
try
:
paddle_writer
.
emit_op
(
paddle_program
,
name
,
domain
,
op_type
,
fluid_writer
.
emit_op
(
inputs
,
outputs
,
attrs
,
fluid_program
,
graph_value_infos
,
name
,
embed_params
=
embed_params
,
domain
,
)
op_type
,
inputs
,
outputs
,
attrs
,
graph_value_infos
,
embed_params
=
embed_params
,
)
except
BaseException
as
e
:
except
BaseException
as
e
:
logger
.
fatal
(
'conversion failed for:
\n\t
%s -> %s::%s -> %s'
,
logger
.
fatal
(
'conversion failed for:
\n\t
%s -> %s::%s -> %s'
,
inputs
,
inputs
,
domain
,
op_type
,
outputs
)
domain
,
op_type
,
outputs
)
raise
e
raise
e
op_codes
=
paddle
_program
.
codes
op_codes
=
fluid
_program
.
codes
paddle
_program
.
codes
=
[]
fluid
_program
.
codes
=
[]
logger
.
info
(
'%d ops converted'
,
len
(
paddle
_program
.
op_descs
))
logger
.
info
(
'%d ops converted'
,
len
(
fluid
_program
.
op_descs
))
# weight writer
# weight writer
for
name
,
weight
in
graph_weights
(
onnx_graph
):
for
name
,
weight
in
graph_weights
(
onnx_graph
):
...
@@ -138,18 +149,24 @@ def convert(onnx_model_filename, save_dir,
...
@@ -138,18 +149,24 @@ def convert(onnx_model_filename, save_dir,
var_names
=
value_info
.
get
(
'embeded_as'
,
[])
var_names
=
value_info
.
get
(
'embeded_as'
,
[])
if
var_names
:
if
var_names
:
if
len
(
var_names
)
>
1
:
if
len
(
var_names
)
>
1
:
logger
.
info
(
'weight %s is shared between ops, more disk space will be consumed'
,
name
)
logger
.
info
(
logger
.
debug
(
'saving weight %s with size of %d, in %d bytes, as %s ...'
,
'weight %s is shared between ops, more disk space will be consumed'
,
name
,
weight
.
size
,
weight
.
nbytes
,
var_names
)
name
)
for
var_name
in
var_names
:
# multiple references
logger
.
debug
(
paddle_writer
.
write_weight
(
weight
,
shutil
.
os
.
path
.
join
(
save_dir
,
var_name
))
'saving weight %s with size of %d, in %d bytes, as %s ...'
,
name
,
weight
.
size
,
weight
.
nbytes
,
var_names
)
for
var_name
in
var_names
:
# multiple references
fluid_writer
.
write_weight
(
weight
,
shutil
.
os
.
path
.
join
(
save_dir
,
var_name
))
else
:
else
:
logger
.
debug
(
'saving weight %s with size of %d, in %d bytes, to %s ...'
,
logger
.
debug
(
name
,
weight
.
size
,
weight
.
nbytes
,
make_var_name
(
name
))
'saving weight %s with size of %d, in %d bytes, to %s ...'
,
paddle_writer
.
write_weight
(
weight
,
shutil
.
os
.
path
.
join
(
save_dir
,
make_var_name
(
name
)))
name
,
weight
.
size
,
weight
.
nbytes
,
make_var_name
(
name
))
paddle_writer
.
emit_param
(
paddle_program
,
name
,
value_info
)
fluid_writer
.
write_weight
(
param_codes
=
paddle_program
.
codes
weight
,
shutil
.
os
.
path
.
join
(
save_dir
,
make_var_name
(
name
)))
paddle_program
.
codes
=
[]
fluid_writer
.
emit_param
(
fluid_program
,
name
,
value_info
)
param_codes
=
fluid_program
.
codes
fluid_program
.
codes
=
[]
logger
.
info
(
'%d weights converted'
,
len
(
graph_params
))
logger
.
info
(
'%d weights converted'
,
len
(
graph_params
))
# input writer
# input writer
...
@@ -159,9 +176,11 @@ def convert(onnx_model_filename, save_dir,
...
@@ -159,9 +176,11 @@ def convert(onnx_model_filename, save_dir,
value_info
=
graph_value_infos
[
name
]
value_info
=
graph_value_infos
[
name
]
assert
value_info
[
'external'
]
assert
value_info
[
'external'
]
external_inputs
.
append
(
name
)
external_inputs
.
append
(
name
)
paddle_writer
.
emit_inputs
(
paddle_program
,
external_inputs
,
graph_value_infos
,
remove_batch
=
False
)
# TODO:
fluid_writer
.
emit_inputs
(
input_codes
=
paddle_program
.
codes
fluid_program
,
external_inputs
,
graph_value_infos
,
paddle_program
.
codes
=
[]
remove_batch
=
False
)
# TODO:
input_codes
=
fluid_program
.
codes
fluid_program
.
codes
=
[]
logger
.
info
(
'%d inputs converted'
,
len
(
external_inputs
))
logger
.
info
(
'%d inputs converted'
,
len
(
external_inputs
))
# output writer
# output writer
...
@@ -171,49 +190,93 @@ def convert(onnx_model_filename, save_dir,
...
@@ -171,49 +190,93 @@ def convert(onnx_model_filename, save_dir,
value_info
=
graph_value_infos
[
name
]
value_info
=
graph_value_infos
[
name
]
assert
value_info
[
'external'
]
assert
value_info
[
'external'
]
external_outputs
.
append
(
name
)
external_outputs
.
append
(
name
)
paddle_writer
.
emit_outputs
(
paddle
_program
,
external_outputs
)
fluid_writer
.
emit_outputs
(
fluid
_program
,
external_outputs
)
output_codes
=
[
''
]
+
paddle_program
.
codes
# add an empty line
output_codes
=
[
''
]
+
fluid_program
.
codes
# add an empty line
paddle
_program
.
codes
=
[]
fluid
_program
.
codes
=
[]
logger
.
info
(
'%d outputs converted'
,
len
(
external_outputs
))
logger
.
info
(
'%d outputs converted'
,
len
(
external_outputs
))
# code generation
# code generation
header_codes
=
fluid_writer
.
header_code
(
model_func_name
,
'From: {}'
.
format
(
onnx_model_filename
))
code_filename
=
shutil
.
os
.
path
.
join
(
save_dir
,
model_basename
)
code_filename
=
shutil
.
os
.
path
.
join
(
save_dir
,
model_basename
)
paddle_writer
.
write_code_file
(
code_filename
,
paddle_writer
.
header_code
(
model_func_name
),
fluid_writer
.
write_code_file
(
code_filename
,
header_codes
,
input_codes
,
input_codes
,
param_codes
,
op_codes
,
output_codes
)
param_codes
,
op_codes
,
output_codes
)
logger
.
info
(
'code saved to %s, factory function: %s'
,
code_filename
,
model_func_name
)
logger
.
info
(
'code saved to %s, factory function: %s'
,
code_filename
,
model_func_name
)
# desc generation
# desc generation
desc_filename
=
shutil
.
os
.
path
.
join
(
save_dir
,
'__model__'
)
desc_filename
=
shutil
.
os
.
path
.
join
(
save_dir
,
'__model__'
)
paddle_writer
.
write_desc_file
(
desc_filename
,
fluid_writer
.
write_desc_file
(
op_descs
=
paddle_program
.
op_descs
,
desc_filename
,
var_descs
=
paddle_program
.
var_descs
,
op_descs
=
fluid_program
.
op_descs
,
)
var_descs
=
fluid_program
.
var_descs
,
)
logger
.
info
(
'program saved to %s'
,
desc_filename
)
logger
.
info
(
'program saved to %s'
,
desc_filename
)
logger
.
info
(
'conversion finished'
)
logger
.
info
(
'conversion finished'
)
# globals().update(locals())
# globals().update(locals())
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
logging
.
basicConfig
(
import
argparse
format
=
'[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message)s'
,
level
=
logging
.
DEBUG
,
parser
=
argparse
.
ArgumentParser
(
)
description
=
'onnx2fluid.convert'
,
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
,
)
parser
.
add_argument
(
'model'
,
nargs
=
1
,
help
=
'path to model.onnx'
,
)
parser
.
add_argument
(
'--debug'
,
'-d'
,
action
=
'store_true'
,
help
=
'enable debug logging and checking'
,
)
parser
.
add_argument
(
'--output_dir'
,
'-o'
,
type
=
str
,
default
=
''
,
help
=
'output directory'
,
)
parser
.
add_argument
(
'--embed_params'
,
'-e'
,
action
=
'store_true'
,
help
=
'try to embed parameters for trainable Paddle fluid layers'
,
)
parser
.
add_argument
(
'--pedantic'
,
action
=
'store_true'
,
default
=
True
,
help
=
'accept and convert only standard ONNX opset'
,
)
parser
.
add_argument
(
'--no-pedantic'
,
'-x'
,
action
=
'store_false'
,
dest
=
'pedantic'
,
help
=
'process non-standard ONNX ops, this may lead to fails'
,
)
args
=
parser
.
parse_args
()
logging_format
=
'[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message)s'
logging_level
=
logging
.
DEBUG
if
args
.
debug
else
logging
.
INFO
logging
.
basicConfig
(
format
=
logging_format
,
level
=
logging_level
)
debug
=
args
.
debug
model_filename
=
args
.
model
[
0
]
save_dir
=
args
.
output_dir
embed_params
=
args
.
embed_params
pedantic
=
args
.
pedantic
model_list
=
[
convert
(
'../examples/t1.onnx'
,
model_filename
,
'../examples/t2.onnx'
,
save_dir
,
'../examples/t3.onnx'
,
embed_params
=
embed_params
,
'../examples/t4.onnx'
,
onnx_opset_pedantic
=
pedantic
,
'../examples/t5.onnx'
,
debug
=
debug
)
'../examples/t6.onnx'
,
# '../examples/t7.onnx',
# '../examples/t8.onnx',
]
for
model
in
model_list
:
pathname
,
_
=
shutil
.
os
.
path
.
splitext
(
model
)
convert
(
model
,
pathname
,
onnx_opset_pedantic
=
False
,
debug
=
True
)
convert
(
model
,
pathname
+
'.embeded'
,
embed_params
=
True
,
onnx_opset_pedantic
=
False
,
debug
=
True
)
onnx2fluid/onnx2fluid/framework_pb2.py
0 → 100644
浏览文件 @
2228423e
此差异已折叠。
点击以展开。
onnx2
paddle/onnx2paddle
/onnx_utils.py
→
onnx2
fluid/onnx2fluid
/onnx_utils.py
浏览文件 @
2228423e
...
