opset.py 61.9 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    return None


def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
75
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
76 77 78 79 80 81 82 83 84 85 86
            raise
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
87
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
88 89 90 91
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
    }

S
SunAhong1993 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
        'ReduceMean': ['paddle.mean',
                       dict(axes='axis', keepdims='keepdim'), 
                       dict(keepdims=1)],
        'ReduceSum': ['paddle.sum', 
                      dict(axes='axis', keepdims='keepdim'), 
                      dict(keepdims=1)],
        'ReduceMin': ['paddle.min', 
                      dict(axes='axis', keepdims='keepdim'), 
                      dict(keepdim=1)],
        'ReduceMax': ['paddle.max', 
                      dict(axes='axis', keepdims='keepdim'), 
                      dict(keepdim=1)],
        # active function
        'Relu': ['paddle.nn.ReLU'],
        'LeakyRelu': ['paddle.nn.LeakyReLU', 
                      dict(alpha='negative_slope'), 
S
SunAhong1993 已提交
111
                      dict(negative_slope=.01)],
S
SunAhong1993 已提交
112
        'Elu': ['paddle.nn.functional.elu', 
S
fix  
SunAhong1993 已提交
113
                dict(alpha='alpha'), 
S
SunAhong1993 已提交
114 115 116 117 118 119 120 121
                dict(alpha=1.)],
        'ThresholdedRelu': ['paddle.nn.functional.thresholded_relu', 
                            dict(alpha='threshold'),
                            dict(alpha=1.)],
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
        'Softplus': ['paddle.nn.Softplus', 
S
fix  
SunAhong1993 已提交
122
                     dict(threshold='threshold'), 
S
SunAhong1993 已提交
123 124 125
                     dict(threshold=float(sys.maxsize))],
        'Exp': ['paddle.exp'],
        'Softmax': ['paddle.nn.Softmax', 
S
fix  
SunAhong1993 已提交
126
                    dict(axis='axis'), 
S
SunAhong1993 已提交
127 128 129 130 131
                    dict(axis=1)],
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
S
SunAhong1993 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.input_index = 0
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
S
SunAhong1993 已提交
163 164 165
        if paddle_op.startswith("paddle.nn"):
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
166
            output_name = node.name
S
SunAhong1993 已提交
167 168 169
            layer_outputs = [op_name, output_name]
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
170
                inputs={"x": input.name},
S
SunAhong1993 已提交
171 172 173 174 175
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
176 177
                inputs={"x": input.name},
                outputs=[node.name],
S
SunAhong1993 已提交
178
                **layer_attrs)        
S
SunAhong1993 已提交
179
       
S
SunAhong1993 已提交
180 181 182 183 184 185
            
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
186 187
        inputs_dict = {'x': val_x.name, 
                       'y': val_y.name}
S
SunAhong1993 已提交
188 189 190
        self.paddle_graph.add_layer(
            op_type, 
            inputs=inputs_dict, 
S
SunAhong1993 已提交
191
            outputs=[node.name])
S
SunAhong1993 已提交
192 193 194 195 196 197 198 199 200 201 202 203

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
204
            outputs=[node.name],
S
SunAhong1993 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218
            data="x{}".format(self.input_index))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
        if len(node.weight.shape) == 0:
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
S
SunAhong1993 已提交
219
                outputs=[node.name],
S
SunAhong1993 已提交
220 221 222 223
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
224
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
225 226 227
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
228
                outputs=[node.name],
S
SunAhong1993 已提交
229
                shape=shape,
S
SunAhong1993 已提交
230
                attr=string(node.name),
S
SunAhong1993 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
        

