Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
0307c6de
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
1 年多 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0307c6de
编写于
6月 19, 2020
作者:
J
Jason
提交者:
GitHub
6月 19, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #280 from PaddlePaddle/2onnx
add im2sequence support
上级
ca33e9fa
148c198e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
168 addition
and
77 deletion
+168
-77
x2paddle/__init__.py
x2paddle/__init__.py
+1
-1
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
+80
-0
x2paddle/op_mapper/paddle_op_mapper.py
x2paddle/op_mapper/paddle_op_mapper.py
+87
-76
未找到文件。
x2paddle/__init__.py
浏览文件 @
0307c6de
__version__
=
"0.7.
2
"
__version__
=
"0.7.
4
"
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
0 → 100644
浏览文件 @
0307c6de
import
onnx
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
im2seq_counter
=
0
def
im2sequence
(
op
,
block
):
global
im2sequence_counter
n
,
c
,
h
,
w
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
assert
h
>
0
and
w
>
0
,
"Only supported fixed input shape for im2sequence operator."
stride_h
,
stride_w
=
op
.
attr
(
'strides'
)
paddings
=
op
.
attr
(
'paddings'
)
assert
op
.
attr
(
'out_stride'
)
!=
1
,
"Only out_stride==1 is supported for im2sequence operator."
h
=
h
+
paddings
[
0
]
+
paddings
[
1
]
w
=
w
+
paddings
[
1
]
+
paddings
[
2
]
kernel_h
,
kernel_w
=
op
.
attr
(
'kernels'
)
out_h
=
1
+
(
h
-
kernel_h
+
stride_h
-
1
)
//
stride_h
out_w
=
1
+
(
w
-
kernel_w
+
stride_w
-
1
)
//
stride_w
h_steps
=
list
()
for
i
in
range
(
out_h
):
h_steps
.
append
([
i
*
stride_h
,
i
*
stride_h
+
kernel_h
])
w_steps
=
list
()
for
i
in
range
(
out_w
):
w_steps
.
append
([
i
*
stride_w
,
i
*
stride_w
+
kernel_w
])
nodes
=
list
()
slice_blocks
=
list
()
for
i
in
range
(
out_h
):
for
j
in
range
(
out_w
):
starts_name
=
"im2sequence.starts.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
starts_tensor
=
helper
.
make_tensor
(
name
=
starts_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
dims
=
[
4
],
vals
=
[
0
,
0
,
h_steps
[
i
][
0
],
w_steps
[
j
][
0
]])
ends_name
=
"im2sequence.ends.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
ends_tensor
=
helper
.
make_tensor
(
name
=
ends_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
dims
=
[
4
],
vals
=
[
999999
,
999999
,
h_steps
[
i
][
1
],
w_steps
[
j
][
1
]])
starts_node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
starts_name
],
value
=
starts_tensor
)
ends_node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
ends_name
],
value
=
ends_tensor
)
nodes
.
extend
([
starts_node
,
ends_node
])
slice_block_name
=
"im2sequence.slice.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
slice_block_node
=
helper
.
make_node
(
'Slice'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
starts_name
,
ends_name
],
outputs
=
[
slice_block_name
])
flatten_block_name
=
"im2sequence.flatten.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
flatten_block_node
=
helper
.
make_node
(
"Flatten"
,
inputs
=
[
slice_block_name
],
outputs
=
[
flatten_block_name
],
axis
=
0
)
nodes
.
extend
([
slice_block_node
,
flatten_block_node
])
slice_blocks
.
append
(
flatten_block_name
)
concat_block_name
=
"im2sequence.concat_block.{}"
.
format
(
im2seq_counter
)
# concat_block_node = helper.make_node("Concat", inputs=slice_blocks, outputs=[concat_block_name], axis=0)
concat_block_node
=
helper
.
make_node
(
"Concat"
,
inputs
=
slice_blocks
,
outputs
=
op
.
output
(
'Out'
),
axis
=
0
)
nodes
.
append
(
concat_block_node
)
print
(
"
\n\n
==========Importance Notice==========="
)
print
(
"Since im2sequence operator is used in your paddlepaddle model, the translated onnx model only support input data with batch_size=1."
)
print
(
"======================================
\n
"
)
return
nodes
x2paddle/op_mapper/paddle_op_mapper.py
浏览文件 @
0307c6de
...
...
@@ -21,8 +21,6 @@ import paddle.fluid.core as core
import
paddle.fluid
as
fluid
import
onnx
from
onnx
import
helper
,
onnx_pb
from
.paddle_custom_layer.yolo_box
import
yolo_box
from
.paddle_custom_layer.multiclass_nms
import
multiclass_nms
class
PaddleOpMapper
(
object
):
...