@@ -12,34 +12,36 @@ import logging
...
@@ -12,34 +12,36 @@ import logging
import
numpy
as
np
import
numpy
as
np
import
onnx
import
onnx
from
collections
import
OrderedDict
as
Dict
# as default dict
from
collections
import
OrderedDict
as
Dict
# as default dict
from
onnx.helper
import
get_attribute_value
,
make_attribute
from
onnx.helper
import
get_attribute_value
,
make_attribute
from
onnx.mapping
import
TENSOR_TYPE_TO_NP_TYPE
from
onnx.mapping
import
TENSOR_TYPE_TO_NP_TYPE
from
onnx.numpy_helper
import
to_array
from
onnx.numpy_helper
import
to_array
from
onnx.shape_inference
import
infer_shapes
from
onnx.shape_inference
import
infer_shapes
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
__all__
=
[
__all__
=
[
'print_pb_structure'
,
'print_pb_structure'
,
'build_value_refs'
,
'build_value_refs'
,
'node_attrs'
,
'node_topo'
,
'node_iter'
,
'node_attrs'
,
'node_topo'
,
'node_iter'
,
'tensor_shape'
,
'tensor_shape'
,
'graph_ops'
,
'graph_weights'
,
'graph_ops'
,
'graph_weights'
,
'inferred_model_value_info'
,
'inferred_model_value_info'
,
'optimize_model_skip_op_for_inference'
,
'optimize_model_skip_op_for_inference'
,
'optimize_model_strip_initializer'
,
'optimize_model_strip_initializer'
,
'optimize_model_cast'
,
'optimize_model_slice'
,
'optimize_model_cast'
,
'optimize_model_slice'
,
]
]
ONNX_INT_MAX
=
2
**
63
-
1
ONNX_INT_MAX
=
2
**
63
-
1
DEFAULT_OP_DOMAIN
=
'ai.onnx'
DEFAULT_OP_DOMAIN
=
'ai.onnx'
def
print_pb_structure
(
message
,
def
print_pb_structure
(
message
,
loop_iterative
=
False
,
depth
=
0
):
loop_iterative
=
False
,
depth
=
0
):
"""
"""
print pb fields in its structure
print pb fields in its structure
"""
"""
...
@@ -47,14 +49,17 @@ def print_pb_structure(message,
...
@@ -47,14 +49,17 @@ def print_pb_structure(message,
if
hasattr
(
message
,
'DESCRIPTOR'
)
and
hasattr
(
message
.
DESCRIPTOR
,
'fields'
):
if
hasattr
(
message
,
'DESCRIPTOR'
)
and
hasattr
(
message
.
DESCRIPTOR
,
'fields'
):
for
field
in
message
.
DESCRIPTOR
.
fields
:
for
field
in
message
.
DESCRIPTOR
.
fields
:
print
(
'
\t
'
*
depth
+
'-'
,
field
.
name
)
print
(
'
\t
'
*
depth
+
'-'
,
field
.
name
)
print_pb_structure
(
getattr
(
message
,
field
.
name
),
print_pb_structure
(
loop_iterative
=
loop_iterative
,
depth
=
(
depth
+
1
))
getattr
(
message
,
field
.
name
),
loop_iterative
=
loop_iterative
,
depth
=
(
depth
+
1
))
if
loop_iterative
and
hasattr
(
message
,
'MergeFrom'
)
and
hasattr
(
message
,
'__len__'
):
if
loop_iterative
and
hasattr
(
message
,
'MergeFrom'
)
and
hasattr
(
message
,
'__len__'
):
for
idx
,
item
in
enumerate
(
message
):
for
idx
,
item
in
enumerate
(
message
):
print
(
'
\t
'
*
depth
+
'-'
,
idx
)
print
(
'
\t
'
*
depth
+
'-'
,
idx
)
print_pb_structure
(
item
,
print_pb_structure
(
loop_iterative
=
loop_iterative
,
depth
=
(
depth
+
1
))
item
,
loop_iterative
=
loop_iterative
,
depth
=
(
depth
+
1
))
def
build_value_refs
(
nodes
):
def
build_value_refs
(
nodes
):
...
@@ -80,7 +85,8 @@ def get_attribute_value2(attr):
...
@@ -80,7 +85,8 @@ def get_attribute_value2(attr):
if
attr
.
type
==
onnx
.
AttributeProto
.
TENSOR
:
if
attr
.
type
==
onnx
.
AttributeProto
.
TENSOR
:
dtype
=
np
.
dtype
(
TENSOR_TYPE_TO_NP_TYPE
[
attr
.
t
.
data_type
])
dtype
=
np
.
dtype
(
TENSOR_TYPE_TO_NP_TYPE
[
attr
.
t
.
data_type
])
data
=
attr
.
t
.
raw_data
data
=
attr
.
t
.
raw_data
value
=
np
.
frombuffer
(
data
,
dtype
=
dtype
,
count
=
(
len
(
data
)
//
dtype
.
itemsize
))
value
=
np
.
frombuffer
(
data
,
dtype
=
dtype
,
count
=
(
len
(
data
)
//
dtype
.
itemsize
))
else
:
else
:
value
=
get_attribute_value
(
attr
)
value
=
get_attribute_value
(
attr
)
return
value
return
value
...
@@ -91,7 +97,8 @@ def node_attrs(node):
...
@@ -91,7 +97,8 @@ def node_attrs(node):
convert ONNX node attributes to dict
convert ONNX node attributes to dict
"""
"""
return
{
attr
.
name
:
get_attribute_value2
(
attr
)
for
attr
in
node
.
attribute
}
# dict
return
{
attr
.
name
:
get_attribute_value2
(
attr
)
for
attr
in
node
.
attribute
}
# dict
def
tensor_shape
(
tensor
):
def
tensor_shape
(
tensor
):
...
@@ -137,7 +144,7 @@ def node_topo(nodes, topo='default'):
...
@@ -137,7 +144,7 @@ def node_topo(nodes, topo='default'):
for
next_idx
in
input_refs
[
val_name
]:
for
next_idx
in
input_refs
[
val_name
]:
node_in_degrees
[
next_idx
]
-=
1
node_in_degrees
[
next_idx
]
-=
1
if
node_in_degrees
[
next_idx
]
==
0
:
if
node_in_degrees
[
next_idx
]
==
0
:
queue
.
insert
(
0
,
next_idx
)
# make it lazy
queue
.
insert
(
0
,
next_idx
)
# make it lazy
return
node_topo
return
node_topo
if
topo
==
'backward'
:
if
topo
==
'backward'
:
...
@@ -162,14 +169,13 @@ def node_topo(nodes, topo='default'):
...
@@ -162,14 +169,13 @@ def node_topo(nodes, topo='default'):
for
next_idx
in
output_refs
[
val_name
]:
for
next_idx
in
output_refs
[
val_name
]:
node_out_degrees
[
next_idx
]
-=
1
node_out_degrees
[
next_idx
]
-=
1
if
node_out_degrees
[
next_idx
]
==
0
:
if
node_out_degrees
[
next_idx
]
==
0
:
queue
.
insert
(
0
,
next_idx
)
# make it lazy
queue
.
insert
(
0
,
next_idx
)
# make it lazy
return
node_topo
return
node_topo
raise
ValueError
(
'unkown given topo: {}'
.
format
(
topo
))
raise
ValueError
(
'unkown given topo: {}'
.
format
(
topo
))
def
node_iter
(
nodes
,
def
node_iter
(
nodes
,
indices
=
None
):
indices
=
None
):
"""
"""
generator for ONNX node graph with given indices
generator for ONNX node graph with given indices
"""
"""
...
@@ -194,8 +200,7 @@ def node_iter(nodes,
...
@@ -194,8 +200,7 @@ def node_iter(nodes,
yield
name
,
domain
,
op_type
,
inputs
,
outputs
,
attrs
yield
name
,
domain
,
op_type
,
inputs
,
outputs
,
attrs
def
graph_ops
(
graph
,
def
graph_ops
(
graph
,
topo
=
'default'
):
topo
=
'default'
):
"""
"""
generator for ONNX node graph with given topology
generator for ONNX node graph with given topology
"""
"""
...
@@ -232,24 +237,24 @@ def inferred_model_value_info(model):
...
@@ -232,24 +237,24 @@ def inferred_model_value_info(model):
value_info
=
Dict
()
value_info
=
Dict
()
for
item
in
graph
.
value_info
:
for
item
in
graph
.
value_info
:
value_info
[
item
.
name
]
=
dict
(
value_info
[
item
.
name
]
=
dict
(
dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
shape
=
tensor_shape
(
item
),
shape
=
tensor_shape
(
item
),
external
=
False
,
external
=
False
,
)
)
for
item
in
graph
.
input
:
for
item
in
graph
.
input
:
assert
item
.
name
not
in
value_info
assert
item
.
name
not
in
value_info
value_info
[
item
.
name
]
=
dict
(
value_info
[
item
.
name
]
=
dict
(
dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
shape
=
tensor_shape
(
item
),
shape
=
tensor_shape
(
item
),
external
=
True
,
external
=
True
,
)
)
for
item
in
graph
.
output
:
for
item
in
graph
.
output
:
# assert item.name not in value_info, 'bypass-model not supported'
# assert item.name not in value_info, 'bypass-model not supported'
value_info
[
item
.
name
]
=
dict
(
value_info
[
item
.
name
]
=
dict
(
dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
shape
=
tensor_shape
(
item
),
shape
=
tensor_shape
(
item
),
external
=
True
,
external
=
True
,
)
)
return
value_info
return
value_info
...
