Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
20a14d29
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
20a14d29
编写于
9月 20, 2019
作者:
M
mamingjie-China
提交者:
GitHub
9月 20, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4 from PaddlePaddle/develop
更新数据
上级
f0166f39
31140398
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
338 addition
and
17 deletion
+338
-17
README.md
README.md
+4
-11
x2paddle/convert.py
x2paddle/convert.py
+6
-2
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+31
-0
x2paddle/op_mapper/tf_op_mapper.py
x2paddle/op_mapper/tf_op_mapper.py
+22
-1
x2paddle/optimizer/tf_optimizer.py
x2paddle/optimizer/tf_optimizer.py
+275
-3
未找到文件。
README.md
浏览文件 @
20a14d29
...
...
@@ -19,9 +19,11 @@ onnx : onnx == 1.5.0 onnxruntime == 0.4.0
## 安装
### 安装方式一(推荐)
使用最新的代码版本,可使用如下方式进行安装
```
pip install git+https://github.com/PaddlePaddle/X2Paddle.git@develop
git clone https://github.com/PaddlePaddle/X2Paddle.git
cd X2Paddle
git checkout develop
python setup.py install
```
### 安装方式二
...
...
@@ -29,15 +31,6 @@ pip install git+https://github.com/PaddlePaddle/X2Paddle.git@develop
```
pip install x2paddle
```
### 安装方式三
```
git clone https://github.com/PaddlePaddle/X2Paddle.git
cd X2Paddle
git checkout develop
python setup.py install
```
## 使用方法
### TensorFlow
```
...
...
x2paddle/convert.py
浏览文件 @
20a14d29
...
...
@@ -104,10 +104,14 @@ def tf2paddle(model_path,
# neccesary optimization
optimizer
.
delete_redundance_code
()
# optimizer below is experimental
optimizer
.
optimize_elementwise_op
()
optimizer
.
merge_activation
()
optimizer
.
merge_bias
()
optimizer
.
merge_batch_norm
()
optimizer
.
merge_prelu
()
optimizer
.
optimize_sub_graph
()
# optimizer.merge_batch_norm()
# optimizer.merge_prelu()
else
:
mapper
=
TFOpMapperNHWC
(
model
)
optimizer
=
TFOptimizer
(
mapper
)
...
...
x2paddle/decoder/tf_decoder.py
浏览文件 @
20a14d29
...
...
@@ -60,6 +60,15 @@ class TFGraphNode(GraphNode):
raise
Exception
(
"Dtype[{}] not in dtype_map"
.
format
(
dtype
))
return
self
.
dtype_map
[
dtype
]
@
property
def
raw_dtype
(
self
):
keys
=
[
'dtype'
,
'Tidx'
,
'T'
,
'DstT'
]
for
k
in
keys
:
dtype
=
self
.
layer
.
attr
[
k
].
type
if
dtype
>
0
:
break
return
dtype
@
property
def
value
(
self
):
assert
self
.
layer_type
==
"Const"
,
"Only Const node has value."
...
...
@@ -120,6 +129,7 @@ class TFGraph(Graph):
# tensorflow graph optimize
self
.
_remove_isolated_node
()
self
.
_remove_identity_node
()
self
.
_remove_cast_node
()
def
get_node
(
self
,
node_name
,
copy
=
False
):
items
=
node_name
.
strip
().
split
(
':'
)
...
...
@@ -190,6 +200,27 @@ class TFGraph(Graph):
idx
=
self
.
output_nodes
.
index
(
node_name
)
self
.
output_nodes
[
idx
]
=
input_node
.
layer_name
def
_remove_cast_node
(
self
):
cast_node
=
list
()
for
node_name
,
node
in
self
.
node_map
.
items
():
if
node
.
layer_type
==
"Cast"
:
input
=
self
.
get_node
(
node
.
inputs
[
0
])
if
input
.
layer_type
!=
"Placeholder"
or
len
(
input
.
outputs
)
!=
1
:
continue
cast_node
.
append
(
node_name
)
for
node_name
in
cast_node
:
node
=
self
.
get_node
(
node_name
)
input_node
=
self
.
get_node
(
node
.
inputs
[
0
])
input_node
.
layer
.
attr
[
"dtype"
].
type
=
node
.
raw_dtype
self
.
remove_node
(
node_name
)
self
.
identity_map
[
node_name
]
=
input_node
.
layer_name
if
node_name
in
self
.
output_nodes
:
idx
=
self
.
output_nodes
.
index
(
node_name
)
self
.
output_nodes
[
idx
]
=
input_node
.
layer_name
def
data_format_propagation
(
self
,
node
):
current_node
=
self
.
node_map
[
node
.
layer_name
]
current_node
=
node
.
tf_data_format
...
