caffe_parser.py 7.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
S
SunAhong1993 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

import os
import sys
from google.protobuf import text_format
import numpy as np
from x2paddle.core.graph import GraphNode, Graph


class CaffeResolver(object):
    def __init__(self, use_default=True):
        self.use_default = use_default
        self.import_caffe()

    def import_caffepb(self):
        p = os.path.realpath(__file__)
        p = os.path.dirname(p)
S
SunAhong1993 已提交
30
        p = os.path.join(p, './proto')
S
SunAhong1993 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        sys.path.insert(0, p)
        import caffe_pb2
        return caffe_pb2

    def import_caffe(self):
        self.caffe = None
        self.caffepb = None
        if self.use_default:
            try:
                # Try to import PyCaffe first
                import caffe
                self.caffe = caffe
            except ImportError:
                # Fall back to the protobuf implementation
                self.caffepb = self.import_caffepb()
        else:
            self.caffepb = self.import_caffepb()
        if self.caffe:
            # Use the protobuf code from the imported distribution.
            # This way, Caffe variants with custom layers will work.
            self.caffepb = self.caffe.proto.caffe_pb2
        self.NetParameter = self.caffepb.NetParameter

    def has_pycaffe(self):
        return self.caffe is not None


class CaffeGraphNode(GraphNode):
    def __init__(self, layer, layer_name=None):
        if layer_name is None:
            super(CaffeGraphNode, self).__init__(layer, layer.name)
        else:
            super(CaffeGraphNode, self).__init__(layer, layer_name)
        self.layer_type = layer.type

    def set_params(self, params):
        self.data = params


class CaffeGraph(Graph):
S
SunAhong1993 已提交
71
    def __init__(self, model, params):
S
SunAhong1993 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        self.params = params
        super(CaffeGraph, self).__init__(model)

    def filter_layers(self, layers):
        '''Filter out layers based on the current phase.'''
        phase_map = {0: 'train', 1: 'test'}
        filtered_layer_names = set()
        filtered_layers = []
        print('The filter layer:')
        for layer in layers:
            phase = 'test'
            if len(layer.include):
                phase = phase_map[layer.include[0].phase]
            if len(layer.exclude):
                phase = phase_map[1 - layer.include[0].phase]
            exclude = (phase != 'test')
            # Dropout layers appear in a fair number of Caffe
            # test-time networks. These are just ignored. We'll
            # filter them out here.
            if (not exclude) and (phase == 'test'):
                exclude = (layer.type == 'Dropout')
            if not exclude:
                filtered_layers.append(layer)
                # Guard against dupes.
                assert layer.name not in filtered_layer_names
                filtered_layer_names.add(layer.name)
            else:
                print(layer.name)
        return filtered_layers

    def build(self):
        layers = self.model.layers or self.model.layer
        layers = self.filter_layers(layers)

        inputs_num = len(self.model.input)
        if inputs_num != 0:
            input_dims_num = len(self.model.input_dim)
            if input_dims_num > 0 and input_dims_num != inputs_num * 4:
                raise Error('invalid input_dim[%d] param in prototxt' %
                            (input_dims_num))
            for i in range(inputs_num):
                dims = self.model.input_dim[i * 4:(i + 1) * 4]
                data = self.model.layer.add()
                try:
                    from caffe import layers as L
                    data.CopyFrom(
                        L.Input(input_param=dict(shape=dict(
                            dim=[dims[0], dims[1], dims[2], dims[3]
                                 ]))).to_proto().layer[0])
                except:
                    raise Error(
                        'You must install the caffe first when you use old style prototxt.'
                    )
                data.name = self.model.input[0]
                data.top[0] = self.model.input[0]

S
SunAhong1993 已提交
128
        top_layer = {}
S
SunAhong1993 已提交
129 130
        for layer in layers:
            self.node_map[layer.name] = CaffeGraphNode(layer)
S
SunAhong1993 已提交
131 132 133
            for in_name in layer.bottom:
                if in_name in top_layer:
                    self.connect(top_layer[in_name][-1], layer.name)
S
SunAhong1993 已提交
134 135 136
                else:
                    raise Exception(
                        'input[{}] of node[{}] does not exist in node_map'.
S
SunAhong1993 已提交
137 138 139 140 141 142
                        format(in_name, layer.name))
            for out_name in layer.top:
                if out_name not in top_layer:
                    top_layer[out_name] = [layer.name]
                else:
                    top_layer[out_name].append(layer.name)
S
SunAhong1993 已提交
143 144 145 146

        for layer_name, data in self.params:
            if layer_name in self.node_map:
                node = self.node_map[layer_name]
S
SunAhong1993 已提交
147
                node.set_params(data)
S
SunAhong1993 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
            else:
                notice('Ignoring parameters for non-existent layer: %s' % \
                        layer_name)
        super(CaffeGraph, self).build()


class CaffeParser(object):
    def __init__(self, proto_path, model_path, use_caffe=True):
        self.proto_path = proto_path
        self.model_path = model_path

        self.resolver = CaffeResolver(use_default=use_caffe)
        self.net = self.resolver.NetParameter()
        with open(proto_path, 'rb') as proto_file:
            proto_str = proto_file.read()
            text_format.Merge(proto_str, self.net)

        self.load()
S
SunAhong1993 已提交
166
        self.caffe_graph = CaffeGraph(self.net, self.params)
S
SunAhong1993 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        self.caffe_graph.build()

    def load(self):
        if self.resolver.has_pycaffe():
            self.load_using_caffe()
        else:
            self.load_using_pb()

    def load_using_caffe(self):
        caffe = self.resolver.caffe
        caffe.set_mode_cpu()
        net = caffe.Net(self.proto_path, self.model_path, caffe.TEST)
        data = lambda blob: blob.data
        self.params = [(k, list(map(data, v))) for k, v in net.params.items()]

    def load_using_pb(self):
        data = self.resolver.NetParameter()
        data.MergeFromString(open(self.model_path, 'rb').read())
        pair = lambda layer: (layer.name, self.normalize_pb_data(layer))
        layers = data.layers or data.layer
        self.params = [pair(layer) for layer in layers if layer.blobs]

    def normalize_pb_data(self, layer):
        transformed = []
        for blob in layer.blobs:
            if len(blob.shape.dim):
                dims = blob.shape.dim
                c_o, c_i, h, w = map(int, [1] * (4 - len(dims)) + list(dims))
            else:
                c_o = blob.num
                c_i = blob.channels
                h = blob.height
                w = blob.width
            data = np.array(blob.data, dtype=np.float32).reshape(c_o, c_i, h, w)
            transformed.append(data)
        return transformed