@@ -283,9 +288,7 @@ def skip_node_backward(nodes, src_input_name, dst_output_name, output_refs):
...
@@ -283,9 +288,7 @@ def skip_node_backward(nodes, src_input_name, dst_output_name, output_refs):
return
processed
return
processed
def
optimize_model_skip_op_for_inference
(
def
optimize_model_skip_op_for_inference
(
model
,
op_list
=
None
):
model
,
op_list
=
None
):
"""
"""
skip ops can be bypassed for inference
skip ops can be bypassed for inference
"""
"""
...
@@ -297,38 +300,42 @@ def optimize_model_skip_op_for_inference(
...
@@ -297,38 +300,42 @@ def optimize_model_skip_op_for_inference(
ret
=
type
(
model
)()
ret
=
type
(
model
)()
ret
.
CopyFrom
(
model
)
ret
.
CopyFrom
(
model
)
ret
.
graph
.
ClearField
(
'value_info'
)
# WORKAROUND: onnx do not drop old value_info
ret
.
graph
.
ClearField
(
'value_info'
)
# WORKAROUND: onnx do not drop old value_info
ret_nodes
=
ret
.
graph
.
node
ret_nodes
=
ret
.
graph
.
node
nodes_to_remove
=
[]
nodes_to_remove
=
[]
for
node_idx
,
node
in
enumerate
(
nodes
):
for
node_idx
,
node
in
enumerate
(
nodes
):
if
not
(
node
.
domain
==
DEFAULT_OP_DOMAIN
or
node
.
domain
==
''
):
if
not
(
node
.
domain
==
DEFAULT_OP_DOMAIN
or
node
.
domain
==
''
):
continue
continue
op_type
=
node
.
op_type
op_type
=
node
.
op_type
if
not
(
op_type
in
op_list
):
if
not
(
op_type
in
op_list
):
continue
continue
if
op_type
in
[
'Dropout'
]:
if
op_type
in
[
'Dropout'
]:
input_name
=
node
.
input
[
0
]
input_name
=
node
.
input
[
0
]
output_name
=
node
.
output
[
0
]
output_name
=
node
.
output
[
0
]
elif
not
(
len
(
node
.
input
)
==
1
and
len
(
node
.
output
)
==
1
):
elif
not
(
len
(
node
.
input
)
==
1
and
len
(
node
.
output
)
==
1
):
logger
.
warning
(
'currently only 1-input-1-output op supported, skip required %d: %s'
,
logger
.
warning
(
node_idx
,
node
.
op_type
)
'currently only 1-input-1-output op supported, skip required %d: %s'
,
node_idx
,
node
.
op_type
)
continue
continue
else
:
else
:
input_name
=
node
.
input
[
0
]
input_name
=
node
.
input
[
0
]
output_name
=
node
.
output
[
0
]
output_name
=
node
.
output
[
0
]
if
output_name
in
input_refs
:
if
output_name
in
input_refs
:
processed
=
skip_node_forward
(
ret_nodes
,
output_name
,
input_name
,
input_refs
)
processed
=
skip_node_forward
(
ret_nodes
,
output_name
,
input_name
,
input_refs
)
elif
input_name
in
output_refs
:
elif
input_name
in
output_refs
:
processed
=
skip_node_backward
(
ret_nodes
,
input_name
,
output_name
,
output_refs
)
processed
=
skip_node_backward
(
ret_nodes
,
input_name
,
output_name
,
output_refs
)
else
:
else
:
processed
=
-
1
processed
=
-
1
if
processed
>
0
:
if
processed
>
0
:
nodes_to_remove
.
append
(
node_idx
)
nodes_to_remove
.
append
(
node_idx
)
logger
.
debug
(
'skip op %d: %s -> %s -> %s'
,
logger
.
debug
(
'skip op %d: %s -> %s -> %s'
,
node_idx
,
input_name
,
node
_idx
,
input_name
,
node
.
op_type
,
output_name
)
node
.
op_type
,
output_name
)
elif
processed
==
0
:
elif
processed
==
0
:
logger
.
warning
(
'weird, no node processed'
)
logger
.
warning
(
'weird, no node processed'
)
else
:
else
:
...
@@ -342,8 +349,7 @@ def optimize_model_skip_op_for_inference(
...
@@ -342,8 +349,7 @@ def optimize_model_skip_op_for_inference(
return
ret
return
ret
def
optimize_model_strip_initializer
(
model
,
def
optimize_model_strip_initializer
(
model
,
keep_input_only
=
True
):
keep_input_only
=
True
):
"""
"""
strip weights for inference
strip weights for inference
"""
"""
...
@@ -354,7 +360,8 @@ def optimize_model_strip_initializer(model,
...
@@ -354,7 +360,8 @@ def optimize_model_strip_initializer(model,
ret
=
type
(
model
)()
ret
=
type
(
model
)()
ret
.
CopyFrom
(
model
)
ret
.
CopyFrom
(
model
)
ret
.
graph
.
ClearField
(
'value_info'
)
# WORKAROUND: onnx do not drop old value_info
ret
.
graph
.
ClearField
(
'value_info'
)
# WORKAROUND: onnx do not drop old value_info
# strip initializers
# strip initializers
ret
.
graph
.
ClearField
(
'initializer'
)
ret
.
graph
.
ClearField
(
'initializer'
)
...
@@ -366,8 +373,7 @@ def optimize_model_strip_initializer(model,
...
@@ -366,8 +373,7 @@ def optimize_model_strip_initializer(model,
elif
not
keep_input_only
and
name
in
output_refs
:
elif
not
keep_input_only
and
name
in
output_refs
:
ret_initializers
.
add
().
CopyFrom
(
initializer
)
ret_initializers
.
add
().
CopyFrom
(
initializer
)
else
:
else
:
logger
.
debug
(
'initializer %s(%s[%d]) stripped'
,
logger
.
debug
(
'initializer %s(%s[%d]) stripped'
,
name
,
name
,
TENSOR_TYPE_TO_NP_TYPE
[
initializer
.
data_type
],
TENSOR_TYPE_TO_NP_TYPE
[
initializer
.
data_type
],
len
(
initializer
.
raw_data
))
len
(
initializer
.
raw_data
))
...
@@ -379,10 +385,10 @@ def optimize_model_strip_initializer(model,
...
@@ -379,10 +385,10 @@ def optimize_model_strip_initializer(model,
if
name
in
input_refs
or
name
in
out_names
:
if
name
in
input_refs
or
name
in
out_names
:
ret_inputs
.
add
().
CopyFrom
(
item
)
ret_inputs
.
add
().
CopyFrom
(
item
)
else
:
else
:
logger
.
debug
(
'input %s(%s%s) stripped'
,
logger
.
debug
(
name
,
'input %s(%s%s) stripped'
,
name
,
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
tensor_shape
(
item
))
tensor_shape
(
item
))
return
ret
return
ret
...
@@ -397,18 +403,19 @@ def optimize_model_cast(model):
...
@@ -397,18 +403,19 @@ def optimize_model_cast(model):
ret
=
type
(
model
)()
ret
=
type
(
model
)()
ret
.
CopyFrom
(
model
)
ret
.
CopyFrom
(
model
)
ret
.
graph
.
ClearField
(
'value_info'
)
# WORKAROUND: onnx do not drop old value_info
ret
.
graph
.
ClearField
(
'value_info'
)
# WORKAROUND: onnx do not drop old value_info
ret_nodes
=
ret
.
graph
.
node
ret_nodes
=
ret
.
graph
.
node
nodes_to_remove
=
[]
nodes_to_remove
=
[]
for
node_idx
,
node
in
enumerate
(
nodes
):
for
node_idx
,
node
in
enumerate
(
nodes
):
if
not
(
node
.
domain
==
DEFAULT_OP_DOMAIN
or
node
.
domain
==
''
):
if
not
(
node
.
domain
==
DEFAULT_OP_DOMAIN
or
node
.
domain
==
''
):
continue
continue
if
not
(
node
.
op_type
==
'Cast'
):
if
not
(
node
.
op_type
==
'Cast'
):
continue
continue
attrs
=
node_attrs
(
node
)
attrs
=
node_attrs
(
node
)
output_dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
attrs
[
'to'
]]
output_dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
attrs
[
'to'
]]
input_name
=
node
.
input
[
0
]
input_name
=
node
.
input
[
0
]
info
=
value_info
.
get
(
'input_name'
,
None
)
# relax for un-inferrable
info
=
value_info
.
get
(
'input_name'
,
None
)
# relax for un-inferrable
if
info
is
None
:
if
info
is
None
:
continue
continue
input_dtype
=
info
.
get
(
'dtype'
,
None
)
input_dtype
=
info
.
get
(
'dtype'
,
None
)
...
@@ -417,21 +424,23 @@ def optimize_model_cast(model):
...
