未验证 提交 208a2821 编写于 作者: J Jason 提交者: GitHub

Merge pull request #836 from wjj19950828/add_autoscan_test

Add autoscan test
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import unittest
import os
import time
import logging
import paddle
import hypothesis
from hypothesis import given, settings, seed, reproduce_failure
import hypothesis.strategies as st
from onnxbase import ONNXConverter, randtool
from itertools import product
import copy
from inspect import isfunction
paddle.set_device("cpu")
logging.basicConfig(level=logging.INFO, format="%(message)s")
settings.register_profile(
"ci",
max_examples=100,
suppress_health_check=hypothesis.HealthCheck.all(),
deadline=None,
print_blob=True,
derandomize=True,
report_multiple_bugs=False)
settings.register_profile(
"dev",
max_examples=1000,
suppress_health_check=hypothesis.HealthCheck.all(),
deadline=None,
print_blob=True,
derandomize=True,
report_multiple_bugs=False)
if float(os.getenv('TEST_NUM_PERCENT_CASES', default='1.0')) < 1 or \
os.getenv('HYPOTHESIS_TEST_PROFILE', 'dev') == 'ci':
settings.load_profile("ci")
else:
settings.load_profile("dev")
class OPConvertAutoScanTest(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(OPConvertAutoScanTest, self).__init__(*args, **kwargs)
np.random.seed(1024)
paddle.enable_static()
self.num_ran_tests = 0
self.num_ignore_tests = 0
def add_ignore_test_case(self, configs):
return
def run_and_statis(self,
max_examples=100,
min_opset_version=7,
reproduce=None,
min_success_num=25,
max_duration=-1):
if os.getenv("CE_STAGE", "OFF") == "ON":
max_examples *= 10
min_success_num *= 10
# while at ce phase, there's no limit on time
max_duration = -1
start_time = time.time()
settings.register_profile(
"ci",
max_examples=max_examples,
suppress_health_check=hypothesis.HealthCheck.all(),
deadline=None,
print_blob=True,
derandomize=True,
report_multiple_bugs=False, )
settings.load_profile("ci")
def sample_convert_generator(draw):
return self.sample_convert_config(draw)
def run_test(configs):
return self.run_test(configs=configs)
generator = st.composite(sample_convert_generator)
loop_func = given(generator())(run_test)
if reproduce is not None:
loop_func = reproduce(loop_func)
logging.info("Start to running test of {}".format(type(self)))
paddle.disable_static()
loop_func()
logging.info(
"===================Statistical Information===================")
logging.info("Number of Generated Programs: {}".format(
self.num_ran_tests))
logging.info("Number of Ignore Programs: {}".format(
self.num_ignore_tests))
successful_ran_programs = int(self.num_ran_tests -
self.num_ignore_tests)
if successful_ran_programs < min_success_num:
logging.warning("satisfied_programs = ran_programs")
logging.error(
"At least {} programs need to ran successfully, but now only about {} programs satisfied.".
format(min_success_num, successful_ran_programs))
assert False
used_time = time.time() - start_time
logging.info("Used time: {} s".format(round(used_time, 2)))
if max_duration > 0 and used_time > max_duration:
logging.error(
"The duration exceeds {} seconds, if this is neccessary, try to set a larger number for parameter `max_duration`.".
