tf_export_model.py 1.9 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

from tensorflow.python.framework import graph_util
import tensorflow as tf


def freeze_model(sess, output_tensor_names, freeze_model_path):
    out_graph = graph_util.convert_variables_to_constants(
        sess, sess.graph.as_graph_def(), output_tensor_names)
    with tf.gfile.GFile(freeze_model_path, 'wb') as f:
        f.write(out_graph.SerializeToString())

    print("freeze model saved in {}".format(freeze_model_path))


import tensorflow.contrib.slim as slim
from tensorflow.contrib.slim.nets import vgg
import numpy

with tf.Session() as sess:
    inputs = tf.placeholder(dtype=tf.float32,
                            shape=[None, 224, 224, 3],
                            name="inputs")
    logits, endpoint = vgg.vgg_16(inputs, num_classes=1000, is_training=False)
    load_model = slim.assign_from_checkpoint_fn(
        "vgg_16.ckpt", slim.get_model_variables("vgg_16"))
    load_model(sess)

    numpy.random.seed(13)
    data = numpy.random.rand(5, 224, 224, 3)
    input_tensor = sess.graph.get_tensor_by_name("inputs:0")
    output_tensor = sess.graph.get_tensor_by_name("vgg_16/fc8/squeezed:0")
    result = sess.run([output_tensor], {input_tensor: data})
    numpy.save("tensorflow.npy", numpy.array(result))

    freeze_model(sess, ["vgg_16/fc8/squeezed"], "vgg16.pb")