@@ -417,21 +424,23 @@ def optimize_model_cast(model):
output_name
=
node
.
output
[
0
]
output_name
=
node
.
output
[
0
]
if
output_name
in
input_refs
:
if
output_name
in
input_refs
:
processed
=
skip_node_forward
(
ret_nodes
,
output_name
,
input_name
,
input_refs
)
processed
=
skip_node_forward
(
ret_nodes
,
output_name
,
input_name
,
input_refs
)
elif
input_name
in
output_refs
:
elif
input_name
in
output_refs
:
processed
=
skip_node_backward
(
ret_nodes
,
input_name
,
output_name
,
output_refs
)
processed
=
skip_node_backward
(
ret_nodes
,
input_name
,
output_name
,
output_refs
)
else
:
else
:
processed
=
-
1
processed
=
-
1
if
processed
>
0
:
if
processed
>
0
:
nodes_to_remove
.
append
(
node_idx
)
nodes_to_remove
.
append
(
node_idx
)
logger
.
debug
(
'skip %s: %s -> %s Cast op'
,
logger
.
debug
(
'skip %s: %s -> %s Cast op'
,
node
.
name
,
input_dtype
,
node
.
name
,
input_dtype
,
output_dtype
)
output_dtype
)
elif
processed
==
0
:
elif
processed
==
0
:
logger
.
warning
(
'weird, no node processed'
)
logger
.
warning
(
'weird, no node processed'
)
else
:
else
:
logger
.
debug
(
'keep standalone %s: %s -> %s Cast op'
,
logger
.
debug
(
'keep standalone %s: %s -> %s Cast op'
,
node
.
name
,
node
.
name
,
input_dtype
,
output_dtype
)
input_dtype
,
output_dtype
)
nodes_to_remove
.
sort
(
reverse
=
True
)
nodes_to_remove
.
sort
(
reverse
=
True
)
for
node_idx
in
nodes_to_remove
:
for
node_idx
in
nodes_to_remove
:
...
@@ -452,13 +461,14 @@ def optimize_model_slice(model):
...
@@ -452,13 +461,14 @@ def optimize_model_slice(model):
chain
=
[]
chain
=
[]
while
True
:
while
True
:
node
=
nodes
[
node_idx
]
node
=
nodes
[
node_idx
]
if
not
(
node
.
domain
==
DEFAULT_OP_DOMAIN
or
node
.
domain
==
''
):
if
not
(
node
.
domain
==
DEFAULT_OP_DOMAIN
or
node
.
domain
==
''
):
return
chain
return
chain
if
not
node
.
op_type
==
'Slice'
:
if
not
node
.
op_type
==
'Slice'
:
return
chain
return
chain
chain
.
append
(
node_idx
)
chain
.
append
(
node_idx
)
output_name
=
node
.
output
[
0
]
output_name
=
node
.
output
[
0
]
if
output_name
not
in
input_refs
or
len
(
input_refs
[
output_name
])
!=
1
:
if
output_name
not
in
input_refs
or
len
(
input_refs
[
output_name
])
!=
1
:
return
chain
return
chain
node_idx
=
list
(
input_refs
[
output_name
])[
0
]
node_idx
=
list
(
input_refs
[
output_name
])[
0
]
...
@@ -468,7 +478,8 @@ def optimize_model_slice(model):
...
@@ -468,7 +478,8 @@ def optimize_model_slice(model):
for
slice_node_idx
in
slice_chain
:
for
slice_node_idx
in
slice_chain
:
node
=
nodes
[
slice_node_idx
]
node
=
nodes
[
slice_node_idx
]
attrs
=
node_attrs
(
node
)
attrs
=
node_attrs
(
node
)
for
axis
,
start
,
end
in
zip
(
attrs
[
'axes'
],
attrs
[
'starts'
],
attrs
[
'ends'
]):
for
axis
,
start
,
end
in
zip
(
attrs
[
'axes'
],
attrs
[
'starts'
],
attrs
[
'ends'
]):
if
start
==
0
and
end
==
ONNX_INT_MAX
:
if
start
==
0
and
end
==
ONNX_INT_MAX
:
continue
continue
if
axis
in
merged_slice
:
if
axis
in
merged_slice
:
...
@@ -480,7 +491,8 @@ def optimize_model_slice(model):
...
@@ -480,7 +491,8 @@ def optimize_model_slice(model):
ret
=
type
(
model
)()
ret
=
type
(
model
)()
ret
.
CopyFrom
(
model
)
ret
.
CopyFrom
(
model
)
ret
.
graph
.
ClearField
(
'value_info'
)
# WORKAROUND: onnx do not drop old value_info
ret
.
graph
.
ClearField
(
'value_info'
)
# WORKAROUND: onnx do not drop old value_info
ret_nodes
=
ret
.
graph
.
node
ret_nodes
=
ret
.
graph
.
node
nodes_to_remove
=
[]
nodes_to_remove
=
[]
for
node_idx
in
range
(
len
(
nodes
)):
for
node_idx
in
range
(
len
(
nodes
)):
...
@@ -488,7 +500,7 @@ def optimize_model_slice(model):
...
@@ -488,7 +500,7 @@ def optimize_model_slice(model):
if
len
(
slice_chain
)
==
0
:
if
len
(
slice_chain
)
==
0
:
continue
continue
merged_slice
=
_merge_slice
(
slice_chain
)
merged_slice
=
_merge_slice
(
slice_chain
)
if
len
(
merged_slice
)
>
0
and
len
(
slice_chain
)
==
1
:
# no need to merge
if
len
(
merged_slice
)
>
0
and
len
(
slice_chain
)
==
1
:
# no need to merge
continue
continue
attrs
=
dict
(
axes
=
[],
starts
=
[],
ends
=
[])
attrs
=
dict
(
axes
=
[],
starts
=
[],
ends
=
[])
...
@@ -501,42 +513,50 @@ def optimize_model_slice(model):
...
@@ -501,42 +513,50 @@ def optimize_model_slice(model):
input_name
=
first_node
.
input
[
0
]
input_name
=
first_node
.
input
[
0
]
output_name
=
last_node
.
output
[
0
]
output_name
=
last_node
.
output
[
0
]
processed
=
-
1
processed
=
-
1
if
output_name
in
input_refs
:
# 0, [1...]
if
output_name
in
input_refs
:
# 0, [1...]
new_input_name
=
first_node
.
output
[
0
]
if
len
(
merged_slice
)
>
0
else
input_name
new_input_name
=
first_node
.
output
[
0
]
if
len
(
processed
=
skip_node_forward
(
ret_nodes
,
output_name
,
new_input_name
,
input_refs
)
merged_slice
)
>
0
else
input_name
processed
=
skip_node_forward
(
ret_nodes
,
output_name
,
new_input_name
,
input_refs
)
if
processed
>
0
:
if
processed
>
0
:
if
len
(
merged_slice
)
>
0
:
if
len
(
merged_slice
)
>
0
:
remain_idx
=
slice_chain
[
0
]
remain_idx
=
slice_chain
[
0
]
remove_chain
=
slice_chain
[
1
:]
remove_chain
=
slice_chain
[
1
:]
slice_node
=
ret_nodes
[
remain_idx
]
slice_node
=
ret_nodes
[
remain_idx
]
for
attr
in
slice_node
.
attribute
:
for
attr
in
slice_node
.
attribute
:
attr
.
CopyFrom
(
make_attribute
(
attr
.
name
,
attrs
[
attr
.
name
]))
attr
.
CopyFrom
(
make_attribute
(
attr
.
name
,
attrs
[
attr
.
name
]))
logger
.
debug
(
'merged slice chain %s -> %s%s -> %s'
,
logger
.
debug
(
'merged slice chain %s -> %s%s -> %s'
,
input_name
,
remain_idx
,
remove_chain
,
output_name
)
input_name
,
remain_idx
,
remove_chain
,
output_name
)
else
:
else
:
remove_chain
=
slice_chain
remove_chain
=
slice_chain
if
processed
<
0
and
input_name
in
output_refs
:
if
processed
<
0
and
input_name
in
output_refs
:
new_output_name
=
last_node
.
input
[
0
]
if
len
(
merged_slice
)
>
0
else
output_name
new_output_name
=
last_node
.
input
[
0
]
if
len
(
processed
=
skip_node_backward
(
ret_nodes
,
input_name
,
new_output_name
,
output_refs
)
merged_slice
)
>
0
else
output_name
processed
=
skip_node_backward
(
ret_nodes
,
input_name
,
new_output_name
,
output_refs
)
if
processed
>
0
:
if
processed
>
0
:
if
len
(
merged_slice
)
>
0
:
if
len
(
merged_slice
)
>
0
:
remain_idx
=
slice_chain
[
-
1
]
remain_idx
=
slice_chain
[
-
1
]
remove_chain
=
slice_chain
[:
-
1
]
remove_chain
=
slice_chain
[:
-
1
]
slice_node
=
ret_nodes
[
remain_idx
]
slice_node
=
ret_nodes
[
remain_idx
]
for
attr
in
slice_node
.
attribute
:
for
attr
in
slice_node
.
attribute
:
attr
.
CopyFrom
(
make_attribute
(
attr
.
name
,
attrs
[
attr
.
name
]))
attr
.
CopyFrom
(
make_attribute
(
attr
.
name
,
attrs
[
attr
.
name
]))
logger
.
debug
(
'merged slice chain %s -> %s%s -> %s'
,
logger
.
debug
(
'merged slice chain %s -> %s%s -> %s'
,
input_name
,
remove_chain
,
remain_idx
,
output_name
)
input_name
,
remove_chain
,
remain_idx
,
output_name
)
else
:
else
:
remove_chain
=
slice_chain
remove_chain
=
slice_chain
if
processed
>
0
:
if
processed
>
0
:
nodes_to_remove
.
extend
(
remove_chain
)
nodes_to_remove
.
extend
(
remove_chain
)
if
len
(
merged_slice
)
==
0
:
if
len
(
merged_slice
)
==
0
:
logger
.
debug
(
'skip slice chain %s -> %s -> %s'
,
logger
.
debug
(
'skip slice chain %s -> %s -> %s'
,
input_name
,
input_name
,
slice_chain
,
output_name
)
slice_chain
,
output_name
)
elif
processed
<
0
:
# NEVERFIX: not merge standalone slice chain
elif
processed
<
0
:
# NEVERFIX: not merge standalone slice chain
logger
.
debug
(
'keep standalone slice chain %s -> %s -> %s'
,
logger
.
debug
(
'keep standalone slice chain %s -> %s -> %s'
,
input_name
,
slice_chain
,
output_name
)
input_name
,
slice_chain
,
output_name
)
...
@@ -549,9 +569,10 @@ def optimize_model_slice(model):
...
@@ -549,9 +569,10 @@ def optimize_model_slice(model):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
logging
.
basicConfig
(
logging
.
basicConfig
(
format
=
'[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message)s'
,
format
=
level
=
logging
.