...
x2paddle/op_mapper/tf_op_mapper.py
浏览文件 @
20a14d29
...
...
@@ -170,7 +170,28 @@ class TFOpMapper(OpMapper):
x_shape
=
y
.
out_shapes
[
0
]
y_shape
=
x
.
out_shapes
[
0
]
else
:
raise
Exception
(
"Unexpected situation happend"
)
if
len
(
x_shape
)
==
1
and
len
(
y_shape
)
==
4
and
x_shape
[
0
]
==
y_shape
[
-
1
]
and
y_shape
.
count
(
-
1
)
<
1
:
shape
=
[
1
,
x_shape
[
0
],
1
,
1
]
attr
=
{
"shape"
:
shape
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
x_input
,
output
=
"reshape_x"
,
param_attr
=
attr
)
if
y_shape
[
0
]
!=
1
:
attr
=
{
"expand_times"
:
[
y_shape
[
0
],
1
,
1
,
1
]}
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
"reshape_x"
,
output
=
"reshape_x"
,
param_attr
=
attr
)
inputs
=
{
"x"
:
"reshape_x"
,
"y"
:
y_input
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
return
else
:
raise
Exception
(
"Unexpected situation happend"
)
if
len
(
x_shape
)
==
4
and
len
(
y_shape
)
==
1
:
if
x_input
.
tf_data_format
==
"NHWC"
:
...
...
x2paddle/optimizer/tf_optimizer.py
浏览文件 @
20a14d29
...
...
@@ -16,10 +16,20 @@
from
x2paddle.op_mapper.tf_op_mapper
import
TFOpMapper
from
x2paddle.core.fluid_code
import
Layer
from
x2paddle.core.util
import
*
import
six
import
numpy
import
copy
as
cp
def
exist_act
(
node
):
for
layer
in
node
.
fluid_code
.
layers
:
if
layer
.
param_attr
is
not
None
:
act
=
layer
.
param_attr
.
get
(
"act"
,
None
)
if
act
is
not
None
:
return
True
return
False
class
TFOptimizer
(
object
):
activation_ops
=
{
'Relu'
:
'relu'
,
...
...
@@ -95,6 +105,59 @@ class TFOptimizer(object):
del
out_node
.
inputs
[
index
]
del
self
.
graph
.
node_map
[
node_name
]
def
optimize_elementwise_op
(
self
):
elementwise_ops
=
[
'Sub'
,
'Add'
,
'RealDiv'
,
'Maximum'
,
'Mul'
,
'FloorDiv'
,
'GreaterEqual'
]
revertable_ops
=
[
'Add'
,
'Mul'
]
for
node_name
in
self
.
graph
.
topo_sort
:
node
=
self
.
graph
.
get_node
(
node_name
)
if
node
is
None
:
continue
if
node
.
layer_type
in
elementwise_ops
:
if
len
(
node
.
fluid_code
.
layers
)
!=
2
:
continue
if
node
.
fluid_code
.
layers
[
0
].
op
!=
"expand"
:
continue
expand_out
=
node
.
fluid_code
.
layers
[
0
].
output
expand_in
=
node
.
fluid_code
.
layers
[
0
].
inputs
expand_times
=
node
.
fluid_code
.
layers
[
0
].
param_attr
[
"expand_times"
]
x
=
node
.
fluid_code
.
layers
[
1
].
inputs
[
"x"
]
y
=
node
.
fluid_code
.
layers
[
1
].
inputs
[
"y"
]
if
isinstance
(
x
,
six
.
string_types
)
and
node
.
layer_type
in
revertable_ops
:
node
.
fluid_code
.
layers
[
1
].
inputs
[
"y"
]
=
x
node
.
fluid_code
.
layers
[
1
].
inputs
[
"x"
]
=
y
x
=
node
.
fluid_code
.
