onnx_backend.py 42.8 KB
Newer Older
C
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Part of the following code in this file refs to https://github.com/pytorch/pytorch/blob/master/caffe2/python/onnx/backend.py
# PyTorch is BSD-style licensed, as found in the LICENSE file: https://github.com/pytorch/pytorch/blob/master/LICENSE
C
channingss 已提交
16 17 18 19
"""Backend for running ONNX on Caffe2

To run this, you will need to have Caffe2 installed as well.
"""
C
channingss 已提交
20

C
channingss 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import collections
from subprocess import Popen, PIPE
import zipfile
import itertools

# When onnx is built against a version of protobuf that is older than
# that which is vendored with caffe2, onnx will crash if caffe2's
# vendored protobuf is loaded first. We can work around this by
# importing onnx first, which will cause it to go out and pick up the
# system protobuf.
import onnx.backend

import caffe2
from caffe2.python import core, workspace, rnn_cell, gru_cell
from caffe2.python.compatibility import container_abcs
from caffe2.python.model_helper import ModelHelper
from caffe2.proto import caffe2_pb2
import caffe2.python.utils
import numpy as np
import onnx
from onnx import checker, GraphProto, TensorProto, AttributeProto, ModelProto
import onnx.numpy_helper
import onnx.defs
import onnx.optimizer
import onnx.shape_inference
import onnx.utils
from onnx.backend.base import Backend, Device, DeviceType, namedtupledict

from caffe2.python.onnx.workspace import Workspace
from caffe2.python.onnx.backend_rep import Caffe2Rep
from caffe2.python.onnx.backend_cpp_rep import Caffe2CppRep

import caffe2.python._import_c_extension as C

import warnings


def force_unicode(s):
    try:
        return s.decode('utf-8')
    except AttributeError:
        return s


def get_device_option(device):
    m = {
        DeviceType.CPU: caffe2_pb2.CPU,
        DeviceType.CUDA: workspace.GpuDeviceType
    }
    return core.DeviceOption(m[device.type], device.device_id)


class OnnxAttributes(dict):
    """
    This is a more convenient way to work with ONNX/Caffe2 attributes
    that is not the protobuf representation.
    """
    @staticmethod
    def from_onnx(args):
        d = OnnxAttributes()
        for arg in args:
            d[arg.name] = convertAttributeProto(arg)
        return d

    def caffe2(self, kmap=lambda k: k):
        for k, v in self.items():
            if kmap(k) != '':
                yield caffe2.python.utils.MakeArgument(kmap(k), v)


# TODO: Move this into ONNX main library
def convertAttributeProto(onnx_arg):
    """
    Convert an ONNX AttributeProto into an appropriate Python object
    for the type.

    NB: Tensor attribute gets returned as the straight proto.
    """
    if onnx_arg.HasField('f'):
        return onnx_arg.f
    elif onnx_arg.HasField('i'):
        return onnx_arg.i
    elif onnx_arg.HasField('s'):
        return onnx_arg.s
    elif onnx_arg.HasField('t'):
        return onnx_arg.t  # this is a proto!
    elif onnx_arg.HasField('g'):
        return Caffe2Backend._graph_to_net(onnx_arg.g,
                                           Caffe2Backend._known_opset_version)
    elif len(onnx_arg.floats):
        return list(onnx_arg.floats)
    elif len(onnx_arg.ints):
        return list(onnx_arg.ints)
    elif len(onnx_arg.strings):
        return list(onnx_arg.strings)
    elif len(onnx_arg.graphs):
        retval = []
        # TODO: this doesn't work with RNN ops
        for g in onnx_arg.graphs:
            retval.append(
                Caffe2Backend._graph_to_net(g,
                                            Caffe2Backend._known_opset_version))
        return retval
    else:
        raise ValueError("Unsupported ONNX attribute: {}".format(onnx_arg))


# TODO: Move this into ONNX main library
class OnnxNode(object):
    """
    Reimplementation of NodeProto from ONNX, but in a form
    more convenient to work with from Python.

    We may temporarily edit these nodes to get them into Caffe2 form,
    before actually translating into the Caffe2 protobuf, since this
    is easier than decomposing everything, and putting it back together
    when we're ready.
    """
    def __init__(self, node):
        self.name = str(node.name)
        self.op_type = str(node.op_type)
        self.attrs = OnnxAttributes.from_onnx(node.attribute)
        self.inputs = list(node.input)
        self.outputs = list(node.output)


Caffe2Ops = collections.namedtuple('Caffe2Ops',
                                   ['ops', 'init_ops', 'interface_blobs'])


class Caffe2Backend(Backend):

    # The greatest version of the ONNX operator set which we are aware of.
    # Models whose version is larger than this will cause us to emit a warning
    # that we are attempting to translate on a "best effort" basis.
    #
    # If you increase this, make SURE you cross-reference all BC-breaking
    # changes from one version to the next, and any that you did not
    # implement, mark as broken in _broken_operators
    _known_opset_version = 9