DEBUG
,
'[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message)s'
,
)
level
=
logging
.
DEBUG
,
)
from
onnx.checker
import
check_model
from
onnx.checker
import
check_model
from
onnx.utils
import
polish_model
from
onnx.utils
import
polish_model
...
...
onnx2
paddle/onnx2paddle
/symbolic.py
→
onnx2
fluid/onnx2fluid
/symbolic.py
浏览文件 @
2228423e
此差异已折叠。
点击以展开。
onnx2
paddle/onnx2paddle
/torch_export_helper.py
→
onnx2
fluid/onnx2fluid
/torch_export_helper.py
浏览文件 @
2228423e
...
@@ -24,8 +24,7 @@ def _ensure_tuple(obj):
...
@@ -24,8 +24,7 @@ def _ensure_tuple(obj):
return
(
obj
,
)
return
(
obj
,
)
def
_flatten_list
(
obj
,
def
_flatten_list
(
obj
,
out
=
None
):
out
=
None
):
assert
isinstance
(
obj
,
list
)
assert
isinstance
(
obj
,
list
)
if
out
is
None
:
if
out
is
None
:
out
=
type
(
obj
)()
out
=
type
(
obj
)()
...
@@ -37,8 +36,7 @@ def _flatten_list(obj,
...
@@ -37,8 +36,7 @@ def _flatten_list(obj,
return
out
return
out
def
export_data
(
state_dict
,
def
export_data
(
state_dict
,
prefix
=
''
):
prefix
=
''
):
"""
"""
export binary data with meta text for raw C++ inference engines
export binary data with meta text for raw C++ inference engines
"""
"""
...
@@ -65,10 +63,14 @@ def export_data(state_dict,
...
@@ -65,10 +63,14 @@ def export_data(state_dict,
fp
.
close
()
fp
.
close
()
def
export_onnx_with_validation
(
model
,
inputs
,
export_basepath
,
def
export_onnx_with_validation
(
model
,
input_names
=
None
,
output_names
=
None
,
inputs
,
export_basepath
,
input_names
=
None
,
output_names
=
None
,
use_npz
=
True
,
use_npz
=
True
,
*
args
,
**
kwargs
):
*
args
,
**
kwargs
):
"""
"""
export PyTorch model to ONNX model and export sample inputs and outputs in a Numpy file
export PyTorch model to ONNX model and export sample inputs and outputs in a Numpy file
"""
"""
...
@@ -95,12 +97,16 @@ def export_onnx_with_validation(model, inputs, export_basepath,
...
@@ -95,12 +97,16 @@ def export_onnx_with_validation(model, inputs, export_basepath,
ret
[
key
]
=
value
ret
[
key
]
=
value
return
ret
return
ret
torch_inputs
=
_ensure_tuple
(
inputs
)
# WORKAROUND: for torch.onnx
torch_inputs
=
_ensure_tuple
(
inputs
)
# WORKAROUND: for torch.onnx
outputs
=
torch
.
onnx
.
export
(
model
,
torch_inputs
,
export_basepath
+
'.onnx'
,
outputs
=
torch
.
onnx
.
export
(
input_names
=
_flatten_list
(
input_names
),
model
,
output_names
=
_flatten_list
(
output_names
),
torch_inputs
,
*
args
,
**
kwargs
)
export_basepath
+
'.onnx'
,
if
outputs
is
None
:
# WORKAROUND: for torch.onnx
input_names
=
_flatten_list
(
input_names
),
output_names
=
_flatten_list
(
output_names
),
*
args
,
**
kwargs
)
if
outputs
is
None
:
# WORKAROUND: for torch.onnx
outputs
=
model
(
*
inputs
)
outputs
=
model
(
*
inputs
)
torch_outputs
=
_ensure_tuple
(
outputs
)
torch_outputs
=
_ensure_tuple
(
outputs
)
...
...
onnx2
paddle/onnx2paddle
/validation.py
→
onnx2
fluid/onnx2fluid
/validation.py
浏览文件 @
2228423e
...
@@ -13,8 +13,7 @@ import os
...
@@ -13,8 +13,7 @@ import os
import
sys
import
sys
def
_flatten_dict
(
obj
,
def
_flatten_dict
(
obj
,
out
=
None
):
out
=
None
):
assert
isinstance
(
obj
,
dict
)
assert
isinstance
(
obj
,
dict
)
if
out
is
None
:
if
out
is
None
:
out
=
type
(
obj
)()
out
=
type
(
obj
)()
...
@@ -34,12 +33,13 @@ def _ensure_list(obj):
...
@@ -34,12 +33,13 @@ def _ensure_list(obj):
return
[
obj
]
return
[
obj
]
def
validate
(
paddle_model_filename
,
golden_data_filename
,
def
validate
(
fluid_model_filename
,
golden_data_filename
,
model_func_name
=
'inference'
,
model_func_name
=
'inference'
,
precision
=
1e-4
,
precision
=
1e-4
,
save_inference_model
=
False
):
save_inference_model
=
False
):
"""
"""
inferece the converted Paddle model, validate with given golden data
inferece the converted Paddle
fluid
model, validate with given golden data
"""
"""
import
numpy
as
np
import
numpy
as
np
...
@@ -52,17 +52,17 @@ def validate(paddle_model_filename, golden_data_filename,
...
@@ -52,17 +52,17 @@ def validate(paddle_model_filename, golden_data_filename,
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
# load model
# load model
paddle_model_dir
,
basename
=
os
.
path
.
split
(
paddle
_model_filename
)
fluid_model_dir
,
basename
=
os
.
path
.
split
(
fluid
_model_filename
)
if
basename
==
'__model__'
:
# is desc model
if
basename
==
'__model__'
:
# is desc model
logger
.
debug
(
'using desc file %s'
,
basename
)
logger
.
debug
(
'using desc file %s'
,
basename
)
prog
,
in_names
,
var_outs
=
fluid
.
io
.
load_inference_model
(
paddle
_model_dir
,
exe
)
prog
,
_
,
var_outs
=
fluid
.
io
.
load_inference_model
(
fluid
_model_dir
,
exe
)
out_names
=
var_outs
# HINT: pass var if fetch ops already created
out_names
=
var_outs
# HINT: pass var if fetch ops already created
logger
.
info
(
'model load passed'
)
logger
.
info
(
'model load passed'
)
elif
basename
.
endswith
(
'.py'
):
# is python code
elif
basename
.
endswith
(
'.py'
):
# is python code
logger
.
debug
(
'using python code file %s'
,
basename
)
logger
.
debug
(
'using python code file %s'
,
basename
)
module_name
,
_
=
os
.
path
.
splitext
(
basename
)
module_name
,
_
=
os
.
path
.
splitext
(
basename
)
sys_path
=
sys
.
path
.
copy
()
sys_path
=
sys
.
path
.
copy
()
sys
.
path
.
append
(
paddle
_model_dir
)
sys
.
path
.
append
(
fluid
_model_dir
)
try
:
try
:
module
=
importlib
.
import_module
(
module_name
)
module
=
importlib
.
import_module
(
module_name
)
func
=
getattr
(
module
,
model_func_name
)
func
=
getattr
(
module
,
model_func_name
)
...
@@ -71,18 +71,21 @@ def validate(paddle_model_filename, golden_data_filename,
...
@@ -71,18 +71,21 @@ def validate(paddle_model_filename, golden_data_filename,
module
=
importlib
.
import_module
(
module_name
)
module
=
importlib
.
import_module
(
module_name
)
func
=
getattr
(
module
,
model_func_name
)
func
=
getattr
(
module
,
model_func_name
)
sys
.
path
=
sys_path
sys
.
path
=
sys_path
logger
.
debug
(
'from %s imported %s: %s'
,
module_name
,
model_func_name
,
func
)
logger
.
debug
(
'from %s imported %s: %s'
,
module_name
,
model_func_name
,
func
)
var_outs
=
func
()
var_outs
=
func
()
var_outs
=
_ensure_list
(
var_outs
)
var_outs
=
_ensure_list
(
var_outs
)
out_names
=
[
var
.
name
for
var
in
var_outs
]
# HINT: pass string to create fetch ops
out_names
=
[
var
.
name
for
var
in
var_outs
]
# HINT: pass string to create fetch ops
logger
.
info
(
'import passed'
)
logger
.
info
(
'import passed'
)
prog
=
fluid
.
default_main_program
()
prog
=
fluid
.
default_main_program
()
fluid
.
io
.
load_persistables
(
executor
=
exe
,
dirname
=
paddle_model_dir
,
main_program
=
prog
)
fluid
.
io
.
load_persistables
(
executor
=
exe
,
dirname
=
fluid_model_dir
,
main_program
=
prog
)
logger
.
info
(
'weight load passed'
)
logger
.
info
(
'weight load passed'
)
else
:
else
:
raise
ValueError
(
'unsupported Paddle model'
)
raise
ValueError
(
'unsupported Paddle
fluid
model'
)
# load data
# load data
logger
.
info
(
'using golden data %s'
,
golden_data_filename
)
logger
.
info
(
'using golden data %s'
,
golden_data_filename
)
...
@@ -100,10 +103,15 @@ def validate(paddle_model_filename, golden_data_filename,
...
@@ -100,10 +103,15 @@ def validate(paddle_model_filename, golden_data_filename,
# DEBUG: reload test for python code
# DEBUG: reload test for python code
if
basename
.
endswith
(
'.py'
)
and
save_inference_model
:
if
basename
.
endswith
(
'.py'
)
and
save_inference_model
:
fluid
.
io
.
save_inference_model
(
paddle_model_dir
,
input_data
.
keys
(),
var_outs
,
exe
,
fluid
.
io
.
save_inference_model
(
main_program
=
prog
,
export_for_deployment
=
True
)
fluid_model_dir
,
input_data
.
keys
(),
var_outs
,
exe
,
main_program
=
prog
,
export_for_deployment
=
True
)
logger
.
info
(
'model re-save passed'
)
logger
.
info
(
'model re-save passed'
)
fluid
.
io
.
load_inference_model
(
paddle
_model_dir
,
exe
)
fluid
.
io
.
load_inference_model
(
fluid
_model_dir
,
exe
)
logger
.
info
(
'model re-load passed'
)
logger
.
info
(
'model re-load passed'
)
# execute
# execute
...
