tf_op_mapper.py 40.0 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15 16
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.util import *
J
jiangjiajun 已提交
18
import inspect
J
jiangjiajun 已提交
19
import numpy
20

J
jiangjiajun 已提交
21

J
jiangjiajun 已提交
22 23 24 25 26 27 28 29
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
30

J
jiangjiajun 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
def nhwc_dim_to_nchw(node, dim):
    tf_data_format = list(node.tf_data_format)
    pd_data_format = list(node.pd_data_format)
    if isinstance(dim, list):
        for i in range(len(dim)):
            char = tf_data_format[dim[i]]
            dim[i] = pd_data_format.index(char)
    else:
        char = tf_data_format[dim]
        dim = pd_data_format.index(char)
    return dim

    if dim < 0:
        dim += 4
    if dim > 0:
        dim = (dim + 1) % 4 + int((dim + 1) / 4)
    return dim


J
jiangjiajun 已提交
50
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
51 52 53 54 55 56 57
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Shape': ['shape'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
J
jiangjiajun 已提交
58 59
        'Rsqrt': ['rsqrt'],
        'swish_f32': ['swish']
J
jiangjiajun 已提交
60 61 62 63 64 65 66 67 68
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
        'Mul': 'elementwise_mul'
    }

J
jiangjiajun 已提交
69 70
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
71
        self.decoder = decoder
J
jiangjiajun 已提交
72 73
        self.graph = decoder.tf_graph
        self.weights = dict()
J
jiangjiajun 已提交
74
        self.omit_nodes = list()
J
jiangjiajun 已提交
75
        self.used_custom_layers = dict()
76

J
jiangjiajun 已提交
77 78 79 80 81 82 83
        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(name).layer_type != "Placeholder":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
84

J
jiangjiajun 已提交
85
        print("Total nodes: {}".format(len(self.graph.topo_sort)))
86 87 88
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
89 90 91 92 93
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
94 95
                func = getattr(self, op)
                func(node)
J
jiangjiajun 已提交
96 97
            else:
                raise Exception("OP: [{}] not support yet".format(op))
98

J
jiangjiajun 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_node(node.layer.input[0], copy=True)
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
        node.fluid_code.add_layer(op_info[0],
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
        # incomplement broadcasting support for paddle
        x_input = x
        y_input = y
        if len(x_shape) < len(y_shape):
            unrevertable_ops = [
                "elementwise_sub", "elementwise_div", "elementwise_floordiv",
                "elementwise_mod", "elementwise_pow"
            ]
            if op_type not in unrevertable_ops:
                x_input = y
                y_input = x
                x_shape = y.out_shapes[0]
                y_shape = x.out_shapes[0]
            else:
                raise Exception("Unexpected situation happend")

J
jiangjiajun 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149
        if len(x_shape) == 4 and len(y_shape) == 1:
            if x_input.tf_data_format == "NHWC":
                axis = 1
            else:
                axis = -1
            attr = {"axis": axis}
            inputs = {"x": x_input, "y": y_input}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
            return

J
jiangjiajun 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        is_sub_seq = True
        for i in range(len(y_shape)):
            index = -1 * i - 1
            if y_shape[index] != x_shape[index]:
                is_sub_seq = False
        if not is_sub_seq:
            x_expand_times = [1] * len(x_shape)
            y_expand_times = [1] * len(y_shape)
            x_need_expand = False
            y_need_expand = False
            for i in range(len(y_shape)):
                index = -1 * i - 1
                if y_shape[index] != x_shape[index]:
                    if y_shape[index] == 1:
                        y_expand_times[index] = x_shape[index]
                        y_need_expand = True
                    elif x_shape[index] == 1:
                        x_expand_times[index] = y_shape[index]
                        x_need_expand = True
                    else:
                        raise Exception("Unexpected situation happend")
            if x_need_expand:
J
jiangjiajun 已提交
172 173 174 175
                if len(x_expand_times) == 3 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [2, 0, 1]]
                if len(x_expand_times) == 4 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
176 177 178 179 180 181 182
                attr = {"expand_times": x_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=x_input,
                                          output="x_tmp",
                                          param_attr=attr)
                x_input = "x_tmp"
            if y_need_expand:
J
jiangjiajun 已提交
183 184 185 186
                if len(y_expand_times) == 3 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [2, 0, 1]]
                if len(y_expand_times) == 4 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
187 188 189 190 191 192 193 194 195 196 197 198
                attr = {"expand_times": y_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=y_input,
                                          output="y_tmp",
                                          param_attr=attr)
                y_input = "y_tmp"
        inputs = {"x": x_input, "y": y_input}
        node.fluid_code.add_layer(op_type,
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