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
250
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
251
        attrs = dict()
S
SunAhong1993 已提交
252 253 254 255
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
fix  
SunAhong1993 已提交
256 257 258 259
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
#                 inputs['scale_factor'] = val_scales.name
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[2:]
S
SunAhong1993 已提交
260 261 262
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
S
fix  
SunAhong1993 已提交
263 264 265 266
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
#                 inputs['scale_factor'] = val_scales.name
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[2:]
S
SunAhong1993 已提交
267 268 269
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
S
SunAhong1993 已提交
270
                var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
S
SunAhong1993 已提交
271 272
                self.paddle_graph.add_layer(
                    'paddle.split',
S
SunAhong1993 已提交
273
                    inputs={"x": val_sizes.name},
S
SunAhong1993 已提交
274 275 276 277 278 279 280 281
                    outputs=[var_nc, var_hw],
                    num_or_sections=[2, 2],
                    axis=0)
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": var_hw},
                    outputs=[var_hw],
                    dtype=string('int32'))
S
SunAhong1993 已提交
282 283 284
                inputs['size'] = var_hw
                attrs = {"align_corners": False,
                         "mode": string(node.get_attr('mode', 'nearest'))}
S
SunAhong1993 已提交
285
                self.paddle_graph.add_layer(
S
docs  
SunAhong1993 已提交
286
                    kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
287
                    inputs=inputs,
S
SunAhong1993 已提交
288
                    outputs=[node.name],
S
SunAhong1993 已提交
289 290
                    **attrs)
                return
S
SunAhong1993 已提交
291 292
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
fix  
SunAhong1993 已提交
293
            inputs['scale_factor'] = val_scales
S
SunAhong1993 已提交
294 295

        mode = node.get_attr('mode', 'nearest')
S
fix  
SunAhong1993 已提交
296 297 298
        attrs.update({"align_corners": False,
                      "mode": string(mode),
                      "align_mode": 1})
S
SunAhong1993 已提交
299 300 301
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
302
            outputs=[node.name],
S
SunAhong1993 已提交
303 304 305 306 307 308 309 310 311
            **attrs)
        
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
312 313
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
314 315 316 317
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
318 319
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
320
            min=0.0,
S
SunAhong1993 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334
            max=1.0)  
        
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string('int64'))   
S
SunAhong1993 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
352
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
353 354 355
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            **layer_attrs)
                       

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
372
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
373 374 375
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
        assume_pad2d = False
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
        paddings = []
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            paddle_op = 'paddle.nn.Pad2D'
            layer_attrs['data_format'] = string('NCHW')
            layer_attrs['value'] = value
        else:
S
fix  
SunAhong1993 已提交
401
            paddle_op = 'paddle.fluid.layers.pad'
S
SunAhong1993 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
            layer_attrs["pad_value"] = value
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
            if sum(paddings[:4]) == 0:
                paddle_op = 'paddle.nn.Pad2D'
                paddings = paddings[4:]
                layer_attrs['value'] = value
                if 'pad_value' in layer_attrs:
                    layer_attrs.pop('pad_value')
        tmp_paddings = copy.deepcopy(paddings)
        paddings[0] = tmp_paddings[2]
        paddings[1] = tmp_paddings[3]
        paddings[2] = tmp_paddings[0]
        paddings[3] = tmp_paddings[1]
        if paddle_op == 'paddle.nn.Pad2D':
            layer_attrs['padding'] = paddings
            nn_op_name = name_generator("pad2d", self.nn_name2id)
        else:
            layer_attrs['paddings'] = paddings
        if op_independent:
            self.paddle_graph.add_layer(
                paddle_op, 
S
SunAhong1993 已提交
428 429
                inputs={'x': val_x.name}, 
                outputs=[nn_op_name, node.name] if paddle_op == 'paddle.nn.Pad2D' else [node.name], 
S
SunAhong1993 已提交
430 431 432 433
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                paddle_op,
S
SunAhong1993 已提交
434 435 436
                inputs={'x': val_x.name},
                outputs=[nn_op_name, node.name + '_paded'] if paddle_op == 'paddle.nn.Pad2D' \
                    else [node.name + '_paded'],
S
SunAhong1993 已提交
437
                **layer_attrs)
S
SunAhong1993 已提交
438
            return node.name + '_paded'
S
SunAhong1993 已提交
439 440 441 442 443 444 445

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        layer_attrs = {'axis': axes}
        if len(val_x.out_shapes[0]) == 0:
S
SunAhong1993 已提交
446
            if node.name:
S
SunAhong1993 已提交
447 448
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
449 450
                    inputs={"x": val_x.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
451 452
                    shape=[1])
        else:
S
fix  
SunAhong1993 已提交
453 454
            self.paddle_graph.add_layer(
                'paddle.unsqueeze', 
S
SunAhong1993 已提交
455 456
                inputs={"x": val_x.name}, 
                outputs=[node.name],
S
fix  
SunAhong1993 已提交
457
                **layer_attrs)
S
SunAhong1993 已提交
458 459 460 461 462 463 464 465 466

