Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
135eb45e
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
135eb45e
编写于
8月 27, 2020
作者:
C
Channingss
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
a99c32db
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
57 addition
and
39 deletion
+57
-39
x2paddle/decoder/onnx_decoder.py
x2paddle/decoder/onnx_decoder.py
+16
-8
x2paddle/decoder/onnx_shape_inference.py
x2paddle/decoder/onnx_shape_inference.py
+26
-18
x2paddle/op_mapper/onnx2paddle/opset9/opset.py
x2paddle/op_mapper/onnx2paddle/opset9/opset.py
+15
-13
未找到文件。
x2paddle/decoder/onnx_decoder.py
浏览文件 @
135eb45e
...
...
@@ -168,8 +168,10 @@ class ONNXGraph(Graph):
print
(
'shape inferencing ...'
)
infered_graph
=
SymbolicShapeInference
.
infer_shapes
(
self
.
model
,
fixed_input_shape
=
self
.
fixed_input_shape
)
#infered_graph = None
if
infered_graph
is
None
:
infered_model
=
shape_inference
.
infer_shapes
(
self
.
model
)
onnx
.
save
(
infered_model
,
'infered_model.onnx'
)
self
.
graph
=
infered_model
.
graph
else
:
self
.
graph
=
infered_graph
...
...
@@ -196,15 +198,21 @@ class ONNXGraph(Graph):
except
:
shape
=
input
(
"Shape of Input(e.g. -1,3,224,224), enter 'N' to skip: "
)
if
shape
.
count
(
"-1"
)
>
1
:
print
(
"Only 1 dimension can be -1, type again:)"
)
else
:
right_shape_been_input
=
True
#
if shape.count("-1") > 1:
#
print("Only 1 dimension can be -1, type again:)")
#
else:
right_shape_been_input
=
True
if
shape
==
'N'
:
break
shape
=
[
int
(
dim
)
for
dim
in
shape
.
strip
().
split
(
','
)]
assert
shape
.
count
(
-
1
)
<=
1
,
"Only one dimension can be -1"
self
.
fixed_input_shape
[
vi
.
name
]
=
shape
return
#shape = [int(dim) for dim in shape.strip().split(',')]
shape_
=
[]
for
dim
in
shape
.
strip
().
split
(
','
):
if
dim
.
isdigit
():
shape_
.
append
(
int
(
dim
))
else
:
shape_
.
append
(
dim
)
#assert shape.count(-1) <= 1, "Only one dimension can be -1"
self
.
fixed_input_shape
[
vi
.
name
]
=
shape_
def
get_place_holder_nodes
(
self
):
"""
...
...
x2paddle/decoder/onnx_shape_inference.py
浏览文件 @
135eb45e
...
...
@@ -151,7 +151,7 @@ class SymbolicShapeInference:
'TopK'
:
self
.
_infer_TopK
,
'Unsqueeze'
:
self
.
_infer_Unsqueeze
,
'Where'
:
self
.
_infer_symbolic_compute_ops
,
'Transpose'
:
self
.
_infer_Transpose
,
#
'Transpose': self._infer_Transpose,
'ZipMap'
:
self
.
_infer_ZipMap
}
self
.
run_
=
True
...
...
@@ -731,14 +731,16 @@ class SymbolicShapeInference:
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
output_type
,
self
.
_get_shape
(
node
,
0
)))
def
_infer_Transpose
(
self
,
node
):
input_shape
=
self
.
_get_shape
(
node
,
0
)
perm
=
get_attribute
(
node
,
'perm'
)
output_shape
=
np
.
array
(
input_shape
)[
perm
].
tolist
()
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
output_shape
))
#def _infer_Transpose(self, node):
# input_shape = self._get_shape(node, 0)
# perm = get_attribute(node, 'perm')
# output_shape = np.array(input_shape)[perm].tolist()
# print(input_shape)
# print(out_shape)
# vi = self.known_vi_[node.output[0]]
# vi.CopyFrom(
# helper.make_tensor_value_info(node.output[0], self.known_vi_[
# node.input[0]].type.tensor_type.elem_type, output_shape))
def
_infer_Compress
(
self
,
node
):
input_shape
=
self
.
_get_shape
(
node
,
0
)
...
...
@@ -856,21 +858,28 @@ class SymbolicShapeInference:
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
vi
.
type
.
tensor_type
.
elem_type
,
new_shape
))
#if node.output[0] == '173':
# print('yyyy')
if
node
.
input
[
0
]
in
self
.
sympy_data_
:
assert
0
==
get_attribute
(
node
,
'axis'
,
0
)
# only handle 1D sympy compute
idx
=
self
.