199 200
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
201 202
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
J
jiangjiajun 已提交
203 204 205 206
        if node.tf_data_format == "NHWC" and len(shape) == 4:
            shape = [shape[i] for i in [0, 3, 1, 2]]
        elif node.tf_data_format == "NCHW" and len(shape) == 4:
            self.graph.data_format_propagation(node)
207 208
        dtype = node.dtype
        attr = {
J
jiangjiajun 已提交
209
            'dtype': string(dtype),
210
            'shape': shape,
J
jiangjiajun 已提交
211 212
            'name': string(node.layer_name),
            'append_batch_size': False
213
        }
J
jiangjiajun 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241
        self.weights[node.layer_name] = node.value

        if node.tf_data_format == "NHWC":
            if len(shape) == 4:
                shape = [shape[i] for i in [0, 3, 1, 2]]
            if len(shape) == 3:
                shape = [shape[i] for i in [2, 0, 1]]
                self.weights[node.layer_name] = numpy.transpose(
                    node.value, (2, 0, 1))
        elif node.tf_data_format == "NCHW":
            if len(shape) == 4:
                self.graph.data_format_propagation(node)

J
jiangjiajun 已提交
242 243 244 245 246 247 248 249 250 251 252 253
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': initializer
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
J
jiangjiajun 已提交
254 255
        input = self.graph.get_node(node.layer.input[0], copy=True)
        perm = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
256
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
257
        del self.weights[perm.layer_name.replace('/', '_')]
J
jiangjiajun 已提交
258 259 260
        perm.fluid_code.clear()
        perm = perm.value.tolist()

J
jiangjiajun 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        if perm == [0, 3, 1, 2] and input.data_format == "NHWC":
            node.fluid_code.add_layer("assign",
                                      inputs=input,
                                      output=node,
                                      param_attr=None)
            node.tf_data_format = "NCHW"
            self.graph.data_format_propagation(node)
        elif perm == [0, 2, 3, 1] and input.tf_data_format == "NCHW":
            node.fluid_code.add_layer("assign",
                                      inputs=input,
                                      output=node,
                                      param_attr=None)
            node.tf_data_format = "NHWC"
            self.graph.data_format_propagation(node)
        elif len(input.out_shapes[0]) > 4:
            print(input.layer_name, input.tf_data_format, input.pd_data_format)
            tf_data_format = list(input.tf_data_format)
            pd_data_format = list(input.pd_data_format)
            new_perm = [i for i in range(len(perm))]
            for i in range(len(perm)):
                char0 = tf_data_format[i]
                char1 = tf_data_format[perm[i]]
                index0 = pd_data_format.index(char0)
                index1 = pd_data_format.index(char1)
                new_perm[index0] = index1
            node.tf_data_format = [tf_data_format[i] for i in perm]
            node.pd_data_format = [pd_data_format[i] for i in perm]
            attr = {'perm': new_perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        elif len(node.out_shapes[0]) != 4:
            attr = {'perm': perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            raise Exception("Unexpected situation happend in Transpose OP")
J
jiangjiajun 已提交
301

J
jiangjiajun 已提交
302 303
    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
304

J
jiangjiajun 已提交
305
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
306 307 308
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
309 310 311 312
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
313
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
314
        padding = 0
J
jiangjiajun 已提交
315

J
jiangjiajun 已提交
316
        if not channel_first:
J
jiangjiajun 已提交
317 318
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
319
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
320 321
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
322 323

        if pad_mode == "SAME":
J
jiangjiajun 已提交
324 325
            pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
J
jiangjiajun 已提交
326 327 328
            pad_h = pad_h[0] + pad_h[1]
            pad_w = pad_w[0] + pad_w[1]
            attr = {"paddings": [0, pad_h, 0, pad_w], "pad_value": -10000.0}
J
jiangjiajun 已提交
329 330 331 332 333
            node.fluid_code.add_layer("pad2d",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            input = node
J
jiangjiajun 已提交
334
        attr = {
J
jiangjiajun 已提交
335
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
336
            "pool_type": string("max"),
J
jiangjiajun 已提交
337
            "pool_padding": padding,
J
jiangjiajun 已提交
338
            "pool_stride": strides[2:4]
J
jiangjiajun 已提交
339
        }
J
jiangjiajun 已提交
340 341 342 343
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
344 345 346 347 348 349 350

    def Conv2D(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of Conv2D should be Const"
        self.omit_nodes.append(kernel.layer_name)