...
@@ -39,6 +37,60 @@ class PaddleOpMapper(object):
self
.
name_counter
=
dict
()
def
convert
(
self
,
program
,
save_dir
):
weight_nodes
=
self
.
convert_weights
(
program
)
op_nodes
=
list
()
input_nodes
=
list
()
output_nodes
=
list
()
unsupported_ops
=
set
()
print
(
"Translating PaddlePaddle to ONNX...
\n
"
)
for
block
in
program
.
blocks
:
for
i
,
op
in
enumerate
(
block
.
ops
):
sys
.
stdout
.
write
(
"
\r
Total:{}, Current:{} : {} "
.
format
(
len
(
block
.
ops
),
i
+
1
,
op
.
type
))
sys
.
stdout
.
flush
()
if
not
hasattr
(
self
,
op
.
type
):
unsupported_ops
.
add
(
op
.
type
)
continue
if
len
(
unsupported_ops
)
>
0
:
continue
node
=
getattr
(
self
,
op
.
type
)(
op
,
block
)
if
op
.
type
==
'feed'
:
input_nodes
.
append
(
node
)
elif
op
.
type
==
'fetch'
:
output_nodes
.
append
(
node
)
else
:
if
isinstance
(
node
,
list
):
op_nodes
=
op_nodes
+
node
else
:
op_nodes
.
append
(
node
)
if
len
(
unsupported_ops
)
>
0
:
print
(
"
\n
There's {} ops are not supported yet"
.
format
(
len
(
unsupported_ops
)))
for
op
in
unsupported_ops
:
print
(
"=========== {} ==========="
.
format
(
op
))
return
graph
=
helper
.
make_graph
(
nodes
=
weight_nodes
+
op_nodes
,
name
=
'onnx_model_from_paddle'
,
initializer
=
[],
inputs
=
input_nodes
,
outputs
=
output_nodes
)
model
=
helper
.
make_model
(
graph
,
producer_name
=
'X2Paddle'
)
onnx
.
checker
.
check_model
(
model
)
if
not
os
.
path
.
isdir
(
save_dir
):
os
.
makedirs
(
save_dir
)
with
open
(
os
.
path
.
join
(
save_dir
,
'x2paddle_model.onnx'
),
'wb'
)
as
f
:
f
.
write
(
model
.
SerializeToString
())
print
(
"
\n
Translated model saved in {}"
.
format
(
os
.
path
.
join
(
save_dir
,
'x2paddle_model.onnx'
)))
def
get_name
(
self
,
op_name
,
var_name
):
name
=
'p2o.{}.{}'
.
format
(
op_name
,
var_name
)
if
name
not
in
self
.
name_counter
:
...
...
@@ -47,6 +99,26 @@ class PaddleOpMapper(object):
self
.
name_counter
[
name
]
+=
1
return
name
+
'.{}'
.
format
(
self
.
name_counter
[
name
])
def
convert_weights
(
self
,
program
):
var_names
=
program
.
global_block
().
vars
nodes
=
list
()
for
name
in
var_names
:
var
=
program
.
global_block
().
var
(
name
)
if
name
.
endswith
(
'feed'
)
or
name
.
endswith
(
'fetch'
):
continue
if
not
var
.
persistable
:
continue
weight
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
name
).
get_tensor
())
tensor
=
helper
.
make_tensor
(
name
=
name
,
dims
=
var
.
shape
,
data_type
=
self
.
paddle_onnx_dtype_map
[
var
.
dtype
],
vals
=
weight
.
flatten
().
tolist
())
node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
name
],
value
=
tensor
)
nodes
.
append
(
node
)
return
nodes
def
make_constant_node
(
self
,
name
,
dtype
,
value
=
None
):
if
isinstance
(
value
,
list
):
dims
=
(
len
(
value
),
)
...
...
@@ -181,11 +253,18 @@ class PaddleOpMapper(object):
outputs
=
op
.
output
(
'Out'
),
)
else
:
input_shape
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
k_size
=
op
.
attr
(
'ksize'
)
paddings
=
op
.
attr
(
'paddings'
)
if
input_shape
[
2
]
>
0
and
input_shape
[
2
]
+
paddings
[
0
]
<
k_size
[
0
]:
k_size
[
0
]
=
input_shape
[
2
]
+
paddings
[
0
]
if
input_shape
[
3
]
>
0
and
input_shape
[
3
]
+
paddings
[
1
]
<
k_size
[
1
]:
k_size
[
1
]
=
input_shape
[
3
]
+
paddings
[
1
]
node
=
helper
.
make_node
(
pool_type
[
op
.
attr
(
'pooling_type'
)][
0
],
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
kernel_shape
=
op
.
attr
(
'ksize'
)
,
kernel_shape
=
k_size
,
strides
=
op
.
attr
(
'strides'
),
pads
=
op
.
attr
(
'paddings'
)
+
op
.
attr
(
'paddings'
))
return
node
...