layers
[
1
].
inputs
[
"x"
]
y
=
expand_in
elif
isinstance
(
y
,
six
.
string_types
):
y
=
expand_in
else
:
continue
x_shape
=
x
.
out_shapes
[
0
]
y_shape
=
y
.
out_shapes
[
0
]
if
len
(
x_shape
)
!=
len
(
y_shape
):
continue
if
len
(
x_shape
)
==
4
:
x_shape
=
[
x_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
y_shape
=
[
y_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
continue_flag
=
True
for
i
in
range
(
len
(
x_shape
)):
if
y_shape
[
-
1
*
(
i
+
1
)]
==
1
and
continue_flag
:
expand_times
[
-
1
*
(
i
+
1
)]
=
1
else
:
continue_flag
=
False
if
expand_times
.
count
(
1
)
==
len
(
expand_times
):
node
.
fluid_code
.
layers
[
1
].
inputs
[
"y"
]
=
expand_in
del
node
.
fluid_code
.
layers
[
0
]
def
merge_activation
(
self
):
act_nodes
=
list
()
for
node_name
in
self
.
graph
.
topo_sort
:
...
...
@@ -353,6 +416,12 @@ class TFOptimizer(object):
node
.
fluid_code
.
layers
[
-
2
].
output
=
name
del
node
.
fluid_code
.
layers
[
-
1
]
def
optimize_sub_graph
(
self
):
self
.
merge_batch_norm
()
self
.
merge_prelu
()
self
.
merge_scale
()
self
.
merge_affine_channel
()
def
merge_batch_norm
(
self
):
for
i
,
name
in
enumerate
(
self
.
graph
.
topo_sort
):
node
=
self
.
graph
.
get_node
(
name
)
...
...
@@ -368,6 +437,10 @@ class TFOptimizer(object):
is_batch_norm
=
False
continue
if
exist_act
(
in_nodes0
[
0
])
or
exist_act
(
in_nodes0
[
1
]):
is_batch_norm
=
False
continue
in_nodes1
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes0
[
0
].
inputs
...
...
@@ -382,11 +455,17 @@ class TFOptimizer(object):
if
in_nodes1
[
1
].
layer_type
!=
"Mul"
:
is_batch_norm
=
False
continue
if
exist_act
(
in_nodes1
[
1
]):
is_batch_norm
=
False
continue
if
in_nodes2
[
0
].
layer_type
!=
"Const"
or
in_nodes2
[
1
].
layer_type
!=
"Mul"
:
is_batch_norm
=
False
continue
if
exist_act
(
in_nodes2
[
1
]):
is_batch_norm
=
False
continue
in_nodes3
=
[
self
.
graph
.
get_node
(
in_name
)
...
...
@@ -410,6 +489,9 @@ class TFOptimizer(object):
if
in_nodes5
.
layer_type
!=
"Add"
:
is_batch_norm
=
False
continue
if
exist_act
(
in_nodes5
):
is_batch_norm
=
False
continue
in_nodes6
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes5
.
inputs
...
...
@@ -485,10 +567,9 @@ class TFOptimizer(object):
if
is_batch_norm
:
index
=
in_nodes1
[
0
].
outputs
.
index
(
in_nodes0
[
0
].
layer_name
)
del
in_nodes1
[
0
].
outputs
[
index
]
in_nodes1
[
0
].
outputs
[
index
]
=
node
.
layer_name
node
.
layer_type
=
"FusedBatchNorm"
node
.
inputs
=
[
in_nodes1
[
0
].
layer_name
]
node
.
outputs
=
node
.
outputs
act
=
node
.
fluid_code
.
layers
[
-
1
].
param_attr
.
get
(
"act"
,
None
)
node
.
fluid_code
.
clear
()
attr
=
{
...
...
@@ -522,6 +603,9 @@ class TFOptimizer(object):
continue
is_prelu
=
True
if
node
.
layer_type
==
"Add"
:
if
exist_act
(
node
):
is_prelu
=
False
continue
in_nodes0
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
node
.
inputs
]
...
...
@@ -529,6 +613,10 @@ class TFOptimizer(object):
1
].
layer_type
!=
"Mul"
:
is_prelu
=
False
continue
if
exist_act
(
in_nodes0
[
1
]):
is_prelu
=
False
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
].
outputs
)
!=
1
:
is_prelu
=
False
...