J
jiangjiajun 已提交
351 352 353
        node.fluid_code.add_note("#{} : {}".format(node.layer.name,
                                                   node.layer_name))

J
jiangjiajun 已提交
354
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
355 356
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
357
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
358 359 360
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
361 362 363 364 365
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
366 367 368 369
        padding = 0

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
J
jiangjiajun 已提交
370 371 372 373 374

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
375 376
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
377

J
jiangjiajun 已提交
378 379 380
        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
J
jiangjiajun 已提交
381 382 383 384 385 386 387 388 389
            if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
                padding = [pad_h[0], pad_w[0]]
            else:
                attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
                node.fluid_code.add_layer("pad2d",
                                          inputs=input,
                                          output=node,
                                          param_attr=attr)
                input = node
J
jiangjiajun 已提交
390 391 392 393 394 395
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
396 397
            "dilation": dilations[2:4],
            "padding": padding
J
jiangjiajun 已提交
398
        }
J
jiangjiajun 已提交
399 400 401 402
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
403

J
jiangjiajun 已提交
404 405 406 407 408 409 410 411 412 413 414 415
    def BiasAdd(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        bias = self.graph.get_node(node.layer.input[1], copy=True)
        axis = -1
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = 1
        inputs = {"x": input, "y": bias}
        attr = {"axis": axis}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
416 417 418 419 420 421 422

    def FusedBatchNorm(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        gamma = self.graph.get_node(node.layer.input[1], copy=True)
        beta = self.graph.get_node(node.layer.input[2], copy=True)
        moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
        moving_var = self.graph.get_node(node.layer.input[4], copy=True)
J
jiangjiajun 已提交
423 424
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
425 426 427 428 429 430 431 432 433 434

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
        self.omit_nodes.append(gamma.layer_name)
        self.omit_nodes.append(beta.layer_name)
        self.omit_nodes.append(moving_mean.layer_name)
        self.omit_nodes.append(moving_var.layer_name)

J
jiangjiajun 已提交
435 436
        if channel_first:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
437

J
jiangjiajun 已提交
438 439 440 441 442 443 444 445 446 447
        attr = {
            "epsilon": node.get_attr("epsilon"),
            "param_attr": string(gamma.layer_name),
            "bias_attr": string(beta.layer_name),
            "moving_mean_name": string(moving_mean.layer_name),
            "moving_variance_name": string(moving_var.layer_name),
            "is_test": True
        }

        node.fluid_code.add_layer("batch_norm",
J
jiangjiajun 已提交
448
                                  inputs=input,
J
jiangjiajun 已提交
449 450 451 452 453 454 455 456 457
                                  output=node,
                                  param_attr=attr)

    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
        self.omit_nodes.append(kernel.layer_name)

J
jiangjiajun 已提交
458 459 460
        node.fluid_code.add_note("#{} : {}".format(node.layer.name,
                                                   node.layer_name))

J
jiangjiajun 已提交
461
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
462 463
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
464
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
465 466 467
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
468 469 470 471 472
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
473 474 475 476
        padding = 0

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (2, 3, 0, 1))
J
jiangjiajun 已提交
477 478 479 480 481

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
482 483
        else:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
484 485 486 487

        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
J
jiangjiajun 已提交
488 489 490 491
            if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
                padding = [pad_h[0], pad_w[0]]
            else:
                attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
J
jiangjiajun 已提交
492
                node.fluid_code.add_layer("pad2d",
J
jiangjiajun 已提交
493
                                          inputs=input,
J
jiangjiajun 已提交
494 495
                                          output=node,
                                          param_attr=attr)
J
jiangjiajun 已提交
496 497
                input = node