    # This dictionary will record operators which are KNOWN to be
    # broken, so we give a good error message rather than do something
    # bogus and then fail.
    _broken_operators = {
        # 'BrokenOp': version_it_was_broken_in
    }

    # Operators that are different between Caffe2 and
    # ONNX but only in their name.
    # In most cases, this should be empty - as the effort of ONNX is
    # to unify the operator definitions.
    _renamed_operators = {
        'GlobalMaxPool': 'MaxPool',
        'GlobalAveragePool': 'AveragePool',
        'Pad': 'PadImage',
        'Neg': 'Negative',
        'BatchNormalization': 'SpatialBN',
        'InstanceNormalization': 'InstanceNorm',
        'MatMul': 'BatchMatMul',
        'Upsample': 'ResizeNearest',
        'Identity': 'Copy',
        'InstanceNormalization': 'InstanceNorm',
        'Equal': 'EQ',
        'Less': 'LT',
        'Greater': 'GT',
        'Unsqueeze': 'ExpandDims',
        'Loop': 'ONNXWhile',
        'Tile': 'NumpyTile',
        'RandomNormal': 'GaussianFill',
        'RandomUniform': 'UniformFill',
    }

    _global_renamed_attrs = {'kernel_shape': 'kernels'}
    _per_op_renamed_attrs = {
        'Squeeze': {
            'axes': 'dims'
        },
        'Unsqueeze': {
            'axes': 'dims'
        },
        'Transpose': {
            'perm': 'axes'
        },
        'Upsample': {
            'mode': '',
            'scales': ''
        },
        'ConvTranspose': {
            'output_padding': 'adjs'
        },
        'Selu': {
            'gamma': 'scale'
        },
        'If': {
            'then_branch': 'then_net',
            'else_branch': 'else_net'
        },
        'RandomUniform': {
            'low': 'min',
            'high': 'max'
        }
    }

    # operators whose behavior is different beyond renaming
    # the value is an attribute of this class that is a
    # function from ToffeIR node_def to caffe2 op_def
    _special_operators = {
        'LSTM': '_create_rnn_variant',
        'GRU': '_create_rnn_variant',
        'RNN': '_create_rnn_variant',
        'Loop': '_create_loop',
        'If': '_create_if',
        'Upsample': '_create_upsample',
        'RandomNormal': '_create_gaussian_fill'
    }

    # Dummy name generator
    _dummy_name = C.DummyName()

    @classmethod
    def dummy_name(cls):
        return cls._dummy_name.new_dummy_name()

    # NB: By default, you will use the LATEST definition of the operator,
    # so this interface MAY make BC-breaking changes.  Specify an
    # opset_version if you don't want this to version.
    @classmethod
    def run_node(cls,
                 node,
                 inputs,
                 device='CPU',
                 opset_version=_known_opset_version,
                 outputs_info=None):
        super(Caffe2Backend, cls).run_node(node,
                                           inputs,
                                           device=device,
                                           outputs_info=outputs_info,
                                           opset_version=opset_version)

        value_infos = []
        device_option = get_device_option(Device(device))
        ws = Workspace()
        with core.DeviceScope(device_option):  # temporary!
            if isinstance(inputs, dict):
                for key, value in inputs.items():
                    ws.FeedBlob(key, value)
                    value_infos.append(
                        onnx.helper.make_tensor_value_info(
                            name=key,
                            elem_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[
                                value.dtype],
                            shape=value.shape).SerializeToString())
            else:
                assert len(node.input) == len(
                    inputs), "{}: expected {} but got {}".format(
                        node.op_type, len(node.input), len(inputs))
                for key, value in zip(node.input, inputs):
                    ws.FeedBlob(key, value)
                    value_infos.append(
                        onnx.helper.make_tensor_value_info(
                            name=key,
                            elem_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[
                                value.dtype],
                            shape=value.shape).SerializeToString())

            ops = []
            cbackend = C.Caffe2Backend(cls._dummy_name)
            ops_str = cbackend.convert_node(node.SerializeToString(),
                                            value_infos, opset_version)
            for s in ops_str[0] + ops_str[1]:
                op = caffe2_pb2.OperatorDef()
                op.ParseFromString(s)
                op.device_option.CopyFrom(device_option)
                ops.append(op)
            ws.RunOperatorsOnce(ops)
            output_values = [ws.FetchBlob(name) for name in node.output]
            return namedtupledict('Outputs', node.output)(*output_values)