format(max_duration))
assert False
def run_test(self, configs):
config, attrs = configs
logging.info("Run configs: {}".format(config))
logging.info("Run attrs: {}".format(attrs))
assert "op_names" in config.keys(
), "config must include op_names in dict keys"
assert "test_data_shapes" in config.keys(
), "config must include test_data_shapes in dict keys"
assert "test_data_types" in config.keys(
), "config must include test_data_types in dict keys"
assert "min_opset_version" in config.keys(
), "config must include min_opset_version in dict keys"
assert "inputs_name" in config.keys(
), "config must include inputs_name in dict keys"
assert "outputs_name" in config.keys(
), "config must include outputs_name in dict keys"
assert "inputs_shape" in config.keys(
), "config must include inputs_shape in dict keys"
op_names = config["op_names"]
test_data_shapes = config["test_data_shapes"]
test_data_types = config["test_data_types"]
min_opset_version = config["min_opset_version"]
inputs_name = config["inputs_name"]
outputs_name = config["outputs_name"]
inputs_shape = config["inputs_shape"]
# max_opset_version is a fixed value
max_opset_version = 15
enable_onnx_checker = True
self.num_ran_tests += 1
# add ignore testcases
if self.add_ignore_test_case(configs):
self.num_ignore_tests += 1
return
if not isinstance(op_names, (tuple, list)):
op_names = [op_names]
input_type_list = None
if len(test_data_types) > 1:
input_type_list = list(product(*test_data_types))
elif len(test_data_types) == 1:
if isinstance(test_data_types[0], str):
input_type_list = [test_data_types[0]]
else:
input_type_list = test_data_types
elif len(test_data_types) == 0:
input_type_list = [["float32"] * len(test_data_shapes)]
delta = 1e-5
rtol = 1e-5
if "delta" in config.keys():
delta = config["delta"]
if "rtol" in config.keys():
rtol = config["rtol"]
if "max_opset_version" in config.keys():
max_opset_version = config["max_opset_version"]
if "enable_onnx_checker" in config.keys():
enable_onnx_checker = config["enable_onnx_checker"]
for i in range(len(op_names)):
obj = ONNXConverter(op_names[i], min_opset_version,
max_opset_version, op_names[i], inputs_name,
outputs_name, inputs_shape, delta, rtol, attrs,
enable_onnx_checker)
for input_type in input_type_list:
input_data = list()
for j, shape in enumerate(test_data_shapes):
# Determine whether it is a user-defined data generation function
if isfunction(shape):
data = shape()
data = data.astype(input_type[j])
input_data.append(data)
continue
if input_type[j].count('int') > 0:
input_data.append(
randtool("int", -20, 20, shape).astype(input_type[
j]))
elif input_type[j].count('bool') > 0:
input_data.append(
randtool("bool", -2, 2, shape).astype(input_type[
j]))
else:
input_data.append(
randtool("float", -2, 2, shape).astype(input_type[
j]))
obj.set_input_data("input_data", tuple(input_data))
logging.info("Now Run >>> dtype: {}, op_name: {}".format(
input_type, op_names[i]))
obj.run()
if len(input_type_list) == 0:
obj.run()
logging.info("Run Successfully!")
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import logging
import paddle
import onnx
from onnx import helper
from onnx import TensorProto
from onnxruntime import InferenceSession
DTYPE_ONNX_STR_MAP = {
'float32': TensorProto.FLOAT,
'float64': TensorProto.DOUBLE,
'int16': TensorProto.INT16,
'int32': TensorProto.INT32,
'int64': TensorProto.INT64,
'bool': TensorProto.BOOL,
}
def compare(result, expect, delta=1e-10, rtol=1e-10):
"""
param meaning:
result: onnx result
expect: paddle result
delta: absolute error
rtol: relative error
"""
if type(result) == np.ndarray:
if type(expect) == list:
expect = expect[0]
expect = np.array(expect)
res = np.allclose(result, expect, atol=delta, rtol=rtol, equal_nan=True)
# 出错打印错误数据
if res is False:
if result.dtype == np.bool_:
diff = abs(result.astype("int32") - expect.astype("int32"))
else:
diff = abs(result - expect)
logging.error("Output has diff! max diff: {}".format(np.amax(diff)))
if result.dtype != expect.dtype:
logging.error(
"Different output data types! res type is: {}, and expect type is: {}".
format(result.dtype, expect.dtype))
assert res
assert result.shape == expect.shape, "result.shape: {} != expect.shape: {}".format(
result.shape, expect.shape)
assert result.dtype == expect.dtype, "result.dtype: {} != expect.dtype: {}".format(
result.dtype, expect.dtype)
elif isinstance(result, (list, tuple)) and len(result) > 1:
for i in range(len(result)):
if isinstance(result[i], (np.generic, np.ndarray)):
compare(result[i], expect[i], delta, rtol)
else:
compare(result[i].numpy(), expect[i], delta, rtol)
# deal with scalar tensor
elif len(expect) == 1:
compare(result, expect[0], delta, rtol)
def randtool(dtype, low, high, shape):
"""
np random tools
"""
if dtype == "int":
return np.random.randint(low, high, shape)
elif dtype == "float":
return low + (high - low) * np.random.random(shape)
elif dtype == "bool":
return np.random.randint(low, high, shape).astype("bool")
class ONNXConverter(object):
"""
onnx model transfer to paddle
"""
def __init__(self,
file_name,
min_opset_version,
max_opset_version,
op_type=[],
inputs_name=[],
outputs_name=[],
inputs_shape=[],
delta=1e-5,
rtol=1e-5,
attrs=[],
enable_onnx_checker=True):
self.op_type = op_type
assert isinstance(self.op_type,
str), "The dtype of op_type must be string!"