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
            'paddle.nn.functional.hardshrink', 
S
SunAhong1993 已提交
467 468
            inputs={"x": val_x.name}, 
            outputs=[node.name], 
S
SunAhong1993 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
490
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
491 492 493 494 495 496
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
S
SunAhong1993 已提交
497
                outputs=[node.name],
S
SunAhong1993 已提交
498 499 500 501 502
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
503
            self.weights[node.name] = value
S
SunAhong1993 已提交
504 505 506
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
507
                outputs=[node.name],
S
SunAhong1993 已提交
508
                shape=shape,
S
SunAhong1993 已提交
509
                attr=string(node.name),
S
SunAhong1993 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
524
        output_name = node.name
S
SunAhong1993 已提交
525 526 527 528 529 530 531 532
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
S
SunAhong1993 已提交
533 534
            'weight_attr': string(val_scale.name),
            'bias_attr': string(val_b.name)
S
SunAhong1993 已提交
535 536
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
537
        if dim == 3:
S
SunAhong1993 已提交
538 539 540 541 542 543 544 545 546
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
            raise Exception("The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization.")
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
547
            inputs={"x": val_x.name}, 
S
SunAhong1993 已提交
548 549 550 551 552 553 554 555
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
556
        name_ones = node.name + '_ones'
S
SunAhong1993 已提交
557
        attr_ones = {
S
SunAhong1993 已提交
558
            'shape': val_shape.name,
S
SunAhong1993 已提交
559 560 561 562 563 564 565 566 567
            'dtype': string(val_x_dtype),
            'fill_value': 1
        }
        self.paddle_graph.add_layer(
            'paddle.full',
            inputs={},
            outputs=[name_ones],
            **attr_ones)
        inputs_dict = {'x': name_ones, 
S
SunAhong1993 已提交
568
                       'y': val_x.name}
S
SunAhong1993 已提交
569 570 571
        self.paddle_graph.add_layer(
            'paddle.multiply',
            inputs=inputs_dict,
S
SunAhong1993 已提交
572
            outputs=[node.name])
S
SunAhong1993 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585

    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
        axis = node.get_attr('axis', 0)
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
        if axis == 0 and len(indices_shape) <= 1:
            if len(val_x.out_shapes[0]) <= 1:
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
586 587 588
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
589 590
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
S
SunAhong1993 已提交
591
                    gather_ = node.name + '_1'
S
SunAhong1993 已提交
592 593
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
594 595
                        inputs={'x': val_x.name,
                                'index': indices.name},
S
SunAhong1993 已提交
596 597 598 599
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
S
SunAhong1993 已提交
600
                        outputs=[node.name],
S
SunAhong1993 已提交
601 602 603 604
                        axis=[0])
                else:
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
605 606 607
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
S
SunAhong1993 已提交
608 609 610
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
611
            name_trans = val_x.name + '_trans'
S
SunAhong1993 已提交
612 613
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
614
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
615 616 617 618 619
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
S
SunAhong1993 已提交
620 621
                        'index': indices.name},
                outputs=[node.name])
S
SunAhong1993 已提交
622 623
            self.paddle_graph.add_layer(
                'paddle.transpose', 
S
SunAhong1993 已提交
624 625
                inputs={"x": node.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
626 627 628 629
                perm=perm)
            if len(indices_shape) < 1:
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
630 631
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
632 633 634 635
                    axis=[axis])
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
636
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
637 638
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
639
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
640 641 642
                    outputs=indices_cast,
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
643
                output_name = node.name
S
SunAhong1993 已提交
644 645 646 647 648
                layer_outputs = [op_name, output_name]
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
S
SunAhong1993 已提交
649
                    param_attr=string(val_x.name),
S
SunAhong1993 已提交
650 651 652 653
                    size=val_x.out_shapes[0])
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
654
                indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
655 656
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
657
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
658 659 660 661 662 663
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])

                perm = list(range(len(val_x.out_shapes[0])))
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
664
                    inputs={'x': val_x.name,
S
SunAhong1993 已提交
665
                            'index': indices_reshape},
S
SunAhong1993 已提交
666
                    outputs=[node.name])
S
SunAhong1993 已提交
667 668 669 670 671 672 673 674
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
675 676
                    inputs={"x": node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
677 678 679 680
                    shape=reshaped_shape)
        elif axis > 0 and len(indices_shape) > 1:
            from functools import reduce
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
681
            indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
682 683
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
684
                inputs={"x": indices.name},
S
SunAhong1993 已提交
685 686 687 688 689
                outputs=[indices_reshape],
                shape=[reshape_shape, ])