    @classmethod
    def _create_tensor_filling_op(cls, onnx_tensor, name=None):
        """
        Given an Onnx TensorProto, translate it into a Caffe2 operator
        which produces the given tensor filling op.
        """
        assert name or onnx_tensor.name
        name = name or onnx_tensor.name

        c2_op = caffe2_pb2.OperatorDef()

        c2_values = c2_op.arg.add()
        c2_values.name = "values"

        def tensor2list(onnx_tensor):
            # Use the onnx.numpy_helper because the data may be raw
            return onnx.numpy_helper.to_array(onnx_tensor).flatten().tolist()

        if onnx_tensor.data_type in [TensorProto.FLOAT]:
            c2_op.type = 'GivenTensorFill'
            c2_values.floats.extend(tensor2list(onnx_tensor))
        elif onnx_tensor.data_type in [TensorProto.DOUBLE]:
            c2_op.type = 'GivenTensorDoubleFill'
            c2_values.floats.extend(tensor2list(onnx_tensor))
        elif onnx_tensor.data_type in [TensorProto.INT64, TensorProto.UINT32]:
            c2_op.type = 'GivenTensorInt64Fill'
            c2_values.ints.extend(tensor2list(onnx_tensor))
        elif onnx_tensor.data_type in [
                TensorProto.UINT8, TensorProto.INT8, TensorProto.UINT16,
                TensorProto.INT16, TensorProto.INT32
        ]:
            c2_op.type = 'GivenTensorIntFill'
            c2_values.ints.extend(tensor2list(onnx_tensor))
        elif onnx_tensor.data_type == TensorProto.BOOL:
            c2_op.type = 'GivenTensorBoolFill'
            c2_values.ints.extend(tensor2list(onnx_tensor))
        elif onnx_tensor.data_type == TensorProto.STRING:
            c2_op.type = 'GivenTensorStringFill'
            c2_values.strings.extend(onnx_tensor.string_data)
        else:
            raise RuntimeError("unrecognized tensor type {}".format(
                onnx_tensor.data_type))

        c2_shape = c2_op.arg.add()
        c2_shape.name = "shape"
        c2_shape.ints.extend(onnx_tensor.dims)

        c2_op.output.append(name)

        return c2_op

    @classmethod
    def _rnn_reform_weights(cls, reforms, name, hidden_size, init_net, gates,
                            reorder_indices):
        for name_from, name_to, do_concat, extra_dims in reforms:
            gate_blobs = [
                '%s/%s_%s' % (name, prefix, name_to) for prefix in gates
            ]
            for i, x in enumerate(gate_blobs):
                dim0 = i * hidden_size, (i + 1) * hidden_size
                starts, ends = zip(dim0, *extra_dims)
                init_net.Slice(name_from, x, starts=starts, ends=ends)
            if do_concat:
                reordered_gate_blobs = [gate_blobs[i] for i in reorder_indices]
                init_net.Concat(reordered_gate_blobs,
                                ['%s/%s' % (name, name_to),
                                 cls.dummy_name()],
                                axis=0)

    @classmethod
    def _make_rnn_direction(cls, input_blob, B, W, R, initial_states_and_names,
                            sequence_lens, pred_mh, init_net, input_size,
                            hidden_size, num_gates, direction_offset, Bi, Br,
                            W_, R_, reform, make_cell, keep_outputs):
        name = cls.dummy_name()

        # input and recurrence biases are squashed together in onnx
        # but not in caffe2
        gates_hidden_size = num_gates * hidden_size
        bias_offset = 2 * direction_offset * gates_hidden_size
        weight_offset = direction_offset * gates_hidden_size
        Bi = init_net.Slice(B,
                            name + Bi,
                            starts=[bias_offset + 0 * gates_hidden_size],
                            ends=[bias_offset + 1 * gates_hidden_size])
        Br = init_net.Slice(B,
                            name + Br,
                            starts=[bias_offset + 1 * gates_hidden_size],
                            ends=[bias_offset + 2 * gates_hidden_size])
        W_ = init_net.Slice(W,
                            name + W_,
                            starts=[weight_offset + 0 * gates_hidden_size, 0],
                            ends=[weight_offset + 1 * gates_hidden_size, -1])
        R_ = init_net.Slice(R,
                            name + R_,
                            starts=[weight_offset + 0 * gates_hidden_size, 0],
                            ends=[weight_offset + 1 * gates_hidden_size, -1])

        initial_states_sliced = []
        for initial_state, name_suffix in initial_states_and_names:
            initial_states_sliced.append(
                pred_mh.net.Slice(initial_state,
                                  name + name_suffix,
                                  starts=[direction_offset + 0, 0, 0],
                                  ends=[direction_offset + 1, -1, -1]))

        if direction_offset == 1:
            if sequence_lens is not None:
                seq_lens_for_reverse = sequence_lens
            else:
                input_shape = pred_mh.net.Shape(input_blob,
                                                name + '/input_shape')
                batch_size = pred_mh.net.Slice(input_shape,
                                               name + '/batch_size_slice',
                                               starts=[1],
                                               ends=[2])
                seq_len = pred_mh.net.Slice(input_shape,
                                            name + '/seq_len_slice',
                                            starts=[0],
                                            ends=[1])
                dummy_sequence_lens = pred_mh.net.Tile([seq_len, batch_size],
                                                       name +
                                                       '/dummy_sequence_lens',
                                                       axis=0)
                pred_mh.net.Reshape(
                    dummy_sequence_lens,
                    [dummy_sequence_lens, cls.dummy_name()],
                    shape=[-1])
                seq_lens_for_reverse = pred_mh.net.Cast(dummy_sequence_lens,
                                                        name +
                                                        '/seq_lens_for_reverse',
                                                        to=core.DataType.INT32)
        reform(Bi, Br, W_, R_, name, hidden_size, init_net)