...
@@ -736,9 +815,11 @@ class PaddleOpMapper(object):
return
node
def
yolo_box
(
self
,
op
,
block
):
from
.paddle_custom_layer.yolo_box
import
yolo_box
return
yolo_box
(
op
,
block
)
def
multiclass_nms
(
self
,
op
,
block
):
from
.paddle_custom_layer.multiclass_nms
import
multiclass_nms
return
multiclass_nms
(
op
,
block
)
def
reciprocal
(
self
,
op
,
block
):
...
...
@@ -747,76 +828,6 @@ class PaddleOpMapper(object):
node
=
helper
.
make_node
(
'Reciprocal'
,
inputs
=
inputs
,
outputs
=
outputs
)
return
node
def
convert_weights
(
self
,
program
):
var_names
=
program
.
global_block
().
vars
nodes
=
list
()
for
name
in
var_names
:
var
=
program
.
global_block
().
var
(
name
)
if
name
.
endswith
(
'feed'
)
or
name
.
endswith
(
'fetch'
):
continue
if
not
var
.
persistable
:
continue
weight
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
name
).
get_tensor
())
tensor
=
helper
.
make_tensor
(
name
=
name
,
dims
=
var
.
shape
,
data_type
=
self
.
paddle_onnx_dtype_map
[
var
.
dtype
],
vals
=
weight
.
flatten
().
tolist
())
node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
name
],
value
=
tensor
)
nodes
.
append
(
node
)
return
nodes
def
convert
(
self
,
program
,
save_dir
):
weight_nodes
=
self
.
convert_weights
(
program
)
op_nodes
=
list
()
input_nodes
=
list
()
output_nodes
=
list
()
unsupported_ops
=
set
()
print
(
"Translating PaddlePaddle to ONNX...
\n
"
)
for
block
in
program
.
blocks
:
for
i
,
op
in
enumerate
(
block
.
ops
):
sys
.
stdout
.
write
(
"
\r
Total:{}, Current:{} : {} "
.
format
(
len
(
block
.
ops
),
i
+
1
,
op
.
type
))
sys
.
stdout
.
flush
()
if
not
hasattr
(
self
,
op
.
type
):
unsupported_ops
.
add
(
op
.
type
)
continue
if
len
(
unsupported_ops
)
>
0
:
continue
node
=
getattr
(
self
,
op
.
type
)(
op
,
block
)
if
op
.
type
==
'feed'
:
input_nodes
.
append
(
node
)
elif
op
.
type
==
'fetch'
:
output_nodes
.
append
(
node
)
else
:
if
isinstance
(
node
,
list
):
op_nodes
=
op_nodes
+
node
else
:
op_nodes
.
append
(
node
)
if
len
(
unsupported_ops
)
>
0
:
print
(
"
\n
There's {} ops are not supported yet"
.
format
(
len
(
unsupported_ops
)))
for
op
in
unsupported_ops
:
print
(
"=========== {} ==========="
.
format
(
op
))
return
graph
=
helper
.
make_graph
(
nodes
=
weight_nodes
+
op_nodes
,
name
=
'onnx_model_from_paddle'
,
initializer
=
[],
inputs
=
input_nodes
,
outputs
=
output_nodes
)
model
=
helper
.
make_model
(
graph
,
producer_name
=
'X2Paddle'
)
onnx
.
checker
.
check_model
(
model
)
if
not
os
.
path
.
isdir
(
save_dir
):
os
.
makedirs
(
save_dir
)
with
open
(
os
.
path
.
join
(
save_dir
,
'x2paddle_model.onnx'
),
'wb'
)
as
f
:
f
.
write
(
model
.
SerializeToString
())
print
(
"
\n
Translated model saved in {}"
.
format
(
os
.
path
.
join
(
save_dir
,
'x2paddle_model.onnx'
)))
def
im2sequence
(
self
,
op
,
block
):
from
.paddle_custom_layer.im2sequence
import
im2sequence
return
im2sequence
(
op
,
block
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录