            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
690
            name_trans = val_x.name + '_transpose'
S
SunAhong1993 已提交
691 692
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
693
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
694 695 696 697 698 699
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices_reshape},
S
SunAhong1993 已提交
700 701
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
S
SunAhong1993 已提交
702 703
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
704
                inputs={"x": node.name},
S
SunAhong1993 已提交
705 706 707 708 709 710 711 712 713 714 715
                outputs=[input_transpose],
                perm=perm)
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
S
SunAhong1993 已提交
716
                outputs=[node.name],
S
SunAhong1993 已提交
717 718 719 720 721 722 723 724 725 726
                shape=reshaped_shape)

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
S
SunAhong1993 已提交
727 728 729 730
                inputs={'x': val_x.name,
                        'index': indices.name,
                        'updates': updates.name},
                outputs=[node.name])
S
SunAhong1993 已提交
731
        else:
S
SunAhong1993 已提交
732
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
733 734 735
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
736 737
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
738 739
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
740
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
741 742
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
743
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
744 745 746 747 748
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
749 750
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
751 752
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
753 754
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
755 756 757
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
758
                inputs={"x": updates.name},
S
SunAhong1993 已提交
759 760 761 762 763 764 765
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
766
                    'index': indices.name,
S
SunAhong1993 已提交
767 768 769
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
770
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
771 772 773
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
774
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
775 776 777
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
778
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
779 780 781 782 783 784
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
785
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
786 787
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
788
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
789 790 791 792 793 794 795
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
796
                outputs=[node.name])
S
SunAhong1993 已提交
797 798 799 800 801 802 803

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
S
SunAhong1993 已提交
804 805 806
        inputs = {'start': val_start.name, 
                  'end': val_limit.name, 
                  'step': val_delta.name}
S
SunAhong1993 已提交
807 808 809
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
810
            outputs=[node.name],
S
SunAhong1993 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
            ends_value = _const_weight_or_none(ends)

            if len(node.inputs) > 3:
                axes = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes, necessary=True)
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
                steps = _const_weight_or_none(steps)
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
832 833
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
            }
            if starts_value is not None and ends_value is not None:
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                #for idx in range(len(ends_value)):
                #    if ends_value[idx] > 2**31 - 1:
                #        ends_value[idx] = 2**31 - 1
                #print(val_x.out_shapes)
                for idx in range(len(ends_value)):
                    if starts_value[idx] >= val_x.out_shapes[0][axes[idx]]:
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
856
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
857 858
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
859
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
860 861 862 863
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
864
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
865 866
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
867
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
                'paddle.strided_slice', 
S
SunAhong1993 已提交
884 885
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
886 887 888 889
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                'paddle.slice', 
S
SunAhong1993 已提交
890 891
                inputs={"input": val_x.name}, 
                outputs=[node.name],  
S
SunAhong1993 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
                **layer_attrs)

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
            layer_attrs = {
S
SunAhong1993 已提交
907
                'shape': val_shape.name,
S
SunAhong1993 已提交
908 909 910 911 912 913
                'dtype': string(dtype),
                'fill_value': value
            }
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
S
SunAhong1993 已提交
914
                outputs=[node.name],
S
SunAhong1993 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928
                **layer_attrs)

    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
S
fix  
SunAhong1993 已提交
929
            
S
SunAhong1993 已提交
930 931
            self.paddle_graph.add_layer(
                'paddle.clip', 
S
SunAhong1993 已提交
932 933
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
934 935
                **layer_attrs)
        else:
S
fix  
SunAhong1993 已提交
936 937
            min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
            max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
S
SunAhong1993 已提交
938
            min_value = _const_weight_or_none(min_ipt)
S
fix  
SunAhong1993 已提交
939
            max_value = _const_weight_or_none(max_ipt)
S
SunAhong1993 已提交
940 941 942 943 944 945 946 947
            if max_value.shape == (1, ):
                max_value = max_value[0]
            if min_value.shape == (1, ):
                min_value = min_value[0]
        if max_value is not None and min_value is not None:
            layer_attrs = {'max': max_value, 'min': min_value}
            self.paddle_graph.add_layer(
                'paddle.clip', 
S
SunAhong1993 已提交
948 949
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
                **layer_attrs)
        else:
            raise