@@ -124,49 +132,54 @@ def validate(paddle_model_filename, golden_data_filename,
...
@@ -124,49 +132,54 @@ def validate(paddle_model_filename, golden_data_filename,
else
:
else
:
logger
.
info
(
'accuracy not passed'
)
logger
.
info
(
'accuracy not passed'
)
# globals().update(locals())
# globals().update(locals())
return
passed
return
passed
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
logging
.
basicConfig
(
import
argparse
format
=
'[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message)s'
,
level
=
logging
.
DEBUG
,
parser
=
argparse
.
ArgumentParser
(
)
description
=
'onnx2fluid.validate'
,
logger
=
logging
.
getLogger
(
'validation_test'
)
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
,
)
model_rc_list
=
[
parser
.
add_argument
(
'../examples/t{}/model.py'
,
'model'
,
'../examples/t{}/__model__'
,
nargs
=
1
,
'../examples/t{}.embeded/model.py'
,
help
=
'path to model.py or __model__'
,
'../examples/t{}.embeded/__model__'
,
)
]
parser
.
add_argument
(
'--debug'
,
import
numpy
as
np
'-d'
,
action
=
'store_true'
,
idx_model
=
np
.
random
.
randint
(
1
,
7
)
help
=
'enable debug logging and checking'
,
model
=
np
.
random
.
choice
(
model_rc_list
).
format
(
idx_model
)
)
precision
=
10
**
(
np
.
random
.
rand
()
*
-
4
-
2
)
parser
.
add_argument
(
debug
=
False
'--test_data'
,
'-t'
,
model
=
'/tmp/export/model.py'
type
=
str
,
# model = '../examples/t1/__model__'
help
=
'I/O golden data for validation, e.g. test.npy, test.npz'
,
# model = '../examples/t1.embeded/model.py'
)
# model = '../examples/t1.embeded/__model__'
parser
.
add_argument
(
debug
=
True
'--precision'
,
'-p'
,
logger
.
info
(
'args: %s %.6f'
,
model
,
precision
)
type
=
int
,
default
=
4
,
data_dir
,
dir_name
=
os
.
path
.
split
(
os
.
path
.
split
(
model
)[
0
])
help
=
'assertion decimal for validation'
,
data_pathname
=
os
.
path
.
splitext
(
dir_name
)[
0
]
)
args
=
parser
.
parse_args
()
# proto debug test
from
framework_pb2
import
ProgramDesc
logging_format
=
'[%(levelname)8s]%(name)s::%(funcName)s:%(lineno)04d: %(message)s'
pd
=
ProgramDesc
()
logging_level
=
logging
.
DEBUG
if
args
.
debug
else
logging
.
INFO
pd
.
ParseFromString
(
open
(
os
.
path
.
join
(
data_dir
,
dir_name
,
'__model__'
),
'rb'
).
read
())
logging
.
basicConfig
(
format
=
logging_format
,
level
=
logging_level
)
# validate
debug
=
args
.
debug
# validate(model, os.path.join(data_dir, data_pathname + '.npz'),
fluid_model_filename
=
args
.
model
[
0
]
# precision=precision, save_inference_model=debug)
golden_data_filename
=
args
.
test_data
validate
(
model
,
'../examples/bvlc_alexnet/test_data_0.npz'
,
precision
=
args
.
precision
precision
=
precision
,
save_inference_model
=
debug
)
validate
(
fluid_model_filename
,
golden_data_filename
,
precision
=
precision
,
save_inference_model
=
debug
)
onnx2
paddle/onnx2paddle
/writer.py
→
onnx2
fluid/onnx2fluid
/writer.py
浏览文件 @
2228423e
...
@@ -34,15 +34,13 @@ except ImportError:
...
@@ -34,15 +34,13 @@ except ImportError:
logger
.
warning
(
'importing paddle.fluid.proto.framework_pb2d failed,'
logger
.
warning
(
'importing paddle.fluid.proto.framework_pb2d failed,'
'using fallback framework_pb2'
)
'using fallback framework_pb2'
)
__all__
=
[
__all__
=
[
'Program'
,
'Program'
,
'Writer'
,
'Writer'
,
]
]
def
_irepr
(
obj
,
def
_irepr
(
obj
,
to
=
'_'
):
to
=
'_'
):
"""inline repr"""
"""inline repr"""
s
=
repr
(
obj
)
s
=
repr
(
obj
)
...
@@ -53,8 +51,7 @@ def _irepr(obj,
...
@@ -53,8 +51,7 @@ def _irepr(obj,
return
s
return
s
def
_flatten_list
(
obj
,
def
_flatten_list
(
obj
,
out
=
None
):
out
=
None
):
if
out
is
None
:
if
out
is
None
:
out
=
type
(
obj
)()
out
=
type
(
obj
)()
for
item
in
obj
:
for
item
in
obj
:
...
@@ -72,7 +69,7 @@ def make_attr_name(name):
...
@@ -72,7 +69,7 @@ def make_attr_name(name):
if
name
==
''
:
if
name
==
''
:
raise
ValueError
(
'name should not be empty'
)
raise
ValueError
(
'name should not be empty'
)
for
s
in
' *?\
/-:'
:
#
for
s
in
' *?
\
\
/-:'
:
#
name
=
name
.
replace
(
s
,
'_'
)
name
=
name
.
replace
(
s
,
'_'
)
if
not
name
.
startswith
(
'_'
):
if
not
name
.
startswith
(
'_'
):
name
=
'_'
+
name
name
=
'_'
+
name
...
@@ -85,15 +82,15 @@ class Program(object):
...
@@ -85,15 +82,15 @@ class Program(object):
"""
"""
DTYPE_TO_FRAMEWORK_DTYPE
=
{
DTYPE_TO_FRAMEWORK_DTYPE
=
{
'bool'
:
framework_pb2
.
VarType
.
BOOL
,
'bool'
:
framework_pb2
.
VarType
.
BOOL
,
'int8'
:
framework_pb2
.
VarType
.
INT8
,
'int8'
:
framework_pb2
.
VarType
.
INT8
,
'uint8'
:
framework_pb2
.
VarType
.
UINT8
,
'uint8'
:
framework_pb2
.
VarType
.
UINT8
,
'int16'
:
framework_pb2
.
VarType
.
INT16
,
'int16'
:
framework_pb2
.
VarType
.
INT16
,
'int32'
:
framework_pb2
.
VarType
.
INT32
,
'int32'
:
framework_pb2
.
VarType
.
INT32
,
'int64'
:
framework_pb2
.
VarType
.
INT64
,
'int64'
:
framework_pb2
.
VarType
.
INT64
,
'float16'
:
framework_pb2
.
VarType
.
FP16
,
'float16'
:
framework_pb2
.
VarType
.
FP16
,
'float32'
:
framework_pb2
.
VarType
.
FP32
,
'float32'
:
framework_pb2
.
VarType
.
FP32
,
'float64'
:
framework_pb2
.
VarType
.
FP64
'float64'
:
framework_pb2
.
VarType
.
FP64
}
}
@
staticmethod
@
staticmethod
...
@@ -116,7 +113,7 @@ class Program(object):
...
@@ -116,7 +113,7 @@ class Program(object):
od_var
=
framework_pb2
.
OpDesc
.
Var
()
od_var
=
framework_pb2
.
OpDesc
.
Var
()
od_var
.
parameter
=
key
od_var
.
parameter
=
key
if
idx
<
len
(
vals
):
if
idx
<
len
(
vals
):
od_var
.
arguments
.
append
(
vals
[
idx
])
#
od_var
.
arguments
.
append
(
vals
[
idx
])
#
od_vars
.
append
(
od_var
)
od_vars
.
append
(
od_var
)
return
od_vars
return
od_vars
...
@@ -130,10 +127,10 @@ class Program(object):
...
@@ -130,10 +127,10 @@ class Program(object):
for
key
,
value
in
attrs
.
items
():
for
key
,
value
in
attrs
.
items
():
od_attr
=
framework_pb2
.
OpDesc
.
Attr
()
od_attr
=
framework_pb2
.
OpDesc
.
Attr
()
od_attr
.
name
=
key
od_attr
.
name
=
key
if
isinstance
(
value
,
bool
):
# bool.mro() = [bool, int, object]
if
isinstance
(
value
,
bool
):
# bool.mro() = [bool, int, object]
od_attr
.
type
=
framework_pb2
.
BOOLEAN
od_attr
.
type
=
framework_pb2
.
BOOLEAN
od_attr
.
b
=
value
od_attr
.
b
=
value
elif
isinstance
(
value
,
int
):
# only cast to int32
elif
isinstance
(
value
,
int
):
# only cast to int32
od_attr
.
type
=
framework_pb2
.
INT
od_attr
.
type
=
framework_pb2
.
INT
od_attr
.
i
=
value
od_attr
.
i
=
value
elif
isinstance
(
value
,
float
):
elif
isinstance
(
value
,
float
):
...
@@ -143,10 +140,10 @@ class Program(object):
...
@@ -143,10 +140,10 @@ class Program(object):
od_attr
.
type
=
framework_pb2
.
STRING
od_attr
.
type
=
framework_pb2
.
STRING
od_attr
.
s
=
value
od_attr
.
s
=
value
elif
isinstance
(
value
,
list
)
and
len
(
value
)
>
0
:
elif
isinstance
(
value
,
list
)
and
len
(
value
)
>
0
:
if
isinstance
(
value
,
bool
):
# bool.mro() = [bool, int, object]
if
isinstance
(
value
,
bool
):
# bool.mro() = [bool, int, object]
od_attr
.
type
=
framework_pb2
.
BOOLEANS
od_attr
.
type
=
framework_pb2
.