_get_value
(
node
,
1
)
data
=
self
.
sympy_data_
[
node
.
input
[
0
]]
print
(
data
)
print
(
node
.
output
[
0
])
if
type
(
data
)
==
list
:
if
type
(
idx
)
==
np
.
ndarray
and
len
(
idx
.
shape
)
==
1
:
self
.
sympy_data_
[
node
.
output
[
0
]]
=
[
data
[
int
(
i
)]
for
i
in
idx
]
else
:
print
(
node
.
output
[
0
],
'else'
)
print
(
int
(
idx
))
self
.
sympy_data_
[
node
.
output
[
0
]]
=
data
[
int
(
idx
)]
else
:
assert
idx
==
0
self
.
sympy_data_
[
node
.
output
[
0
]]
=
data
def
_infer_GatherElements
(
self
,
node
):
indices_shape
=
self
.
_get_shape
(
node
,
1
)
...
...
@@ -1419,7 +1428,7 @@ class SymbolicShapeInference:
if
self
.
verbose_
>
2
:
print
(
node
.
op_type
+
': '
+
node
.
name
)
for
i
,
name
in
enumerate
(
node
.
input
):
print
(
' Input {}: {} {}
55555
'
.
format
(
print
(
' Input {}: {} {}'
.
format
(
i
,
name
,
'initializer'
if
name
in
self
.
initializers_
else
''
))
...
...
@@ -1458,7 +1467,6 @@ class SymbolicShapeInference:
if
node
.
output
[
i_o
]
in
self
.
sympy_data_
:
print
(
' Sympy Data: '
+
str
(
self
.
sympy_data_
[
node
.
output
[
i_o
]]))
if
None
in
out_shape
or
out_type_undefined
:
if
self
.
auto_merge_
:
if
node
.
op_type
in
[
...
...
@@ -1570,7 +1578,7 @@ class SymbolicShapeInference:
fixed_input_shape
=
None
,
auto_merge
=
True
,
guess_output_rank
=
False
,
verbose
=
0
):
verbose
=
3
):
if
get_opset
(
in_mp
)
<
7
:
print
(
'Only support shape inferencing models of opset 7 and above.'
)
return
...
...
@@ -1578,16 +1586,16 @@ class SymbolicShapeInference:
int_max
,
auto_merge
,
guess_output_rank
,
verbose
)
all_shapes_inferred
=
False
symbolic_shape_inference
.
_preprocess
(
in_mp
,
input_shapes
=
fixed_input_shape
)
in_mp
,
input_shapes
=
fixed_input_shape
)
try
:
while
symbolic_shape_inference
.
run_
:
all_shapes_inferred
=
symbolic_shape_inference
.
_infer_impl
(
in_mp
)
symbolic_shape_inference
.
_update_output_from_vi
()
if
not
all_shapes_inferred
:
symbolic_shape_inference
.
out_mp_
=
shape_inference
.
infer_shapes
(
symbolic_shape_inference
.
out_mp_
)
#
onnx.save(symbolic_shape_inference.out_mp_, 'tmp.onnx')
#
if not all_shapes_inferred:
#
symbolic_shape_inference.out_mp_ = shape_inference.infer_shapes(
#
symbolic_shape_inference.out_mp_)
onnx
.
save
(
symbolic_shape_inference
.
out_mp_
,
'tmp.onnx'
)
except
:
return
None
pass
return
symbolic_shape_inference
.
out_mp_
.
graph
x2paddle/op_mapper/onnx2paddle/opset9/opset.py
浏览文件 @
135eb45e
...
...
@@ -257,7 +257,7 @@ class OpSet9():
shape
=
node
.
out_shapes
[
0
]
for
i
,
dim_shape
in
enumerate
(
shape
):
if
dim_shape
==
0
and
i
==
0
:
shape
[
i
]
=
1
shape
[
i
]
=
-
1
if
dim_shape
==
0
and
i
!=
0
:
assert
'shape of input is not assigned'
attr
=
{
...
...
@@ -1142,19 +1142,21 @@ class OpSet9():
x_shape
=
val_x
.
out_shapes
[
0
]
y_shape
=
val_y
.
out_shapes
[
0
]
inputs
=
{
"x"
:
val_x
,
"y"
:
val_y
}
if
y_shape
[
0
]
==
1
and
x_shape
[
-
1
]
!=
1
and
x_shape
[
0
]
!=
1
:
y_squeeze
=
val_y
.
layer_name
+
'_squeeze'
node
.
fluid_code
.
add_layer
(
"squeeze"
,
inputs
=
val_y
,
output
=
y_squeeze
,
param_attr
=
{
'axes'
:
[
0
]})
inputs
[
'y'
]
=
y_squeeze
node
.
fluid_code
.
add_layer
(
"matmul"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
else
:
node
.
fluid_code
.
add_layer
(
node
.
fluid_code
.
add_layer
(
"matmul"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
#if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
# y_squeeze = val_y.layer_name + '_squeeze'
# node.fluid_code.add_layer(
# "squeeze",
# inputs=val_y,
# output=y_squeeze,
# param_attr={'axes': [0]})
# inputs['y'] = y_squeeze
# node.fluid_code.add_layer(
# "matmul", inputs=inputs, output=node, param_attr=None)
#else:
# node.fluid_code.add_layer(
# "matmul", inputs=inputs, output=node, param_attr=None)
@
print_mapping_info
def
BatchNormalization
(
self
,
node
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录