self.seed = 33
np.random.seed(self.seed)
paddle.seed(self.seed)
self.places = ['cpu']
self.name = file_name
self.min_opset_version = min_opset_version
self.max_opset_version = max_opset_version
self.pwd = os.getcwd()
self.delta = delta
self.rtol = rtol
self.static = False
self.kwargs_dict = {"input_data": ()}
self.input_feed = {}
self.inputs_dtype = []
self.inputs_name = inputs_name
self.outputs_name = outputs_name
self.inputs_shape = inputs_shape
self.attrs = attrs
self.enable_onnx_checker = enable_onnx_checker
def set_input_data(self, group_name, *args):
"""
set input data
"""
self.kwargs_dict[group_name] = args
if isinstance(self.kwargs_dict[group_name][0], tuple):
self.kwargs_dict[group_name] = self.kwargs_dict[group_name][0]
i = 0
add_inputs_shape = False
if len(self.inputs_shape) == 0:
add_inputs_shape = True
for in_data in self.kwargs_dict[group_name]:
if isinstance(in_data, list):
for data in in_data:
self.inputs_dtype.append(str(data.dtype))
self.input_feed[self.inputs_name[i]] = data
if add_inputs_shape:
self.inputs_shape.append(data.shape)
i += 1
else:
if isinstance(in_data, tuple):
in_data = in_data[0]
self.inputs_dtype.append(str(in_data.dtype))
self.input_feed[self.inputs_name[i]] = in_data
if add_inputs_shape:
self.inputs_shape.append(in_data.shape)
i += 1
def _mkdir(self):
"""
make dir to save all
"""
save_path = os.path.join(self.pwd, self.name)
if not os.path.exists(save_path):
os.mkdir(save_path)
def _onnx_to_paddle(self, ver):
"""
convert onnx to paddle
"""
from x2paddle.convert import onnx2paddle
onnx_path = os.path.join(self.pwd, self.name,
self.name + '_' + str(ver) + '.onnx')
paddle_path = os.path.join(self.pwd, self.name,
self.name + '_' + str(ver) + '_paddle')
onnx2paddle(
onnx_path,
paddle_path,
convert_to_lite=False,
enable_onnx_checker=self.enable_onnx_checker)
def _mk_paddle_res(self, ver):
"""
make paddle res
"""
paddle_path = os.path.join(
self.pwd, self.name,
self.name + '_' + str(ver) + '_paddle/inference_model/model')
paddle.disable_static()
# run
model = paddle.jit.load(paddle_path)
paddle_feed = list()
for i in range(len(self.input_feed)):
paddle_feed.append(self.input_feed[self.inputs_name[i]])
result = model(*paddle_feed)
# get paddle outputs
if isinstance(result, (tuple, list)):
result = tuple(out.numpy() for out in result)
else:
result = (result.numpy(), )
return result
def _mk_onnx_res(self, ver):
"""
make onnx res
"""
sess = InferenceSession(
os.path.join(self.pwd, self.name, self.name + '_' + str(ver) +
'.onnx'))
ort_outs = sess.run(output_names=None, input_feed=self.input_feed)
return ort_outs
def set_onnx_inputs(self):
graph_inputs = list()
for i in range(len(self.inputs_name)):
graph_inputs.append(
helper.make_tensor_value_info(self.inputs_name[
i], DTYPE_ONNX_STR_MAP[self.inputs_dtype[i]],
self.inputs_shape[i]))
return graph_inputs
def set_onnx_outputs(self):
graph_outputs = list()
for i in range(len(self.outputs_name)):
graph_outputs.append(onnx.ValueInfoProto(name=self.outputs_name[i]))
return graph_outputs
def _mk_onnx_graph(self, ver):
"""
make onnx graph
"""
node = onnx.helper.make_node(
self.op_type,
inputs=self.inputs_name,
outputs=self.outputs_name,
**self.attrs, )
graph_inputs = self.set_onnx_inputs()
graph_outputs = self.set_onnx_outputs()
graph = helper.make_graph(
[node],
self.name,
graph_inputs, # graph inputs