BOOLEANS
od_attr
.
bools
.
extend
(
value
)
od_attr
.
bools
.
extend
(
value
)
elif
isinstance
(
value
[
0
],
int
):
# only cast to int32 list
elif
isinstance
(
value
[
0
],
int
):
# only cast to int32 list
od_attr
.
type
=
framework_pb2
.
INTS
od_attr
.
type
=
framework_pb2
.
INTS
od_attr
.
ints
.
extend
(
value
)
od_attr
.
ints
.
extend
(
value
)
elif
isinstance
(
value
[
0
],
float
):
elif
isinstance
(
value
[
0
],
float
):
...
@@ -168,11 +165,8 @@ class Program(object):
...
@@ -168,11 +165,8 @@ class Program(object):
return
(
'Program(code mutable: {}) with:
\n
'
return
(
'Program(code mutable: {}) with:
\n
'
'codes: {}
\n
'
'codes: {}
\n
'
'op_descs: {}
\n
'
'op_descs: {}
\n
'
'var_descs: {}
\n
'
).
format
(
'var_descs: {}
\n
'
).
format
(
self
.
code_mutable
,
self
.
codes
,
self
.
code_mutable
,
self
.
op_descs
,
self
.
var_descs
)
self
.
codes
,
self
.
op_descs
,
self
.
var_descs
)
def
__repr__
(
self
):
def
__repr__
(
self
):
return
self
.
__str__
()
return
self
.
__str__
()
...
@@ -185,8 +179,11 @@ class Program(object):
...
@@ -185,8 +179,11 @@ class Program(object):
if
self
.
code_mutable
:
if
self
.
code_mutable
:
self
.
codes
.
append
(
code
)
self
.
codes
.
append
(
code
)
def
OpDesc
(
self
,
name
,
def
OpDesc
(
self
,
input_val_keys
=
None
,
output_val_keys
=
None
,
attrs
=
None
):
name
,
input_val_keys
=
None
,
output_val_keys
=
None
,
attrs
=
None
):
"""
"""
add OpDesc
add OpDesc
"""
"""
...
@@ -202,10 +199,15 @@ class Program(object):
...
@@ -202,10 +199,15 @@ class Program(object):
self
.
op_descs
.
append
(
desc
)
self
.
op_descs
.
append
(
desc
)
return
desc
return
desc
def
VarDesc
(
self
,
name
,
def
VarDesc
(
self
,
persistable
=
False
,
value_info
=
None
,
remove_batch
=
None
):
name
,
persistable
=
False
,
value_info
=
None
,
remove_batch
=
None
,
dummy_dtype
=
'float32'
):
"""
"""
add VarDesc
add VarDesc,
dummy_dtype: WORKAROUND for Netron viewer
"""
"""
var_desc
=
framework_pb2
.
VarDesc
()
var_desc
=
framework_pb2
.
VarDesc
()
...
@@ -213,14 +215,19 @@ class Program(object):
...
@@ -213,14 +215,19 @@ class Program(object):
var_desc
.
persistable
=
persistable
var_desc
.
persistable
=
persistable
var_desc
.
type
.
type
=
framework_pb2
.
VarType
.
LOD_TENSOR
var_desc
.
type
.
type
=
framework_pb2
.
VarType
.
LOD_TENSOR
# REMOVEIT: WORKAROUND: Netron: null.tensor error
tensor_desc
=
var_desc
.
type
.
lod_tensor
.
tensor
tensor_desc
.
data_type
=
self
.
Dtype
(
dummy_dtype
)
# required
if
value_info
and
'dtype'
in
value_info
:
if
value_info
and
'dtype'
in
value_info
:
tensor_desc
=
var_desc
.
type
.
lod_tensor
.
tensor
tensor_desc
=
var_desc
.
type
.
lod_tensor
.
tensor
tensor_desc
.
data_type
=
self
.
Dtype
(
value_info
[
'dtype'
])
# required
tensor_desc
.
data_type
=
self
.
Dtype
(
value_info
[
'dtype'
])
# required
if
'shape'
in
value_info
:
if
'shape'
in
value_info
:
tensor_desc
.
dims
.
extend
(
value_info
[
'shape'
])
tensor_desc
.
dims
.
extend
(
value_info
[
'shape'
])
if
len
(
value_info
[
'shape'
])
>
0
:
# skip scalars
if
len
(
value_info
[
'shape'
])
>
0
:
# skip scalars
if
remove_batch
is
None
:
if
remove_batch
is
None
:
remove_batch
=
value_info
.
get
(
'remove_batch'
,
not
persistable
)
remove_batch
=
value_info
.
get
(
'remove_batch'
,
not
persistable
)
if
remove_batch
:
if
remove_batch
:
tensor_desc
.
dims
[
0
]
=
-
1
tensor_desc
.
dims
[
0
]
=
-
1
...
@@ -231,7 +238,7 @@ class Program(object):
...
@@ -231,7 +238,7 @@ class Program(object):
convert an ONNX op and add it to program
convert an ONNX op and add it to program
"""
"""
if
domain
!=
''
:
# TODO: symbolic file routing by domain
if
domain
!=
''
:
# TODO: symbolic file routing by domain
raise
ValueError
(
'only default domain supported'
)
raise
ValueError
(
'only default domain supported'
)
if
op_type
in
symbolic
.
DEFAULT_OP_MAPPING
:
if
op_type
in
symbolic
.
DEFAULT_OP_MAPPING
:
...
@@ -240,8 +247,8 @@ class Program(object):
...
@@ -240,8 +247,8 @@ class Program(object):
fn
=
getattr
(
symbolic
,
op_type
)
fn
=
getattr
(
symbolic
,
op_type
)
fn
(
self
,
*
args
,
**
kwargs
)
fn
(
self
,
*
args
,
**
kwargs
)
else
:
else
:
raise
ValueError
(
'conversion for {}::{} not supported'
raise
ValueError
(
'conversion for {}::{} not supported'
.
format
(
.
format
(
domain
,
op_type
))
domain
,
op_type
))
def
IntermediateOp
(
self
,
domain
,
op_type
,
*
args
,
**
kwargs
):
def
IntermediateOp
(
self
,
domain
,
op_type
,
*
args
,
**
kwargs
):
"""
"""
...
@@ -267,14 +274,15 @@ class Writer(object):
...
@@ -267,14 +274,15 @@ class Writer(object):
CODE_INDENT
=
' '
*
4
CODE_INDENT
=
' '
*
4
@
staticmethod
@
staticmethod
def
header_code
(
func_name
):
def
header_code
(
func_name
,
info
=
''
):
"""
"""
Python header codes
Python header codes
"""
"""
codes
=
list
()
codes
=
list
()
codes
.
append
(
'"""'
)
codes
.
append
(
'"""'
)
codes
.
append
(
'This code is generated by onnx2paddle.'
)
codes
.
append
(
'This code is generated by onnx2fluid.'
)
codes
.
append
(
'{}'
.
format
(
info
))
codes
.
append
(
'"""'
)
codes
.
append
(
'"""'
)
codes
.
append
(
''
)
codes
.
append
(
''
)
codes
.
append
(
'from __future__ import division'
)
codes
.
append
(
'from __future__ import division'
)
...
@@ -287,16 +295,25 @@ class Writer(object):
...
@@ -287,16 +295,25 @@ class Writer(object):
return
codes
return
codes
@
staticmethod
@
staticmethod
def
emit_op
(
prog
,
name
,
domain
,
op_type
,
inputs
,
outputs
,
attrs
,
value_infos
,
*
args
,
**
kwargs
):
def
emit_op
(
prog
,
name
,
domain
,
op_type
,
inputs
,
outputs
,
attrs
,
value_infos
,
*
args
,
**
kwargs
):
"""
"""
emit an ONNX op into program
emit an ONNX op into program
"""
"""
prog
.
Code
(
'# {}, {}::{}: {} -> {}, {}'
prog
.
Code
(
'# {}, {}::{}: {} -> {}, {}'
.
format
(
name
,
domain
,
op_type
,
.
format
(
name
,
domain
,
op_type
,
inputs
,
outputs
,
_irepr
(
attrs
,
to
=
', '
)))
inputs
,
outputs
,
prog
.
Op
(
domain
,
op_type
,
inputs
,
outputs
,
attrs
,
_irepr
(
attrs
,
to
=
', '
)))
value_infos
=
value_infos
,
name
=
name
,
prog
.
Op
(
*
args
,
**
kwargs
)
domain
,
op_type
,
inputs
,
outputs
,
attrs
,
value_infos
=
value_infos
,
name
=
name
,
*
args
,
**
kwargs
)
@
staticmethod
@
staticmethod
def
emit_param
(
prog
,
name
,
value_info
):
def
emit_param
(
prog
,
name
,
value_info
):
...
@@ -313,18 +330,18 @@ class Writer(object):
...
@@ -313,18 +330,18 @@ class Writer(object):
var_name
=
make_var_name
(
name
)
var_name
=
make_var_name
(
name
)
attr_name
=
make_attr_name
(
name
)
attr_name
=
make_attr_name
(
name
)
prog
.
Code
(
'# parameter: {}'
.
format
(
name
))
prog
.
Code
(
'# parameter: {}'
.
format
(
name
))
prog
.
Code
(
'{} = ParamAttr(name={})'
# , trainable=True
prog
.
Code
(
'{} = ParamAttr(name={})'
# , trainable=True
.
format
(
attr_name
,
repr
(
var_name
)))
.
format
(
attr_name
,
repr
(
var_name
)))
prog
.
Code
(
'{} = layers.create_parameter(shape={}, dtype={}, name={}, attr={}'
prog
.
Code
(
', default_initializer=initializer.Constant(0))'
#, is_bias={}
'{} = layers.create_parameter(shape={}, dtype={}, name={}, attr={}'
.
format
(
var_name
,
', default_initializer=initializer.Constant(0))'
#, is_bias={}
value_info
[
'shape'
],
repr
(
value_info
[
'dtype'
].
name
),
.
format
(
var_name
,
value_info
[
'shape'
],
repr
(
name
),
attr_name
))
#, value_info.get('is_bias', False)))
repr
(
value_info
[
'dtype'
].
name
),
repr
(
name
),
attr_name
))
#, value_info.get('is_bias', False)))
prog
.