...
@@ -546,6 +634,9 @@ class TFOptimizer(object):
if
in_nodes2
[
0
].
layer_type
!=
"Mul"
:
is_prelu
=
False
continue
if
exist_act
(
in_nodes2
[
0
]):
is_prelu
=
False
continue
if
len
(
in_nodes2
[
1
].
outputs
)
!=
1
or
len
(
in_nodes2
[
0
].
outputs
)
!=
1
:
is_prelu
=
False
...
...
@@ -559,6 +650,9 @@ class TFOptimizer(object):
1
].
layer_type
!=
"Sub"
:
is_prelu
=
False
continue
if
exist_act
(
in_nodes3
[
1
]):
is_prelu
=
False
continue
if
len
(
in_nodes3
[
0
].
outputs
)
!=
1
or
len
(
in_nodes3
[
1
].
outputs
)
!=
1
:
is_prelu
=
False
...
...
@@ -638,10 +732,10 @@ class TFOptimizer(object):
del
in_nodes1
.
outputs
[
index
]
index
=
in_nodes1
.
outputs
.
index
(
in_nodes4
[
1
].
layer_name
)
del
in_nodes1
.
outputs
[
index
]
in_nodes1
.
outputs
.
append
(
node
.
layer_name
)
node
.
layer_type
=
"Prelu"
node
.
inputs
=
[
in_nodes1
.
layer_name
]
node
.
outputs
=
node
.
outputs
act
=
node
.
fluid_code
.
layers
[
-
1
].
param_attr
.
get
(
"act"
,
None
)
node
.
fluid_code
.
clear
()
attr
=
{
...
...
@@ -660,3 +754,181 @@ class TFOptimizer(object):
del
self
.
graph
.
node_map
[
in_nodes2
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes3
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes4
[
1
].
layer_name
]
def
merge_scale
(
self
):
for
i
,
name
in
enumerate
(
self
.
graph
.
topo_sort
):
node
=
self
.
graph
.
get_node
(
name
)
if
node
is
None
:
continue
is_scale
=
True
if
node
.
layer_type
==
"Sub"
:
in_nodes0
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
node
.
inputs
]
if
in_nodes0
[
0
].
layer_type
!=
"Mul"
or
in_nodes0
[
1
].
layer_type
!=
"Const"
or
in_nodes0
[
1
].
value
.
size
!=
1
:
is_scale
=
False
continue
if
exist_act
(
in_nodes0
[
0
]):
is_scale
=
False
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
].
outputs
)
!=
1
:
is_scale
=
False
continue
in_nodes1
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes0
[
0
].
inputs
]
if
in_nodes1
[
0
].
layer_type
!=
"Const"
or
in_nodes1
[
1
].
layer_type
!=
"RealDiv"
or
in_nodes1
[
0
].
value
.
size
!=
1
:
is_scale
=
False
continue
if
exist_act
(
in_nodes1
[
1
]):
is_scale
=
False
continue
if
len
(
in_nodes1
[
0
].
outputs
)
!=
1
or
len
(
in_nodes1
[
1
].
outputs
)
!=
1
:
is_scale
=
False
continue
in_nodes2
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes1
[
1
].
inputs
]
if
in_nodes2
[
1
].
layer_type
!=
"Const"
or
in_nodes2
[
1
].
value
.
size
!=
1
:
is_scale
=
False
continue
if
is_scale
:
in_node
=
self
.
graph
.
get_node
(
in_nodes1
[
1
].
inputs
[
0
])
index
=
in_node
.
outputs
.
index
(
in_nodes1
[
1
].
layer_name
)
in_node
.
outputs
[
index
]
=
node
.
layer_name
node
.
layer_type
=
"Scale"
node
.
inputs
=
[
in_node
.
layer_name
]
scale
=
1.0
/
in_nodes2
[
1
].
value
*
in_nodes1
[
0
].
value
act
=
None
if
node
.
fluid_code
.
layers
[
0
].
param_attr
is
not
None
:
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
"act"
,
None
)
node
.
fluid_code
.
clear
()
attr
=
{
"scale"
:
scale
,
"bias"
:
in_nodes0
[
1
].
value
,
"bias_after_scale"
:
True
,
"act"
:
act
}
node
.