        if direction_offset == 1:
            input = pred_mh.net.ReversePackedSegs(
                [input_blob, seq_lens_for_reverse], name + "/input-reversed")
        else:
            input = input_blob

        outputs = keep_outputs(
            list(
                make_cell(
                    pred_mh,
                    input,
                    sequence_lens,
                    initial_states_sliced,
                    input_size,
                    hidden_size,
                    name,
                    drop_states=False,
                    forward_only=True,
                )))

        if direction_offset == 1:
            outputs[0] = pred_mh.net.ReversePackedSegs(
                [outputs[0], seq_lens_for_reverse], name + "/output-reversed")

        return outputs

    @classmethod
    def _create_rnn_variant(cls, init_model, pred_model, n, opset_version):
        assert init_model is not None, "cannot convert RNNs without access to the full model"
        assert pred_model is not None, "cannot convert RNNs without access to the full model"

        attrs = dict(n.attrs)  # make a copy, which is safe to mutate
        hidden_size = attrs.pop('hidden_size')
        direction = force_unicode(attrs.pop('direction', 'forward'))

        if n.op_type == 'RNN':
            activation = force_unicode(
                attrs.pop('activations', ('tanh', ))[0].lower())
        elif n.op_type == 'GRU':
            linear_before_reset = attrs.pop('linear_before_reset', 0)

        assert not attrs, "unsupported RNN attributes: " + str(attrs.keys())
        assert direction in ['forward', 'bidirectional'
                             ], "unsupported backwards RNN/GRU/LSTM"

        if n.op_type in ['RNN', 'GRU']:
            input_blob, W, R, B, sequence_lens, initial_h = n.inputs
        elif n.op_type == 'LSTM':
            input_blob, W, R, B, sequence_lens, initial_h, initial_c = n.inputs

        if sequence_lens == "":
            sequence_lens = None

        for x in itertools.chain(init_model.graph.input,
                                 init_model.graph.value_info,
                                 pred_model.graph.input,
                                 pred_model.graph.value_info):
            if x.name == W:
                input_size = x.type.tensor_type.shape.dim[2].dim_value
                break
        else:
            raise RuntimeError(
                "best-effort shape inference for RNN/GRU/LSTM failed")

        pred_mh = ModelHelper()
        init_net = core.Net("init-net")

        init_net.Reshape(W, [W, cls.dummy_name()], shape=[1, -1, 0])
        init_net.Squeeze(W, W, dims=[0])
        init_net.Reshape(R, [R, cls.dummy_name()], shape=[1, -1, 0])
        init_net.Squeeze(R, R, dims=[0])
        init_net.Reshape(B, [B, cls.dummy_name()], shape=[1, -1])
        init_net.Squeeze(B, B, dims=[0])

        if n.op_type == 'RNN':

            def reform(*args):
                pass

            def make_cell(*args, **kwargs):
                return rnn_cell.BasicRNN(*args, activation=activation, **kwargs)

            def make_rnn(direction_offset):
                return cls._make_rnn_direction(
                    input_blob, B, W, R, [(initial_h, '/initial_h')],
                    sequence_lens, pred_mh, init_net, input_size, hidden_size,
                    1, direction_offset, "/i2h_b", "/gates_t_b", "/i2h_w",
                    "/gates_t_w", reform, make_cell, lambda x: x)

        elif n.op_type == 'GRU':

            def reform(Bi, Br, W_, R_, name, hidden_size, init_net):
                # caffe2 has a different order from onnx. We need to rearrange
                #  z r h  -> r z h
                reforms = ((W_, 'i2h_w', True, [(0, -1)]), (R_, 'gate_t_w',
                                                            False, [(0, -1)]),
                           (Bi, 'i2h_b', True, []), (Br, 'gate_t_b', False, []))
                cls._rnn_reform_weights(reforms, name, hidden_size, init_net,
                                        ['update', 'reset', 'output'],
                                        [1, 0, 2])

            def make_cell(*args, **kwargs):
                return gru_cell.GRU(*args,
                                    linear_before_reset=linear_before_reset,
                                    **kwargs)

            def make_rnn(direction_offset):
                return cls._make_rnn_direction(
                    input_blob, B, W, R, [(initial_h, '/initial_h')],
                    sequence_lens, pred_mh, init_net, input_size, hidden_size,
                    3, direction_offset, "_bias_i2h", "_bias_gates",
                    "/i2h_w_pre", "/gates_t_w_pre", reform, make_cell,
                    lambda x: x)