J
jiangjiajun 已提交
498 499 500 501 502 503 504
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": in_shape[1],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4],
J
jiangjiajun 已提交
505
            "groups": k_size[3] * in_shape[1],
J
jiangjiajun 已提交
506
            "use_cudnn": False,
J
jiangjiajun 已提交
507
            "padding": padding
J
jiangjiajun 已提交
508
        }
J
jiangjiajun 已提交
509
        node.fluid_code.add_layer("conv2d",
J
jiangjiajun 已提交
510
                                  inputs=input,
J
jiangjiajun 已提交
511 512
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
513

J
jiangjiajun 已提交
514 515 516 517 518
    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        param = self.graph.get_node(node.layer.input[1], copy=True)
        if param.layer_type == "Const":
            attr = {"shape": param.value.tolist()}
J
jiangjiajun 已提交
519
            self.omit_nodes.append(param.layer_name)
J
jiangjiajun 已提交
520 521
        else:
            # Here is a trick method to solove tensor parameter in tensorflow
J
jiangjiajun 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
            shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0])
            if shape.count(-1) <= 1:
                attr = {"shape": shape}
                self.omit_nodes.append(param.layer_name)
            else:
                assert len(param.out_shapes[0]
                           ) == 1, "Unexpected situation of shape parameter"
                attr = {"shape": [-1]}
                node.fluid_code.add_layer("reshape",
                                          inputs=param,
                                          output="shape_param",
                                          param_attr=attr)
                attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0}
                node.fluid_code.add_layer("split",
                                          inputs="shape_param",
                                          output=node,
                                          param_attr=attr)
                new_param = "["
                for i in range(param.out_shapes[0][0]):
                    new_param += (node.layer_name + "[{}]".format(i) + ", ")
                new_param = new_param.strip(", ") + "]"
                attr = {"shape": new_param}
J
jiangjiajun 已提交
544 545
        if len(attr["shape"]) == 4 and node.tf_data_format == "NHWC":
            attr["shape"] = [attr["shape"][i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
546 547 548 549 550 551 552
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def AvgPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
553

J
jiangjiajun 已提交
554
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
555 556 557
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
558 559 560 561 562 563 564 565 566
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
567
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
568 569
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
570 571

        attr = {
J
jiangjiajun 已提交
572
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
573 574 575 576
            "pool_type": string("avg"),
            "pool_stride": strides[2:4]
        }
        if pad_mode == "SAME":
J
jiangjiajun 已提交
577 578
            pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
J
jiangjiajun 已提交
579 580 581 582
            assert pad_h[0] == pad_h[1] and pad_w[0] == pad_w[
                1], "Cannot map AvgPool"
            attr["pool_padding"] = [pad_h[0], pad_w[0]]
        node.fluid_code.add_layer("pool2d",
J
jiangjiajun 已提交
583
                                  inputs=input,
J
jiangjiajun 已提交
584 585 586
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
587 588 589 590 591 592 593 594
    def SplitV(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        num_sections = self.graph.get_node(node.layer.input[1], copy=True)
        dim = self.graph.get_node(node.layer.input[2], copy=True)
        assert num_sections.layer_type == "Const"
        assert dim.layer_type == "Const"
        self.omit_nodes.append(num_sections.layer_name)
        self.omit_nodes.append(dim.layer_name)
J
jiangjiajun 已提交
595 596 597
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)
J
jiangjiajun 已提交
598 599 600 601 602 603 604 605
        attr = {
            "num_or_sections": num_sections.value.tolist(),
            "dim": dim.value
        }
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
606 607

    def ConcatV2(self, node):
J
jiangjiajun 已提交
608 609 610 611
        inputs = [
            self.graph.get_node(name, copy=True)
            for name in node.layer.input[:-1]
        ]
J
jiangjiajun 已提交
612 613 614
        axis = self.graph.get_node(node.layer.input[-1], copy=True)
        assert axis.layer_type == "Const"
        self.omit_nodes.append(axis.layer_name)
J
jiangjiajun 已提交
615 616 617 618 619
        axis = axis.value
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(inputs[0], axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
620 621 622 623
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
624 625 626 627 628 629