    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
        layer_attrs = {
            'num_or_sections': split,
            'axis': axis,
        }
        outputs_list = list()
        if isinstance(split, list) or isinstance(split, tuple):
S
fix  
SunAhong1993 已提交
966 967
            for i in range(len(split)):
                outputs_list.append("{}_p{}".format(node.layer_name, i))
S
SunAhong1993 已提交
968
        else:
S
SunAhong1993 已提交
969
            outputs_list.append(node.name)
S
SunAhong1993 已提交
970 971
        self.paddle_graph.add_layer(
            'paddle.split', 
S
SunAhong1993 已提交
972
            inputs={"x": val_x.name}, 
S
SunAhong1993 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986
            outputs=outputs_list, 
            **layer_attrs)

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
987 988
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
989 990 991 992 993
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
994 995
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
996 997 998 999 1000 1001
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1002 1003
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1004 1005 1006
                    shape=val_shape.out_shapes[0])
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1007 1008
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
                outputs=node)

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
            'paddle.cast', 
S
SunAhong1993 已提交
1025 1026
            inputs={'x': val_input.name}, 
            outputs=[node.name], 
S
SunAhong1993 已提交
1027 1028 1029 1030 1031 1032
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer('paddle.logical_not', 
S
SunAhong1993 已提交
1033 1034
                                    inputs={'x': val_input.name}, 
                                    outputs=[node.name])
S
SunAhong1993 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1058 1059 1060 1061 1062
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1063
        layer_attrs = {
S
SunAhong1993 已提交
1064 1065 1066
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1067 1068 1069 1070 1071
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1072 1073
            inputs={'x': val_x.name}, 
            outputs=layer_outputs, 
S
SunAhong1993 已提交
1074 1075 1076 1077 1078 1079 1080 1081
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1082
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1083 1084 1085 1086 1087 1088 1089
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
            'paddle.concat', 
            inputs={"x": inputs_list}, 
S
SunAhong1993 已提交
1090
            outputs=[node.name], 
S
SunAhong1993 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        output_shape = node.out_shapes[0]
        axis = node.get_attr('axis', 1)
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
            'paddle.reshape', 
S
SunAhong1993 已提交
1109 1110
            inputs={"x": val_x.name}, 
            outputs=[node.name],
S
SunAhong1993 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
            shape=shape_list)

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1123 1124 1125
        val_mm = node.name + '_mm'
        matmul_inputs = {"x": val_a.name, 
                         "y": val_b.name}
S
SunAhong1993 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
            "paddle.scale", 
            inputs={"x": val_mm}, 
            outputs=[val_mm],
            scale=alpha)

        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, 
S
SunAhong1993 已提交
1144
                              "y": val_c.name}
S
SunAhong1993 已提交
1145 1146 1147
                self.paddle_graph.add_layer(
                    "paddle.add",
                    inputs=add_inputs,
S
SunAhong1993 已提交
1148
                    outputs=[node.name])
S
SunAhong1993 已提交
1149
            else:
S
SunAhong1993 已提交
1150
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1151 1152
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1153
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1154 1155 1156 1157
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1158
                    "paddle.add",
S
SunAhong1993 已提交
1159
                    inputs=add_inputs,
S
SunAhong1993 已提交
1160
                    outputs=[node.name])
S
SunAhong1993 已提交
1161 1162 1163 1164 1165

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1166 1167 1168 1169
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1170 1171 1172
        }
        self.paddle_graph.add_layer("paddle.add", 
                                    inputs=inputs_dict, 
S
SunAhong1993 已提交
1173
                                    outputs=[node.name])
S
SunAhong1993 已提交
1174 1175 1176 1177

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1178 1179
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1180 1181 1182 1183
            }
            self.paddle_graph.add_layer(
                "paddle.add", 
                inputs=inputs_dict, 
S
SunAhong1993 已提交
1184
                outputs=[node.name])
S
SunAhong1993 已提交
1185 1186 1187 1188 1189 1190 1191