graph_outputs, # graph outputs
)
opset_imports = [helper.make_opsetid("", ver)]
model = helper.make_model(
graph, producer_name='onnx-example', opset_imports=opset_imports)
model = onnx.shape_inference.infer_shapes(model)
onnx.save(model,
os.path.join(self.pwd, self.name,
self.name + '_' + str(ver) + '.onnx'))
if self.enable_onnx_checker:
onnx.checker.check_model(model)
def run(self):
"""
1. make onnx model
2. convert onnx to paddle
3. use onnx to make res
4. compare diff
"""
self._mkdir()
for place in self.places:
paddle.set_device(place)
onnx_res = {}
paddle_res = {}
# export onnx models and make onnx res
for v in range(self.min_opset_version, self.max_opset_version + 1):
self._mk_onnx_graph(ver=v)
self._onnx_to_paddle(ver=v)
onnx_res[str(v)] = self._mk_onnx_res(ver=v)
paddle_res[str(v)] = self._mk_paddle_res(ver=v)
for v in range(self.min_opset_version, self.max_opset_version + 1):
compare(
onnx_res[str(v)],
paddle_res[str(v)],
delta=self.delta,
rtol=self.rtol)
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import onnx
from onnx import helper
from onnx import TensorProto
import numpy as np
import unittest
class TestConv2dConvert(OPConvertAutoScanTest):
"""
ONNX op: Conv
OPset version: 7~15
"""
def add_ignore_test_case(self, configs):
config, attrs = configs
# Warning: SAME_UPPER and SAME_LOWER does not yet support dynamic shapes
if "SAME" in attrs["auto_pad"] and -1 in config["inputs_shape"][0]:
return True
else:
return False
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=20, max_value=30), min_size=4, max_size=4))
kernel_size = draw(
st.lists(
st.integers(
min_value=1, max_value=7), min_size=4, max_size=4))
data_format = "NCHW"
groups = draw(st.integers(min_value=1, max_value=4))
muti1 = draw(st.integers(min_value=1, max_value=4))
kernel_size[0] = groups * muti1
input_shape[1] = kernel_size[1] * groups
strides = draw(
st.lists(
st.integers(
min_value=1, max_value=5), min_size=1, max_size=2))
if len(strides) == 1:
strides = strides[0]
if strides > kernel_size[2]:
strides = kernel_size[2]
if strides > kernel_size[3]:
strides = kernel_size[3]
strides = [strides, strides]
else:
if strides[0] > kernel_size[2]:
strides[0] = kernel_size[2]
if strides[1] > kernel_size[3]:
strides[1] = kernel_size[3]
if draw(st.booleans()):
auto_pad = "NOTSET"
padding = None
if draw(st.booleans()):
padding = draw(
st.lists(
st.integers(
min_value=1, max_value=5),
min_size=2,
max_size=2))
padding = [0, 0] + padding
else:
padding = draw(
st.lists(
st.integers(
min_value=1, max_value=5),
min_size=4,
max_size=4))
else:
auto_pad = draw(
st.sampled_from(
["SAME_LOWER", "SAME_UPPER", "VALID", "NOTSET"]))
padding = None
dilations = draw(
st.lists(
st.integers(
min_value=1, max_value=3), min_size=2, max_size=2))
config = {
"op_names": ["Conv"],
"test_data_shapes": [input_shape, kernel_size],
"test_data_types": [['float32'], ['float32']],
"inputs_shape": [[-1, input_shape[1], -1, -1], kernel_size],
"min_opset_version": 7,
"inputs_name": ["x", "W"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4
}
attrs = {
"auto_pad": auto_pad,
"dilations": dilations,
"group": groups,
"kernel_shape": kernel_size[2:],
"pads": padding,
"strides": strides,
}
# if autopad equal SAME_UPPER and SAME_LOWER, dilations only support 1
if "SAME" in auto_pad:
attrs["dilations"] = [1, 1]