    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        expand_times = self.graph.get_node(node.layer.input[1], copy=True)
        assert expand_times.layer_type == "Const"
        self.omit_nodes.append(expand_times.layer_name)
J
jiangjiajun 已提交
630 631 632 633 634 635 636
        expand_times = expand_times.value.tolist()
        if input.tf_data_format == "NHWC":
            if len(input.out_shapes[0]) == 4:
                expand_times = [expand_times[i] for i in [0, 3, 1, 2]]
            elif len(input.out_shape[0]) == 3:
                expand_times = [expand_times[i] for i in [2, 0, 1]]
        attr = {"expand_times": expand_times}
J
jiangjiajun 已提交
637 638 639 640
        node.fluid_code.add_layer("expand",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
641 642

    def Pack(self, node):
J
jiangjiajun 已提交
643 644 645
        inputs = [
            self.graph.get_node(name, copy=True) for name in node.layer.input
        ]
J
jiangjiajun 已提交
646 647 648 649 650 651 652 653 654 655 656 657
        axis = node.get_attr("axis")
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            tf_data_format = list(inputs[0].tf_data_format)
            tf_data_format.insert(axis, str(len(tf_data_format)))
            axis = nhwc_dim_to_nchw(inputs[0], axis)
            pd_data_format = list(inputs[0].pd_data_format)
            pd_data_format.insert(axis, str(len(pd_data_format)))
            node.tf_data_format = "".join(tf_data_format)
            node.pd_data_format = "".join(pd_data_format)

        attr = {"axis": axis}
J
jiangjiajun 已提交
658 659 660
        node.fluid_code.add_layer("stack",
                                  inputs=inputs,
                                  output=node,
J
jiangjiajun 已提交
661
                                  param_attr=attr)
J
jiangjiajun 已提交
662 663 664

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
665
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
666 667
        assert paddings.layer_type == "Const", "Padding should be Const"
        self.omit_nodes.append(paddings.layer_name)
J
jiangjiajun 已提交
668 669 670
        paddings = paddings.value.flatten().tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]]
J
jiangjiajun 已提交
671 672 673 674 675 676

        pad_op = "pad"
        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
                paddings = paddings[4:]
                pad_op = "pad2d"
J
jiangjiajun 已提交
677
        attr = {"paddings": paddings}
J
jiangjiajun 已提交
678
        node.fluid_code.add_layer(pad_op,
J
jiangjiajun 已提交
679 680 681
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695

    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0], copy=True)
        limit = self.graph.get_node(node.layer.input[1], copy=True)
        delta = self.graph.get_node(node.layer.input[2], copy=True)
        if start.layer_type == "Const":
            self.omit_nodes.append(start.layer_name)
            start = start.value
        if limit.layer_type == "Const":
            self.omit_nodes.append(limit.layer_name)
            limit = limit.value
        if delta.layer_type == "Const":
            self.omit_nodes.append(delta.layer_name)
            delta = delta.value
J
jiangjiajun 已提交
696
        inputs = {"start": start, "end": limit, "step": delta}
J
jiangjiajun 已提交
697
        attr = {"dtype": string(node.dtype)}
J
jiangjiajun 已提交
698 699 700 701 702 703 704 705 706
        node.fluid_code.append("range",
                               inputs=inputs,
                               output=node,
                               param_attr=None)

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
J
jiangjiajun 已提交
707
        dims = reduce_idx.value.tolist()
J
jiangjiajun 已提交
708
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
709 710 711 712 713 714

        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(dims)):
                dims[i] = nhwc_dim_to_nchw(input, dims[i])

        attr = {"dim": dims, "keep_dim": keep_dims}
J
jiangjiajun 已提交
715 716 717 718 719 720 721 722 723 724 725
        node.fluid_code.add_layer("reduce_mean",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        inputs = {"x": x, "y": y}
J
jiangjiajun 已提交
726 727 728 729 730 731 732 733 734 735
        # fix paddle shape infer problem
        # should be removed after paddle 1.6
        if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0:
            shape = x.out_shapes[0]
            shape[-1] = y.out_shapes[0][0]
            attr = {"shape": shape}
            node.fluid_code.add_layer("reshape",
                                      inputs=x,
                                      output=x,
                                      param_attr=attr)
J
jiangjiajun 已提交
736 737 738 739 740 741 742 743 744 745 746
        attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = self.graph.get_node(node.layer.input[1], copy=True)
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        self.omit_nodes.append(axis.layer_name)
J
jiangjiajun 已提交
747 748 749 750
        axis = axis.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
        node.fluid_code.add_layer("argmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        end = self.graph.get_node(node.layer.input[2], copy=True)
        strides = self.graph.get_node(node.layer.input[3], copy=True)
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
        self.omit_nodes.append(begin.layer_name)
        self.omit_nodes.append(end.layer_name)
        self.omit_nodes.append(strides.layer_name)
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[0] == 1

