tf_batchnorm_fuser.py 6.8 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import numpy as np
from collections import OrderedDict
from x2paddle.optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *


S
renam  
SunAhong1993 已提交
23
class DygraphTFBatchNormFuser(FuseBase):
S
SunAhong1993 已提交
24 25
    def __init__(self):
        self.bn_index = 0
S
renam  
SunAhong1993 已提交
26
        super(DygraphTFBatchNormFuser, self).__init__(graph_type="dygraph")
S
SunAhong1993 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

    def build_pattern(self):
        """ 描述需要替换的batchnorm图结构。
        batchnorm层模式python实现代码示例:
            
        """

        def gen_name(id):
            return "x" + str(id)

        self.pattern.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[gen_name(0)])
        self.pattern.add_layer(
            "paddle.full",
            inputs={},
            outputs=[gen_name(1)],
            shape=[1])
        self.pattern.add_layer(
            "paddle.add",
            inputs={"x": gen_name(0), "y": gen_name(1)},
            outputs=[gen_name(2)])
        self.pattern.add_layer(
            "paddle.rsqrt",
            inputs={"x": gen_name(2)},
            outputs=[gen_name(3)])
        self.pattern.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[gen_name(4)])
        self.pattern.add_layer(
            "paddle.multiply",
            inputs={"x": gen_name(3), "y": gen_name(4)},
            outputs=[gen_name(5)])
        self.pattern.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[gen_name(6)])
        self.pattern.add_layer(
            "paddle.multiply",
            inputs={"x": gen_name(6), "y": gen_name(5)},
            outputs=[gen_name(7)])
        self.pattern.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[gen_name(8)])
        self.pattern.add_layer(
            "fluid.layers.elementwise_sub",
            inputs={"x": gen_name(8), "y": gen_name(7)},
            outputs=[gen_name(9)])
        self.pattern.add_layer(
            "paddle.multiply",
            inputs={"x": "bn-input-0", "y": gen_name(5)},
            outputs=[gen_name(10)])
        self.pattern.add_layer(
            "paddle.add",
            inputs={"x": gen_name(10), "y": gen_name(9)},
            outputs=[gen_name(11)])
        self.pattern.build(inputs={"input-0": "bn-input-0", })
        

    def insert_new_layer(self, graph, parameters, matches):
        new_layers, last_layer_id = self.gen_new_layer(matches, parameters, graph)
        matches_copy = copy.deepcopy(matches)
        for layer_id, layer in matches_copy.items():
            for i in range(3):
                if layer_id == new_layers[i].id:
                    matches.pop(new_layers[i].id)
        prefix_layers = OrderedDict()
        mid_layers = OrderedDict()
        suffix_layers = OrderedDict()
        is_need_id = False
        for layer_id, layer in graph.layers.items():
            if is_need_id:
                suffix_layers[layer_id] = layer
            else:
                if layer_id == last_layer_id:
                    for i in range(3):
                        mid_layers[new_layers[i].id] = new_layers[i]
                    is_need_id = True
                prefix_layers[layer_id] = layer
        prefix_layers.update(mid_layers)
        prefix_layers.update(suffix_layers)
        graph.layers = prefix_layers

    def gen_new_layer(self, matches, parameters, graph):
        layer_id_list = list(matches.keys())
        layer_id_list.sort(key = int)
        for layer_id, layer in matches.items():
            if layer.kernel == "paddle.full":
                full_layer = layer
                out_layer_id = graph.edges_out[layer_id][0]
                if matches[out_layer_id].kernel == "paddle.add":
                    var_layer_id = graph.edges_in[out_layer_id][0]
                    var_layer = matches[var_layer_id]
            if layer.kernel == "paddle.rsqrt":
                out_layer_id = graph.edges_out[layer_id][0]
                if matches[out_layer_id].kernel == "paddle.multiply":
                    gamma_layer_id = graph.edges_in[out_layer_id][1]
                    gamma_layer = matches[gamma_layer_id]
            if layer.kernel == "fluid.layers.elementwise_sub":
                in_layer_id = graph.edges_in[layer_id][0]
                beta_layer = matches[in_layer_id]
                in_layer_id = graph.edges_in[layer_id][1]
                in_layer_id = graph.edges_in[in_layer_id][0]
                mean_layer = matches[in_layer_id]
                out_layer_id = graph.edges_out[layer_id][0]
                add_layer = matches[out_layer_id]
            if layer.kernel == "paddle.multiply":
                in_layer_id = graph.edges_in[layer_id][1]
                mul_layer = matches[in_layer_id]
                if mul_layer.kernel == "paddle.multiply":
                    in_layer_id = graph.edges_in[layer_id][0]
                    if in_layer_id not in matches:
                        input_name = layer.inputs["x"]
        transpose0 = PaddleLayer(
            id=layer_id_list[-1] + "_1",
            kernel="paddle.transpose",
            inputs={"x": input_name},
            outputs=["{}_transpose_for_bn".format(input_name)],
            perm=[0, 3, 1, 2])
        bn_name = "merge_bn{}".format(self.bn_index)
        self.bn_index += 1
        params = parameters[gamma_layer.outputs[0]]
        c = params.shape[0]
        bn = PaddleLayer(
            id=layer_id_list[-1] + "_2",
            kernel="paddle.nn.BatchNorm",
            inputs={"input": "{}_transpose_for_bn".format(input_name)},
            outputs=[bn_name, "{}_bn".format(input_name)],
            num_channels=c,
            epsilon=full_layer.attrs["fill_value"],
            param_attr=string(gamma_layer.outputs[0]),
            bias_attr=string(beta_layer.outputs[0]),
            moving_mean_name=string(mean_layer.outputs[0]),
            moving_variance_name=string(var_layer.outputs[0]),
            is_test=True)
        transpose1 = PaddleLayer(
            id=layer_id_list[-1] + "_3",
            kernel="paddle.transpose",
            inputs={"x": "{}_bn".format(input_name)},
            outputs=add_layer.outputs,
            perm=[0, 2, 3, 1])
        return [transpose0, bn, transpose1], layer_id_list[-1]