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=50)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
class TestUnsqueezeConvert(OPConvertAutoScanTest):
"""
ONNX op: Unsqueeze
OPset version: 13~15
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=2, max_value=6), min_size=2, max_size=5))
input_dtype = draw(
st.sampled_from(["int32", "int64", "float32", "float64"]))
def generator_axis():
axis = list()
if len(input_shape) == 5:
axis = [0]
if len(input_shape) == 4:
axis = [0, 1]
if len(input_shape) == 3:
axis = [1, 2, 3]
if len(input_shape) == 2:
if draw(st.booleans()):
axis = [0, 1, 2]
else:
axis = [1, 3]
axis = np.array(axis)
print("axis:", axis)
return axis
config = {
"op_names": ["Unsqueeze"],
"test_data_shapes": [input_shape, generator_axis],
"test_data_types": [[input_dtype], ["int64"]],
"inputs_shape": [],
"min_opset_version": 13,
"max_opset_version": 15,
"inputs_name": ["x", "axes"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4,
"enable_onnx_checker": False,
}
attrs = {}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=30)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
class TestUnsqueezeConvert(OPConvertAutoScanTest):
"""
ONNX op: Unsqueeze
OPset version: 7~12
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=2, max_value=6), min_size=2, max_size=5))
input_dtype = draw(
st.sampled_from(["int32", "int64", "float32", "float64"]))
axis = draw(
st.integers(
min_value=-len(input_shape), max_value=len(input_shape) - 1))
if len(input_shape) == 5:
axis = [0]
if len(input_shape) == 4:
axis = [0, 1]
if len(input_shape) == 3:
axis = [1, 2, 3]
if len(input_shape) == 2:
if draw(st.booleans()):
axis = [0, 1, 2]
else:
axis = [1, 3]
config = {
"op_names": ["Unsqueeze"],
"test_data_shapes": [input_shape],
"test_data_types": [[input_dtype]],
"inputs_shape": [input_shape],
"min_opset_version": 7,
"max_opset_version": 12,
"inputs_name": ["x"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4
}
attrs = {"axes": axis, }
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=30)
if __name__ == "__main__":
unittest.main()
......@@ -95,6 +95,11 @@ def arg_parser():
"-co",
default=True,
help="Turn on code optimization")
parser.add_argument(
"--enable_onnx_checker",
"-oc",
default=True,
help="Turn on onnx model checker")
parser.add_argument(
"--disable_feedback",
"-df",
......@@ -263,7 +268,8 @@ def onnx2paddle(model_path,
convert_to_lite=False,
lite_valid_places="arm",
lite_model_type="naive_buffer",
disable_feedback=False):
disable_feedback=False,
enable_onnx_checker=True):
# for convert_id
time_info = int(time.time())
if not disable_feedback:
......@@ -286,7 +292,7 @@ def onnx2paddle(model_path,
from x2paddle.decoder.onnx_decoder import ONNXDecoder
from x2paddle.op_mapper.onnx2paddle.onnx_op_mapper import ONNXOpMapper
model = ONNXDecoder(model_path)
model = ONNXDecoder(model_path, enable_onnx_checker)
mapper = ONNXOpMapper(model)
mapper.paddle_graph.build()
logging.info("Model optimizing ...")
......@@ -478,7 +484,8 @@ def main():
convert_to_lite=args.to_lite,
lite_valid_places=args.lite_valid_places,
lite_model_type=args.lite_model_type,
disable_feedback=args.disable_feedback)
disable_feedback=args.disable_feedback,
enable_onnx_checker=args.enable_onnx_checker)
elif args.framework == "paddle2onnx":
logging.info(
"Paddle to ONNX tool has been migrated to the new github: https://github.com/PaddlePaddle/paddle2onnx"
......
