bn_scale_fuser.py 3.6 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from x2paddle.optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *


S
renam  
SunAhong1993 已提交
21
class DygraphBNScaleFuser(FuseBase):
S
SunAhong1993 已提交
22
    def __init__(self):
S
renam  
SunAhong1993 已提交
23
        super(DygraphBNScaleFuser, self).__init__(graph_type="dygraph")
S
SunAhong1993 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

    def build_pattern(self):
        """ 描述需要替换的batchnorm2d图结构。
        batchnorm2d层模式python实现代码示例:
            bn_conv1 = self.batchnorm0(conv1)
            scale_conv1_cparam1 = self.scale_conv1_cparam1
            scale_conv1_mul = paddle.multiply(x=bn_conv1, y=scale_conv1_cparam1, axis=1)
            scale_conv1_cparam2 = self.scale_conv1_cparam2
            scale_conv1 = fluid.layers.elementwise_add(x=scale_conv1_mul, y=scale_conv1_cparam2, axis=1)
        """

        def gen_name(id):
            return "x" + str(id)
        
        self.pattern.add_layer(
            "paddle.nn.BatchNorm2D",
            inputs={"input": "bn-input-0"},
            outputs=[gen_name(0)])
        self.pattern.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[gen_name(1)])
        inputs_dict = {}
        inputs_dict['x'] = gen_name(0)
        inputs_dict['y'] = gen_name(1)
        self.pattern.add_layer(
            "paddle.multiply",
            inputs=inputs_dict,
            outputs=[gen_name(2)])
        self.pattern.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[gen_name(3)])
        inputs_dict = {}
        inputs_dict['x'] = gen_name(2)
        inputs_dict['y'] = gen_name(3)
        self.pattern.add_layer(
            "fluid.layers.elementwise_add",
            inputs=inputs_dict,
            outputs=[gen_name(4)])
        self.pattern.build(inputs={"input-0": "bn-input-0"})

    def insert_new_layer(self, graph, parameters, matches):
        new_layer = self.gen_new_layer(parameters, matches)
        new_layer_id = list(matches.keys())[0]
        graph.layers[new_layer_id] = new_layer
        matches.pop(new_layer_id)


    def gen_new_layer(self, parameters, matches):
        layers_id = list(matches.keys())
        layer = matches[layers_id[0]]
        layer_inputs = layer.inputs
        bn_name = layer.outputs[0]
        layer_attrs = layer.attrs
        layer_attrs.pop("weight_attr")
        layer_attrs.pop("bias_attr")
        layer = matches[layers_id[4]]
        layer_outputs = [bn_name] + layer.outputs
        layer = matches[layers_id[1]]
        data0_name = layer.outputs[0]
        data0_numpy = parameters.pop(data0_name)
        parameters["{}.weight".format(layer_outputs[0])] = data0_numpy
        layer = matches[layers_id[3]]
        data1_name = layer.outputs[0]
        data1_numpy = parameters.pop(data1_name)
        parameters["{}.bias".format(layer_outputs[0])] = data1_numpy
        new_layer = PaddleLayer(
            layers_id[0],
            "paddle.nn.BatchNorm2D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            **layer_attrs)
        return new_layer