        elif n.op_type == 'LSTM':

            def reform(Bi, Br, W_, R_, name, hidden_size, init_net):
                # caffe2 has a different order from onnx. We need to rearrange
                #   i o f c -> i f o c
                reforms = ((W_, 'i2h_w', True, [(0, -1)]), (R_, 'gates_t_w',
                                                            True, [(0, -1)]),
                           (Bi, 'i2h_b', True, []), (Br, 'gates_t_b', True, []))
                cls._rnn_reform_weights(reforms, name, hidden_size, init_net,
                                        ['input', 'output', 'forget', 'cell'],
                                        [0, 2, 1, 3])

            def make_cell(*args, **kwargs):
                return rnn_cell.LSTM(*args, **kwargs)

            def make_rnn(direction_offset):
                return cls._make_rnn_direction(
                    input_blob, B, W, R, [(initial_h, '/initial_h'),
                                          (initial_c, '/initial_c')],
                    sequence_lens, pred_mh, init_net, input_size, hidden_size,
                    4, direction_offset, "/i2h_b", "/gates_t_b", "/i2h_w",
                    "/gates_t_w", reform, make_cell,
                    lambda x: [x[0], x[1], x[3]])

        if direction == 'forward':
            outputs = make_rnn(0)

            # in the forward case, storage is shared between the
            # last outputs. We need to decouple them so that the
            # VariableLengthSequencePadding only mutates
            # n.outputs[0]
            for i in range(1, len(outputs)):
                pred_mh.net.Copy(outputs[i], n.outputs[i])

            if sequence_lens is not None:
                pred_mh.net.VariableLengthSequencePadding(
                    [outputs[0], sequence_lens], [outputs[0]])
            pred_mh.net.ExpandDims([outputs[0]], [n.outputs[0]], dims=[1])
        elif direction == 'bidirectional':
            outputs_f = make_rnn(0)
            outputs_b = make_rnn(1)

            concatted_output, _ = pred_mh.net.Concat(
                [outputs_f[0], outputs_b[0]],
                [cls.dummy_name(), cls.dummy_name()],
                axis=2)
            if sequence_lens is not None:
                pred_mh.net.VariableLengthSequencePadding(
                    [concatted_output, sequence_lens], [concatted_output])
            reshaped_output, _ = pred_mh.net.Reshape(
                concatted_output,
                [cls.dummy_name(), cls.dummy_name()],
                shape=[0, 0, -1, 2])
            pred_mh.net.Transpose(reshaped_output,
                                  n.outputs[0],
                                  axes=[0, 2, 1, 3])
            for i in range(1, len(n.outputs)):
                pred_mh.net.Concat(
                    [outputs_f[i], outputs_b[i]],
                    [n.outputs[i], cls.dummy_name()],
                    axis=0)

        # We want to decide whether to put all of our weight-reshaping
        # operators in the init net or the predict net. We can put
        # them in the init net iff the inputs to those operators are
        # already available, either as graph initializers, or as the
        # output of other operators in the init net. The latter case
        # occurs, for example, when exporting from pytorch to onnx.
        # In most production use, we expect has_initializers to be
        # true.
        initializers = {i.name for i in init_model.graph.initializer}
        outputs = {
            output
            for node in init_model.graph.node for output in node.output
        }
        has_initializers = all(x in initializers or x in outputs
                               for x in (W, R, B))

        pred_ops = []
        init_ops = []
        (init_ops if has_initializers else pred_ops).extend(init_net.Proto().op)
        pred_ops.extend(pred_mh.Proto().op)

        return Caffe2Ops(pred_ops, init_ops,
                         list(pred_mh.Proto().external_input))

    @classmethod
    def _create_control_op(cls, init_model, pred_model, n, opset_version):
        control_inputs = []
        if '__control_inputs' in n.attrs:
            control_inputs.extend(n.attrs['__control_inputs'])
        node = cls._common_onnx_node_to_caffe2_op(init_model, pred_model, n,
                                                  opset_version)
        node.control_input.extend(control_inputs)
        return Caffe2Ops([node], [], [])

    @classmethod
    def _remove_ssa(cls, net, remap_dict):
        for op in net.op:
            for i, name in enumerate(op.output):
                if name in remap_dict:
                    op.output[i] = remap_dict[name]
        for i, out in enumerate(net.external_output):
            if out in remap_dict:
                net.external_output[i] = remap_dict[out]