VarDesc
(
var_name
,
persistable
=
True
,
value_info
=
value_info
)
prog
.
VarDesc
(
var_name
,
persistable
=
True
,
value_info
=
value_info
)
@
staticmethod
@
staticmethod
def
emit_inputs
(
prog
,
names
,
value_infos
,
def
emit_inputs
(
prog
,
names
,
value_infos
,
remove_batch
=
None
):
remove_batch
=
None
):
"""
"""
emit ONNX inputs into program
emit ONNX inputs into program
"""
"""
...
@@ -334,27 +351,33 @@ class Writer(object):
...
@@ -334,27 +351,33 @@ class Writer(object):
value_info
=
value_infos
[
name
]
value_info
=
value_infos
[
name
]
shape
=
value_info
[
'shape'
]
shape
=
value_info
[
'shape'
]
if
remove_batch
is
None
:
if
remove_batch
is
None
:
remove_batch
=
value_info
.
get
(
'remove_batch'
,
True
)
# HINT: True by default ?
remove_batch
=
value_info
.
get
(
'remove_batch'
,
True
)
# HINT: True by default ?
if
remove_batch
:
if
remove_batch
:
shape
=
shape
[
1
:]
shape
=
shape
[
1
:]
prog
.
Code
(
'# input: {}'
.
format
(
name
))
prog
.
Code
(
'# input: {}'
.
format
(
name
))
prog
.
Code
((
'{} = layers.data(name={}, shape={}, dtype={}, '
prog
.
Code
((
'append_batch_size={})'
# , stop_gradient=True
'{} = layers.data(name={}, shape={}, dtype={}, '
).
format
(
var_name
,
repr
(
name
),
'append_batch_size={})'
# , stop_gradient=True
shape
,
).
format
(
repr
(
value_info
[
'dtype'
].
name
),
var_name
,
remove_batch
,
repr
(
name
),
))
shape
,
prog
.
OpDesc
(
'feed'
,
repr
(
value_info
[
'dtype'
].
name
),
([
'feed'
],
'X'
),
remove_batch
,
([
var_name
],
'Out'
),
))
dict
(
col
=
idx
),
prog
.
OpDesc
(
)
'feed'
,
prog
.
VarDesc
(
var_name
,
value_info
=
value_info
,
remove_batch
=
remove_batch
)
([
'feed'
],
'X'
),
([
var_name
],
'Out'
),
dict
(
col
=
idx
),
)
prog
.
VarDesc
(
var_name
,
value_info
=
value_info
,
remove_batch
=
remove_batch
)
@
staticmethod
@
staticmethod
def
emit_outputs
(
prog
,
names
):
#, value_infos
def
emit_outputs
(
prog
,
names
):
#, value_infos
"""
"""
emit ONNX outputs into program
emit ONNX outputs into program
"""
"""
...
@@ -364,11 +387,12 @@ class Writer(object):
...
@@ -364,11 +387,12 @@ class Writer(object):
var_name
=
make_var_name
(
name
)
var_name
=
make_var_name
(
name
)
code
+=
var_name
+
', '
code
+=
var_name
+
', '
prog
.
OpDesc
(
'fetch'
,
prog
.
OpDesc
(
([
var_name
],
'X'
),
'fetch'
,
([
'fetch'
],
'Out'
),
([
var_name
],
'X'
),
dict
(
col
=
idx
),
([
'fetch'
],
'Out'
),
)
dict
(
col
=
idx
),
)
# var is emitted over ops
# var is emitted over ops
prog
.
Code
(
code
)
prog
.
Code
(
code
)
...
@@ -396,9 +420,9 @@ class Writer(object):
...
@@ -396,9 +420,9 @@ class Writer(object):
tensor_desc
.
dims
.
extend
(
weight
.
shape
)
tensor_desc
.
dims
.
extend
(
weight
.
shape
)
fp
=
open
(
filename
,
'wb'
)
fp
=
open
(
filename
,
'wb'
)
np
.
array
([
0
],
dtype
=
np
.
int32
).
tofile
(
fp
)
# version
np
.
array
([
0
],
dtype
=
np
.
int32
).
tofile
(
fp
)
# version
np
.
array
([
0
],
dtype
=
np
.
int64
).
tofile
(
fp
)
# LOD level
np
.
array
([
0
],
dtype
=
np
.
int64
).
tofile
(
fp
)
# LOD level
np
.
array
([
0
],
dtype
=
np
.
int32
).
tofile
(
fp
)
# tensor version
np
.
array
([
0
],
dtype
=
np
.
int32
).
tofile
(
fp
)
# tensor version
np
.
array
([
tensor_desc
.
ByteSize
()],
dtype
=
np
.
int32
).
tofile
(
fp
)
np
.
array
([
tensor_desc
.
ByteSize
()],
dtype
=
np
.
int32
).
tofile
(
fp
)
fp
.
write
(
tensor_desc
.
SerializeToString
())
fp
.
write
(
tensor_desc
.
SerializeToString
())
weight
.
tofile
(
fp
)
weight
.
tofile
(
fp
)
...
@@ -463,4 +487,4 @@ class Writer(object):
...
@@ -463,4 +487,4 @@ class Writer(object):
fp
=
open
(
filename
,
'wb'
)
fp
=
open
(
filename
,
'wb'
)
fp
.
write
(
prog_desc
.
SerializeToString
())
fp
.
write
(
prog_desc
.
SerializeToString
())
fp
.
close
()
fp
.
close
()
logger
.
debug
(
'saved descs to %s'
,
filename
)
logger
.
debug
(
'saved descs to %s'
,
filename
)
\ No newline at end of file
onnx2
paddle
/requirements.txt
→
onnx2
fluid
/requirements.txt
浏览文件 @
2228423e
-e .
-e .
onnx>=1.4.0
onnx>=1.4.0
paddlepaddle
paddlepaddle
\ No newline at end of file
onnx2
paddle
/setup.cfg
→
onnx2
fluid
/setup.cfg
浏览文件 @
2228423e
...
@@ -2,14 +2,14 @@
...
@@ -2,14 +2,14 @@
# https://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files
# https://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files
[metadata]
[metadata]
# 项目名称,发布、安装时以此作为包名
# 项目名称,发布、安装时以此作为包名
name = onnx2
paddle
name = onnx2
fluid
# 作者姓名和邮箱地址
# 作者姓名和邮箱地址
author = Macrobull
author = Macrobull
# author_email = .Github@github.com
# author_email = .Github@github.com
# 项目版本号,1.0以上版本才视为正式版
# 项目版本号,1.0以上版本才视为正式版
version = 0.1.0
version = 0.1.0
# 项目概要描述信息,一句话让用户明白项目概要,不支持中文
# 项目概要描述信息,一句话让用户明白项目概要,不支持中文
description = Inference model conversion from ONNX/PyTorch to Paddle
description = Inference model conversion from ONNX/PyTorch to Paddle
fluid
# 项目的详细描述内容和格式,包括readme和changelog等,通常使用md或rst等格式
# 项目的详细描述内容和格式,包括readme和changelog等,通常使用md或rst等格式
long_description = file: README.md, CHANGELOG.md
long_description = file: README.md, CHANGELOG.md
long_description_content_type = text/markdown
long_description_content_type = text/markdown
...
@@ -25,7 +25,7 @@ classifier =
...
@@ -25,7 +25,7 @@ classifier =
Programming Language :: Python :: 3.5
Programming Language :: Python :: 3.5
# 关键字,用于检索,方便用户搜索到你的项目
# 关键字,用于检索,方便用户搜索到你的项目
keywords =
keywords =
onnx paddle
onnx paddle
paddle
[options]
[options]
# 包名称,find:表示自动寻找,可在options.packages.find中进行详细配置
# 包名称,find:表示自动寻找,可在options.packages.find中进行详细配置
...
@@ -44,21 +44,21 @@ install_requires =
...
@@ -44,21 +44,21 @@ install_requires =
# mock
# mock
# 单测代码目录
# 单测代码目录
#test_suite = onnx2
paddle
.tests
#test_suite = onnx2
fluid
.tests
# 自动添加被版本控制的数据文件
# 自动添加被版本控制的数据文件
include_package_data = True
include_package_data = True
# 项目是纯py项目,可以直接执行zip源码包
# 项目是纯py项目,可以直接执行zip源码包
zip_safe = False
zip_safe = False
# 可以通过以下配置将指定的函数变成命令行工具,允许用户直接执行
# 可以通过以下配置将指定的函数变成命令行工具,允许用户直接执行
#
[options.entry_points]
[options.entry_points]
#
console_scripts =
console_scripts =
# onnx2paddle = onnx2paddle
.cmdline:main
onnx2fluid = onnx2fluid
.cmdline:main
# 可以通过以下配置向包中添加conf或data等非py文件,安装时会一同安装到site-packages目录下
# 可以通过以下配置向包中添加conf或data等非py文件,安装时会一同安装到site-packages目录下
# 仅支持文件,不支持目录,但可以使用通配
# 仅支持文件,不支持目录,但可以使用通配
#[options.package_data]
#[options.package_data]
#onnx2
paddle
=
#onnx2
fluid
=
# conf/*
# conf/*
# data/*
# data/*
...
...
onnx2
paddle
/setup.py
→
onnx2
fluid
/setup.py
浏览文件 @
2228423e
...
@@ -15,4 +15,3 @@ Date: 2019/02/22 10:25:46
...
@@ -15,4 +15,3 @@ Date: 2019/02/22 10:25:46
import
setuptools
import
setuptools
setuptools
.
setup
()
setuptools
.
setup
()
onnx2paddle/onnx2paddle/framework_pb2.py
已删除
100644 → 0
浏览文件 @
a4796334
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录