J
jiangjiajun 已提交
770 771 772 773 774 775 776
        begin = begin.value.tolist()
        end = end.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            begin = [begin[i] for i in [0, 3, 1, 2]]
            end = [end[i] for i in [0, 3, 1, 2]]

        attr = {"axes": range(len(strides)), "starts": begin, "ends": end}
J
jiangjiajun 已提交
777 778 779 780
        node.fluid_code.add_layer("slice",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
781 782 783 784 785

    def Slice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        size = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
786 787
        #        assert begin.layer_type == "Const"
        #        assert size.layer_type == "Const"
788 789
        self.omit_nodes.append(begin.layer_name)
        self.omit_nodes.append(size.layer_name)
J
jiangjiajun 已提交
790 791 792 793 794 795 796 797
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
            begin = self.decoder.infer_tensor(begin).tolist()
        if size.layer_type == "const":
            size = size.value.tolist()
        else:
            size = self.decoder.infer_tensor(size).tolist()
798

J
jiangjiajun 已提交
799 800 801 802
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            size = [size[i] for i in [0, 3, 1, 2]]
            begin = [begin[i] for i in [0, 3, 1, 2]]

J
jiangjiajun 已提交
803 804 805 806 807
        attr = {"shape": size, "offsets": begin}
        node.fluid_code.add_layer("crop",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
808 809 810 811 812 813 814

    def Conv2DBackpropInput(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
        self.omit_nodes.append(kernel.layer_name)

J
jiangjiajun 已提交
815 816 817
        node.fluid_code.add_note("#{} : {}".format(node.layer.name,
                                                   node.layer_name))

818
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
819 820
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
821
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
822 823 824
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

825 826 827 828 829
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
830 831
        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
832 833 834 835 836

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
837 838
        else:
            self.data_format_propagation(node)
839

J
jiangjiajun 已提交
840
        padding = 0
841 842 843
        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
J
jiangjiajun 已提交
844 845 846 847 848 849 850 851 852
            if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
                padding = [pad_h[0], pad_w[0]]
            else:
                attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
                node.fluid_code.add_layer("pad2d",
                                          inputs=input,
                                          output=node,
                                          param_attr=attr)
                input = node
853 854 855 856 857 858
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
859 860
            "dilation": dilations[2:4],
            "padding": padding
861 862 863 864 865 866 867 868 869 870 871 872
        }
        node.fluid_code.add_layer(
            "conv2d_transpose",
            inputs=input if channel_first and pad_mode != "SAME" else node,
            output=node,
            param_attr=attr)

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
873 874 875 876 877
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
878 879 880 881 882 883 884 885 886 887
        node.fluid_code.add_layer("reduce_max",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
888 889 890 891 892
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
893 894 895 896 897
        node.fluid_code.add_layer("reduce_sum",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
898 899 900 901 902 903 904 905
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        dtype = node.dtype_map[node.get_attr('DstT')]
        attr = {"dtype": string(dtype)}
        node.fluid_code.add_layer("cast",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
906 907 908 909 910 911 912 913 914 915 916 917 918

    def FloorDiv(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {'x': x, 'y': y}
        node.fluid_code.add_layer("elementwise_div",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
        node.fluid_code.add_layer("floor",
                                  inputs=node,
                                  output=node,
                                  param_attr=None)
J
jiangjiajun 已提交
919 920 921 922 923 924 925

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0], copy=True)
        input = self.graph.get_node(node.layer.input[1], copy=True)
        assert dim.layer_type == "Const"
        self.omit_nodes.append(dim.layer_name)
        num_split = node.get_attr('num_split')
J
jiangjiajun 已提交
926 927 928 929 930
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"num_or_sections": num_split, "dim": dim}
J
jiangjiajun 已提交
931 932 933 934
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(squeeze_dims)):
                squeeze_dims[i] = nhwc_dim_to_nchw(input, squeeze_dims[i])
        attr = {"axes": squeeze_dims}
        node.fluid_code.add_layer("squeeze",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = node.get_attr("axis")
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
        node.fluid_code.add_layer("softmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)