    @classmethod
    def _create_if(cls, init_model, pred_model, n, opset_version):
        ops = cls._create_control_op(init_model, pred_model, n, opset_version)
        assert ops[0][0].type == 'If'
        if_op = ops[0][0]
        then_net = else_net = None
        control_inputs = []
        for arg in if_op.arg:
            if arg.name == 'then_net':
                then_net = arg.n
            if arg.name == 'else_net':
                else_net = arg.n
            if arg.name == '__control_inputs':
                control_inputs = arg.strings

        assert then_net and else_net
        then_net_outs = then_net.external_output
        else_net_outs = else_net.external_output
        op_outputs = if_op.output
        assert len(then_net_outs) == len(else_net_outs)
        assert len(else_net_outs) == len(op_outputs)

        for arg in if_op.arg:
            if arg.name == 'then_net':
                arg.n.external_input.extend(control_inputs)
            if arg.name == 'else_net':
                arg.n.external_input.extend(control_inputs)

        return ops

    @classmethod
    def _create_loop(cls, init_model, pred_model, n, opset_version):
        ops = cls._create_control_op(init_model, pred_model, n, opset_version)
        assert ops[0][0].type == 'ONNXWhile'
        while_op = ops[0][0]
        while_op.arg.extend(
            [caffe2.python.utils.MakeArgument('has_trip_count', True)])
        while_op.arg.extend(
            [caffe2.python.utils.MakeArgument('has_cond', True)])
        while_op.arg.extend(
            [caffe2.python.utils.MakeArgument('disable_scopes', True)])
        control_inputs = []
        for arg in while_op.arg:
            if arg.name == '__control_inputs':
                control_inputs = arg.strings
        num_loop_carried_deps = 0
        for arg in while_op.arg:
            if arg.name == 'body':
                num_loop_carried_deps = len(arg.n.external_input) - 2
                arg.n.external_input.extend(control_inputs)
        while_op.arg.extend([
            caffe2.python.utils.MakeArgument('num_loop_carried_deps',
                                             num_loop_carried_deps)
        ])

        return ops

    @classmethod
    def _substitute_raw_value(cls, tp, raw_values_dict):
        if tp.HasField('raw_data') and tp.raw_data == bytes(b'__EXTERNAL'):
            if tp.name not in raw_values_dict:
                raise RuntimeError(
                    'TensorProto for value {} referenced raw data but it was not found!'
                    .format(tp.name))
            else:
                tp.raw_data = raw_values_dict[tp.name]

    @classmethod
    def _visit_and_substitute_raw_values(cls, nodes, raw_values_dict):
        for node in nodes:
            for attr in node.attribute:
                if attr.HasField('t'):
                    cls._substitute_raw_value(attr.t, raw_values_dict)
                for t in attr.tensors:
                    cls._substitute_raw_value(t, raw_values_dict)
                if attr.HasField('g'):
                    cls._visit_and_substitute_raw_values(
                        attr.g.node, raw_values_dict)
                for g in attr.graphs:
                    cls._visit_and_substitute_raw_values(
                        g.node, raw_values_dict)

    @classmethod
    def _external_value_resolution_pass(cls, model, raw_values_dict):
        for init in model.graph.initializer:
            cls._substitute_raw_value(init, raw_values_dict)

        cls._visit_and_substitute_raw_values(model.graph.node, raw_values_dict)

    @classmethod
    def _direct_initialize_parameters(cls, initializer, ws, device_option):
        for tp in initializer:
            ws.FeedBlob(tp.name, onnx.numpy_helper.to_array(tp), device_option)

    @classmethod
    def _direct_initialize_inputs(cls, inputs, initialized, ws, device_option):
        for value_info in inputs:
            if value_info.name in initialized:
                continue
            shape = list(d.dim_value
                         for d in value_info.type.tensor_type.shape.dim)
            ws.FeedBlob(
                value_info.name,
                np.ones(shape,
                        dtype=onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[
                            value_info.type.tensor_type.elem_type]),
                device_option)

    @staticmethod
    def optimize_onnx(input, init=False, predict=False):
        passes = [
            'fuse_consecutive_transposes', 'eliminate_nop_transpose',
            'fuse_transpose_into_gemm', 'lift_lexical_references'
        ]
        if init:
            passes.append('split_init')
        if predict:
            passes.append('split_predict')
        out = onnx.optimizer.optimize(input, passes)
        return out

    @classmethod
    def prepare_zip_archive(cls, file, device='CPU', **kwargs):
        with zipfile.ZipFile(file, mode='r') as z:
            with z.open('__MODEL_PROTO', 'r') as f:
                model = onnx.load(f)
            blob_names = set(z.namelist()) - set('__MODEL_PROTO')
            # TODO: make this more efficient
            raw_values_dict = {}
            for name in blob_names:
                with z.open(name, 'r') as blob_file:
                    raw_values_dict[name] = blob_file.read()

        return cls.prepare(model,
                           device,
                           raw_values_dict=raw_values_dict,
                           **kwargs)