fluid_code
.
add_layer
(
"scale"
,
inputs
=
in_node
,
output
=
node
,
param_attr
=
attr
)
del
self
.
graph
.
node_map
[
in_nodes0
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes1
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes1
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes2
[
1
].
layer_name
]
def
merge_affine_channel
(
self
):
for
i
,
name
in
enumerate
(
self
.
graph
.
topo_sort
):
node
=
self
.
graph
.
get_node
(
name
)
if
node
is
None
:
continue
is_affine_channel
=
True
if
node
.
layer_type
==
"RealDiv"
:
in_nodes0
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
node
.
inputs
]
bias_add
=
True
if
(
in_nodes0
[
0
].
layer_type
!=
"Sub"
and
in_nodes0
[
0
].
layer_type
!=
"Add"
)
or
in_nodes0
[
1
].
layer_type
!=
"Const"
or
len
(
in_nodes0
[
1
].
value
.
shape
)
!=
3
:
is_affine_channel
=
False
continue
if
in_nodes0
[
0
].
layer_type
==
"Sub"
:
bias_add
=
False
if
exist_act
(
in_nodes0
[
0
]):
is_affine_channel
=
False
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
].
outputs
)
!=
1
:
is_affine_channel
=
False
continue
in_nodes1
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes0
[
0
].
inputs
]
if
len
(
in_nodes1
[
0
].
out_shapes
[
0
]
)
!=
4
or
in_nodes1
[
1
].
layer_type
!=
"Const"
or
len
(
in_nodes1
[
1
].
value
.
shape
)
!=
3
:
is_affine_channel
=
False
continue
if
len
(
in_nodes1
[
1
].
outputs
)
!=
1
:
is_affine_channel
=
False
continue
channel
=
in_nodes1
[
0
].
out_shapes
[
0
][
-
1
]
if
channel
<
0
or
channel
!=
in_nodes0
[
1
].
value
.
size
or
channel
!=
in_nodes1
[
1
].
value
.
size
:
is_affine_channel
=
False
continue
if
in_nodes0
[
1
].
out_shapes
[
0
][
-
1
]
!=
in_nodes0
[
1
].
value
.
size
or
in_nodes1
[
1
].
out_shapes
[
0
][
-
1
]
!=
in_nodes1
[
1
].
value
.
size
:
is_affine_channel
=
False
continue
if
is_affine_channel
:
in_node
=
in_nodes1
[
0
]
index
=
in_node
.
outputs
.
index
(
in_nodes0
[
0
].
layer_name
)
in_node
.
outputs
[
index
]
=
node
.
layer_name
node
.
layer_type
=
"AffineChannel"
node
.
inputs
=
[
in_node
.
layer_name
]
scale
=
1.0
/
in_nodes0
[
1
].
value
.
flatten
()
bias
=
in_nodes1
[
1
].
value
.
flatten
(
)
/
in_nodes0
[
1
].
value
.
flatten
()
if
not
bias_add
:
bias
*=
-
1.0
self
.
op_mapper
.
weights
[
node
.
layer_name
+
"_scale"
]
=
scale
self
.
op_mapper
.
weights
[
node
.
layer_name
+
"_bias"
]
=
bias
act
=
None
if
node
.
fluid_code
.
layers
[
0
].
param_attr
is
not
None
:
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
"act"
,
None
)
node
.
fluid_code
.
clear
()
attr
=
{
"dtype"
:
string
(
scale
.
dtype
),
"shape"
:
[
channel
],
"name"
:
string
(
node
.
layer_name
+
"_scale"
)
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
"_scale"
,
param_attr
=
attr
)
attr
=
{
"dtype"
:
string
(
scale
.
dtype
),
"shape"
:
[
channel
],
"name"
:
string
(
node
.
layer_name
+
"_bias"
)
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
"_bias"
,
param_attr
=
attr
)
inputs
=
{
"x"
:
in_node
,
"scale"
:
node
.
layer_name
+
"_scale"
,
"bias"
:
node
.
layer_name
+
"_bias"
}
attr
=
{
"act"
:
act
}
node
.
fluid_code
.
add_layer
(
"affine_channel"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
del
self
.
graph
.
node_map
[
in_nodes0
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes1
[
1
].
layer_name
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录