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
S
SunAhong1993 已提交
1192 1193
        inputs_dict = {"x": val_x.name, 
                       "y": val_y.name}
S
SunAhong1993 已提交
1194
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1195
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1196 1197
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1198
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1199 1200 1201 1202 1203 1204
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
S
SunAhong1993 已提交
1205
                outputs=[node.name])
S
SunAhong1993 已提交
1206 1207 1208 1209
        else:
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
S
SunAhong1993 已提交
1210
                outputs=[node.name])
S
SunAhong1993 已提交
1211 1212 1213 1214

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1215
        output_name = node.name
S
SunAhong1993 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
S
SunAhong1993 已提交
1234 1235 1236 1237
            "param_attr": string(val_scale.name),
            "bias_attr": string(val_b.name),
            "moving_mean_name": string(val_mean.name),
            "moving_variance_name": string(val_var.name),
S
SunAhong1993 已提交
1238 1239 1240 1241
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
            "paddle.nn.BatchNorm", 
S
SunAhong1993 已提交
1242
            inputs={"x": val_x.name}, 
S
SunAhong1993 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        perm = node.get_attr('perm')
        self.paddle_graph.add_layer(
            "paddle.transpose", 
S
SunAhong1993 已提交
1252 1253
            inputs={"x": val_x.name},
            outputs=[node.name], 
S
SunAhong1993 已提交
1254 1255 1256 1257 1258
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1259
        output_name = node.name
S
SunAhong1993 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if shape_slope == [1]:
            mode = 'all'
        elif len(shape_slope) > 2:
S
SunAhong1993 已提交
1269
            raise Exception("The 'element' mode is not supported yet!")
S
SunAhong1993 已提交
1270 1271 1272 1273 1274

        if mode == 'channel' and len(shape_slope) == 1:
            # paddle params shape need be [1, channel]
            slope_data = _const_weight_or_none(val_slope)
            slope_data = np.reshape(slope_data, [1] + shape_slope)
S
SunAhong1993 已提交
1275
            self.weights[val_slope.name] = slope_data
S
SunAhong1993 已提交
1276 1277 1278
            num_parameters = val_x.out_shapes[0][1]
        else:
            num_parameters = 1
S
SunAhong1993 已提交
1279 1280 1281

        self.paddle_graph.add_layer(
            "paddle.nn.PReLU", 
S
SunAhong1993 已提交
1282
            inputs={"x": val_x.name}, 
S
SunAhong1993 已提交
1283
            outputs=layer_outputs, 
S
SunAhong1993 已提交
1284
            num_parameters=num_parameters,
S
SunAhong1993 已提交
1285
            weight_attr=string(val_slope.name))
S
SunAhong1993 已提交
1286 1287 1288 1289 1290 1291 1292 1293

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        if len(val_x.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1294 1295
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1296 1297 1298 1299
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
                "paddle.squeeze", 
S
SunAhong1993 已提交
1300 1301
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
1302 1303 1304 1305 1306 1307 1308 1309
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1310 1311 1312
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1313 1314 1315 1316 1317 1318 1319

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1320 1321
            inputs={'x': val_x.name,
                    'y': val_y.name},
S
SunAhong1993 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330
            outputs=node,
            param_attr=None)

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

S
SunAhong1993 已提交
1331
        not_condition = condition.name + '_not'
S
SunAhong1993 已提交
1332 1333
        self.paddle_graph.add_layer(
            "paddle.logical_not",
S
SunAhong1993 已提交
1334
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1335 1336 1337 1338 1339 1340 1341
            outputs=[not_condition])
        cast_not_condition = not_condition + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1342
        cast_condition = condition.name + '_cast'
S
SunAhong1993 已提交
1343 1344
        self.paddle_graph.add_layer(
            "paddle.cast",
S
SunAhong1993 已提交
1345
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1346 1347
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1348
        mul_val_x = val_x.name + '_mul'
S
SunAhong1993 已提交
1349 1350
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1351
            inputs={'x': val_x.name,
S
SunAhong1993 已提交
1352 1353
                    'y': cast_condition},
            outputs=[mul_val_x])
S
SunAhong1993 已提交
1354
        mul_val_y = val_y.name + '_mul'
S
SunAhong1993 已提交
1355 1356
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1357
            inputs={'x': val_y.name,
S
SunAhong1993 已提交
1358 1359 1360 1361 1362 1363 1364
                    'y': cast_not_condition},
            outputs=[mul_val_y])

        self.paddle_graph.add_layer(
            "paddle.add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1365
            outputs=[node.name])
S
SunAhong1993 已提交
1366 1367 1368 1369 1370 1371 1372 1373