    @classmethod
    def prepare(cls, model, device='CPU', raw_values_dict=None, **kwargs):
        '''
        For Onnx Caffe2Backend, we require that init_graph don't initialize the actual input of the predict_graph,

        for example, if "img" is the input blob for the predict_net, we require that in init_graph and in
        initializer of the predict_graph, "img" is not initalized. We don't have a check for this, since
        there is no way we can know which blob is the input of the predict_graph.
        '''
        if not kwargs.pop('no_check_UNSAFE', False):
            super(Caffe2Backend, cls).prepare(model, device, **kwargs)
        opset_version = None
        for imp in model.opset_import:
            if not imp.HasField("domain") or imp.domain == "":
                opset_version = imp.version
                if imp.version > cls._known_opset_version:
                    warnings.warn(
                        "This version of onnx-caffe2 targets ONNX operator set version {}, but the model we are trying to import uses version {}.  We will try to import it anyway, but if the model uses operators which had BC-breaking changes in the intervening versions, import will fail."
                        .format(cls._known_opset_version, imp.version))
            else:
                warnings.warn("Unrecognized operator set {}".format(imp.domain))
        if opset_version is None:
            if model.ir_version >= 0x00000003:
                raise RuntimeError(
                    "Model with IR version >= 3 did not specify ONNX operator set version (onnx-caffe2 requires it)"
                )
            else:
                opset_version = 1

        ws = Workspace()
        device_option = get_device_option(Device(device))

        init_net, predict_net = cls._onnx_model_to_caffe2_net(
            model, device, opset_version, False)

        if raw_values_dict:
            cls._external_value_resolution_pass(model, raw_values_dict)

        # Directly load initializer data into blobs in workspace
        cls._direct_initialize_parameters(
            model.graph.initializer,
            ws,
            device_option,
        )

        initialized = {init.name for init in model.graph.initializer}

        cls._direct_initialize_inputs(
            model.graph.input,
            initialized,
            ws,
            device_option,
        )

        uninitialized = [
            value_info.name for value_info in model.graph.input
            if value_info.name not in initialized
        ]

        retval = Caffe2Rep(init_net, predict_net, ws, uninitialized)
        return retval

    @classmethod
    # TODO: This method needs a refactor for clarity
    def _onnx_node_to_caffe2_op(cls, init_model, pred_model, node_def,
                                opset_version):
        cbackend = C.Caffe2Backend(cls._dummy_name)
        if cbackend.support_onnx_import(node_def.op_type):

            # extract value infos from pred model (value infos of
            # node's inputs that are in init model should be all
            # available in pred model)
            value_infos = []
            for name in node_def.input:
                if pred_model is not None:
                    for vi in itertools.chain(pred_model.graph.input,
                                              pred_model.graph.output,
                                              pred_model.graph.value_info):
                        if vi.name == name:
                            value_infos.append(vi.SerializeToString())

            op_strs = cbackend.convert_node(node_def.SerializeToString(),
                                            value_infos, opset_version)
            init_ops = []
            for s in op_strs[0]:
                op = caffe2_pb2.OperatorDef()
                op.ParseFromString(s)
                init_ops.append(op)
            ops = []
            for s in op_strs[1]:
                op = caffe2_pb2.OperatorDef()
                op.ParseFromString(s)
                ops.append(op)
            return Caffe2Ops(ops, init_ops, [])

        if node_def.op_type in cls._special_operators:
            translator = getattr(cls, cls._special_operators[node_def.op_type])
        else:
            translator = cls._common_onnx_node_to_caffe2_op
        ops = translator(init_model, pred_model, OnnxNode(node_def),
                         opset_version)
        if isinstance(ops, Caffe2Ops):
            return ops
        if not isinstance(ops, container_abcs.Iterable):
            ops = [ops]
        return Caffe2Ops(ops, [], [])

    _broadcast_operators = {
        'Add',
        'Sub',
    }

    @classmethod
    def _common_onnx_node_to_caffe2_op(cls, init_model, pred_model, onnx_node,
                                       opset_version):
        """
        This translator performs the basic translation of ONNX nodes into
        Caffe2 operators.  Besides doing a straightforward marshalling from
        one format to another, it also does these extra things:

          - Renames operators based on '_renamed_operators'
          - Renames attributes based on '_global_renamed_attrs' and
            '_per_op_renamed_attrs'

        If you're writing a custom translator, consider calling this first,
        and then fixing things up further.
        """
        c2_op = caffe2_pb2.OperatorDef()

        c2_op.input.extend(onnx_node.inputs)
        c2_op.output.extend(onnx_node.outputs)
        c2_op.name = onnx_node.name

        onnx_op_type = onnx_node.op_type
        broken_version = cls._broken_operators.get(onnx_op_type, float('Inf'))
        if broken_version <= opset_version:
            raise ValueError(
                "Don't know how to translate op {} in ONNX operator set v{} (I only support prior to v{})"
                .format(onnx_op_type, opset_version, broken_version))
        c2_op.type = cls._renamed_operators.get(onnx_op_type, onnx_op_type)
        if not core.IsOperator(c2_op.type):
            raise ValueError(
                "Don't know how to translate op {}".format(onnx_op_type))