......@@ -416,13 +416,14 @@ class ONNXGraph(Graph):
class ONNXDecoder(object):
def __init__(self, onnx_model):
def __init__(self, onnx_model, enable_onnx_checker):
onnx_model = onnx.load(onnx_model)
print('model ir_version: {}, op version: {}'.format(
onnx_model.ir_version, onnx_model.opset_import[0].version))
self.op_set = onnx_model.opset_import[0].version
check_model(onnx_model)
if enable_onnx_checker:
check_model(onnx_model)
onnx_model = self.optimize_model_skip_op(onnx_model)
onnx_model = self.optimize_node_name(onnx_model)
......
......@@ -15,6 +15,20 @@
from .opset9 import OpSet9
def print_mapping_info(func):
def run_mapping(*args, **kwargs):
node = args[1]
try:
res = func(*args, **kwargs)
except:
raise Exception("convert failed node:{}, op_type is {}".format(
node.name[9:], node.layer_type))
else:
return res
return run_mapping
class OpSet10(OpSet9):
def __init__(self, decoder, paddle_graph):
super(OpSet10, self).__init__(decoder, paddle_graph)
......@@ -15,6 +15,20 @@
from .opset10 import OpSet10
def print_mapping_info(func):
def run_mapping(*args, **kwargs):
node = args[1]
try:
res = func(*args, **kwargs)
except:
raise Exception("convert failed node:{}, op_type is {}".format(
node.name[9:], node.layer_type))
else:
return res
return run_mapping
class OpSet11(OpSet10):
def __init__(self, decoder, paddle_graph):
super(OpSet11, self).__init__(decoder, paddle_graph)
......@@ -15,6 +15,20 @@
from .opset11 import OpSet11
def print_mapping_info(func):
def run_mapping(*args, **kwargs):
node = args[1]
try:
res = func(*args, **kwargs)
except:
raise Exception("convert failed node:{}, op_type is {}".format(
node.name[9:], node.layer_type))
else:
return res
return run_mapping
class OpSet12(OpSet11):
def __init__(self, decoder, paddle_graph):
super(OpSet12, self).__init__(decoder, paddle_graph)
......@@ -15,6 +15,38 @@
from .opset12 import OpSet12
def print_mapping_info(func):
def run_mapping(*args, **kwargs):
node = args[1]
try:
res = func(*args, **kwargs)
except:
raise Exception("convert failed node:{}, op_type is {}".format(
node.name[9:], node.layer_type))
else:
return res
return run_mapping
class OpSet13(OpSet12):
def __init__(self, decoder, paddle_graph):
super(OpSet13, self).__init__(decoder, paddle_graph)
@print_mapping_info
def Unsqueeze(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = self.graph.get_input_node(node, idx=1, copy=True)
# deal with scalar(0D) tensor
if len(val_x.out_shapes[0]) == 0 and len(axes.out_shapes[0]) == 1:
self.paddle_graph.add_layer(
'paddle.reshape',
inputs={"x": val_x.name},
outputs=[node.name],
shape=[1])
else:
self.paddle_graph.add_layer(
'paddle.unsqueeze',
inputs={"x": val_x.name,
"axis": axes.name},
outputs=[node.name])
......@@ -15,6 +15,20 @@
from .opset13 import OpSet13
def print_mapping_info(func):
def run_mapping(*args, **kwargs):
node = args[1]
try:
res = func(*args, **kwargs)
except:
raise Exception("convert failed node:{}, op_type is {}".format(
node.name[9:], node.layer_type))
else:
return res
return run_mapping
class OpSet14(OpSet13):
def __init__(self, decoder, paddle_graph):
super(OpSet14, self).__init__(decoder, paddle_graph)
......@@ -15,6 +15,20 @@
from .opset14 import OpSet14
def print_mapping_info(func):
def run_mapping(*args, **kwargs):
node = args[1]
try:
res = func(*args, **kwargs)
except:
raise Exception("convert failed node:{}, op_type is {}".format(
node.name[9:], node.layer_type))
else:
return res
return run_mapping
class OpSet15(OpSet14):
def __init__(self, decoder, paddle_graph):
super(OpSet15, self).__init__(decoder, paddle_graph)
......@@ -15,6 +15,38 @@
from .opset_legacy import OpSet
def print_mapping_info(func):
def run_mapping(*args, **kwargs):
node = args[1]
try:
res = func(*args, **kwargs)
except:
raise Exception("convert failed node:{}, op_type is {}".format(
node.name[9:], node.layer_type))
else:
return res
return run_mapping
class OpSet7(OpSet):
def __init__(self, decoder, paddle_graph):