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
S
SunAhong1993 已提交
1374 1375
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
S
SunAhong1993 已提交
1376 1377
            self.paddle_graph.add_layer(
                "paddle.transpose",
S
SunAhong1993 已提交
1378
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1379 1380 1381 1382 1383
                outputs=[node.layer_naem],
                perm=[1, 0])
        if val_x_dim > 1:
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
S
SunAhong1993 已提交
1384 1385
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
S
SunAhong1993 已提交
1386 1387
            self.paddle_graph.add_layer(
                "paddle.split",
S
SunAhong1993 已提交
1388 1389
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
S
SunAhong1993 已提交
1390 1391 1392 1393
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
                "paddle.concat", 
S
SunAhong1993 已提交
1394 1395
                inputs={"x": val_x.name}, 
                outputs=[node.name])
S
SunAhong1993 已提交
1396 1397 1398 1399 1400 1401

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.assign", 
S
SunAhong1993 已提交
1402 1403
            inputs={"x": val_x.name}, 
            outputs=[node.name])
S
SunAhong1993 已提交
1404 1405 1406 1407 1408 1409 1410 1411

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1412
            repeats = val_repeats.name
S
SunAhong1993 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
                    outputs=["{}.tmp".format(repeats)],
                    dtype=string("int32"))
                repeats = "{}.tmp".format(repeats)

        elif isinstance(repeats, int):
            repeats = [repeats]

        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1426
            "name": string(node.name),
S
SunAhong1993 已提交
1427 1428 1429
        }
        self.paddle_graph.add_layer(
            "paddle.tile", 
S
SunAhong1993 已提交
1430 1431
            inputs={"x": val_x.name}, 
                    outputs=[node.name], 
S
SunAhong1993 已提交
1432 1433 1434 1435 1436
                    repeat_times=repeats)

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1437
        output_name = node.name
S
SunAhong1993 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
            
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1471
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
S
SunAhong1993 已提交
1472 1473 1474 1475 1476 1477
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1478
        output_name = node.name
S
SunAhong1993 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1493
            inputs={'x': val_x.name}, 
S
SunAhong1993 已提交
1494 1495 1496 1497 1498 1499
            outputs=layer_outputs, 
            output_size=output_shape[2:])

    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1500
        output_name = node.name
S
SunAhong1993 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1515
            inputs={'x': val_x.name}, 
S
SunAhong1993 已提交
1516 1517 1518 1519 1520 1521
            outputs=layer_outputs, 
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
        op_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
1522
        output_name = node.name
S
SunAhong1993 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
S
SunAhong1993 已提交
1561
            'weight_attr': string(val_w.name),
S
SunAhong1993 已提交
1562 1563
        }
        if has_bias:
S
SunAhong1993 已提交
1564
            layer_attrs["bias_attr"] = string(val_b.name)
S
SunAhong1993 已提交
1565 1566 1567 1568
        else:
            layer_attrs["bias_attr"] = False
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1569
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
S
SunAhong1993 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
S
fix  
SunAhong1993 已提交
1588
        paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)
S
SunAhong1993 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]

        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
S
fix  
SunAhong1993 已提交
1606 1607 1608
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name,
                       "weight": val_w.name}
S
SunAhong1993 已提交
1609
        layer_attrs = {
S
fix  
SunAhong1993 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
            "groups": num_groups,
            "output_size": node.out_shapes[0][2:]}
        if val_b is not None:
            inputs_dict["bias"] = val_b.name
        else:
            layer_attrs["bias"] = None
S
SunAhong1993 已提交
1619
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
1620 1621 1622
            kernel="paddle.nn.functional.conv2d_transpose",
            inputs=inputs_dict,
            outputs=[node.name],
S
SunAhong1993 已提交
1623
            **layer_attrs)
S
fix  
SunAhong1993 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
        
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'axis': axis,
                      'keepdim': keepdims}
        self.paddle_graph.add_layer(
            'paddle.argmax', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
            **layer_attrs)