        def kmap(k):
            if (onnx_op_type in cls._per_op_renamed_attrs
                    and k in cls._per_op_renamed_attrs[onnx_op_type]):
                return cls._per_op_renamed_attrs[onnx_op_type][k]
            if k in cls._global_renamed_attrs:
                return cls._global_renamed_attrs[k]
            return k

        c2_op.arg.extend(onnx_node.attrs.caffe2(kmap=kmap))

        if opset_version < 7:
            # onnx opset 7 and newest caffe2 have adopted full onnx broadcast semantics
            # so we don't need this hack anymore
            if c2_op.type in cls._broadcast_operators:
                already_broadcast = False
                for arg in c2_op.arg:
                    if arg.name == 'broadcast':
                        already_broadcast = True
                if not already_broadcast:
                    c2_op.arg.extend(
                        [caffe2.python.utils.MakeArgument('broadcast', 1)])

        return c2_op

    @staticmethod
    def _all_names_in_graph(graph):
        if graph is None:
            return set()

        names = set()
        names.update(value_info.name for value_info in graph.input)
        names.update(value_info.name for value_info in graph.output)
        for node in graph.node:
            names.update(node.input)
            names.update(node.output)
        return names

    @classmethod
    def _graph_to_net(cls, onnx_graph, opset_version):
        net = caffe2_pb2.NetDef()
        for node in onnx_graph.node:
            try:
                c2ops = cls._onnx_node_to_caffe2_op(None, None, node,
                                                    opset_version)
            except Exception as e:
                print('ONNX FATAL:', e)
                continue
            net.op.extend(c2ops.init_ops)
            net.op.extend(c2ops.ops)
            net.external_input.extend(c2ops.interface_blobs)
        net.external_output.extend(value_info.name
                                   for value_info in onnx_graph.output)
        net.external_input.extend(value_info.name
                                  for value_info in onnx_graph.input)
        return net

    @classmethod
    def _onnx_model_to_caffe2_net(cls, onnx_model, device, opset_version,
                                  include_initializers):
        device_option = get_device_option(Device(device))

        #         init_model = cls.optimize_onnx(onnx_model, init=True)
        #         pred_model = cls.optimize_onnx(onnx_model, predict=True)

        init_model = onnx_model
        pred_model = onnx_model
        init_net = caffe2_pb2.NetDef()
        pred_net = caffe2_pb2.NetDef()

        init_net.name = onnx_model.graph.name + '_init'
        pred_net.name = onnx_model.graph.name + '_predict'

        if include_initializers:
            init_net.op.extend(
                cls._create_tensor_filling_op(tp)
                for tp in onnx_model.graph.initializer)

        cls._dummy_name.reset(
            cls._all_names_in_graph(init_model.graph)
            | cls._all_names_in_graph(pred_model.graph))

        success = True
        for net, model in ((init_net, init_model), (pred_net, pred_model)):
            net.device_option.CopyFrom(device_option)
            for node in model.graph.node:
                try:
                    c2ops = cls._onnx_node_to_caffe2_op(init_model, pred_model,
                                                        node, opset_version)
                except Exception as e:
                    success = False
                    print('ONNX FATAL:', e)
                    continue
                init_net.op.extend(c2ops.init_ops)
                net.op.extend(c2ops.ops)
                net.external_input.extend(c2ops.interface_blobs)
            net.external_output.extend(value_info.name
                                       for value_info in model.graph.output)
            net.external_input.extend(value_info.name
                                      for value_info in model.graph.input)

        if not success:
            raise RuntimeError('ONNX conversion failed')

        return init_net, pred_net

    # wrapper for backwards compatability
    @classmethod
    def onnx_graph_to_caffe2_net(cls,
                                 model,
                                 device="CPU",
                                 opset_version=_known_opset_version):
        return cls._onnx_model_to_caffe2_net(model,
                                             device=device,
                                             opset_version=opset_version,
                                             include_initializers=True)

    @classmethod
    def supports_device(cls, device_str):
        device = Device(device_str)
        if device.type == DeviceType.CPU:
            return True
        elif core.IsGPUDeviceType(device.type):
            return workspace.has_gpu_support
        return False

    @classmethod
    def is_compatible(cls, model, device='CPU', **kwargs):
        if hasattr(super(Caffe2Backend, cls), 'is_compatible') \
           and callable(super(Caffe2Backend, cls).is_compatible):
            if not super(Caffe2Backend, cls).is_compatible(
                    model, device, **kwargs):
                return False
        # TODO: should have an unspported list of operators, be optimistic for now
        return True


prepare = Caffe2Backend.prepare

prepare_zip_archive = Caffe2Backend.prepare_zip_archive

run_node = Caffe2Backend.run_node

run_model = Caffe2Backend.run_model

supports_device = Caffe2Backend.supports_device  # noqa

is_compatible = Caffe2Backend.is_compatible