super(OpSet7, self).__init__(decoder, paddle_graph)
@print_mapping_info
def Unsqueeze(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
# deal with scalar(0D) tensor
if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
self.paddle_graph.add_layer(
'paddle.reshape',
inputs={"x": val_x.name},
outputs=[node.name],
shape=[1])
else:
self.paddle_graph.add_layer(
'paddle.unsqueeze',
inputs={"x": val_x.name},
axis=axes,
outputs=[node.name])
......@@ -15,6 +15,20 @@
from .opset7 import OpSet7
def print_mapping_info(func):
def run_mapping(*args, **kwargs):
node = args[1]
try:
res = func(*args, **kwargs)
except:
raise Exception("convert failed node:{}, op_type is {}".format(
node.name[9:], node.layer_type))
else:
return res
return run_mapping
class OpSet8(OpSet7):
def __init__(self, decoder, paddle_graph):
super(OpSet8, self).__init__(decoder, paddle_graph)
......@@ -15,6 +15,20 @@
from .opset8 import OpSet8
def print_mapping_info(func):
def run_mapping(*args, **kwargs):
node = args[1]
try:
res = func(*args, **kwargs)
except:
raise Exception("convert failed node:{}, op_type is {}".format(
node.name[9:], node.layer_type))
else:
return res
return run_mapping
class OpSet9(OpSet8):
def __init__(self, decoder, paddle_graph):
super(OpSet9, self).__init__(decoder, paddle_graph)
......@@ -28,7 +28,7 @@ import copy
import sys
import shutil
_logger = _logging.getLogger(__name__)
_logger = _logging.getLogger()
def _const_weight_or_none(node, necessary=False):
......@@ -92,12 +92,15 @@ def _is_static_shape(shape):
return True
def _get_same_padding(in_size, kernel_size, stride):
def _get_same_padding(in_size, kernel_size, stride, autopad):
new_size = int(math.ceil(in_size * 1.0 / stride))
pad_size = (new_size - 1) * stride + kernel_size - in_size
pad0 = int(pad_size / 2)
pad1 = pad_size - pad0
return [pad0, pad1]
if autopad == "SAME_UPPER":
return [pad0, pad1]
if autopad == "SAME_LOWER":
return [pad1, pad0]
def print_mapping_info(func):
......@@ -1541,9 +1544,9 @@ class OpSet():
if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
input_shape = val_x.out_shapes[0]
pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
strides[0])
strides[0], auto_pad)
pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
strides[1])
strides[1], auto_pad)
paddings = pad_h + pad_w
op_name = name_generator("pool", self.nn_name2id)
......@@ -1968,9 +1971,9 @@ class OpSet():
if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
input_shape = val_x.out_shapes[0]
pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
strides[0])
strides[0], auto_pad)
pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
strides[1])
strides[1], auto_pad)
paddings = pad_h + pad_w
layer_attrs = {
......@@ -2197,13 +2200,19 @@ class OpSet():
pads = node.get_attr('pads', [0] * (convnd * 2))
input_shape = val_x.out_shapes[0]
paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)
paddings = np.array(pads).reshape((2, -1)).transpose().astype("int32")
paddings = paddings.flatten().tolist()
if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
if auto_pad in ["SAME_UPPER", "SAME_LOWER"]:
# Warning: SAME_UPPER and SAME_LOWER does not yet support dynamic shapes
if input_shape[2] == -1 or input_shape[3] == -1:
_logger.warning(
'SAME_UPPER and SAME_LOWER does not yet support dynamic shapes, the conversion result may have a diff!!!'
)
pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
strides[0])
strides[0], auto_pad)
pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
strides[1])
strides[1], auto_pad)
paddings = pad_h + pad_w
layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
......
......@@ -58,7 +58,7 @@ class GraphOptimizer(object):
before_len = len(graph.layers)
pass_.apply(graph)
after_len = len(graph.layers)
if after_len <= before_len:
if after_len < before_len:
show_pass_log = True
if before_len == after_len:
break
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册