conv2d_add_fuser.py 4.7 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import numpy as np
from x2paddle.optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *


S
renam  
SunAhong1993 已提交
22
class DygraphConv2DAddFuser(FuseBase):
S
SunAhong1993 已提交
23
    def __init__(self):
S
renam  
SunAhong1993 已提交
24
        super(DygraphConv2DAddFuser, self).__init__(graph_type="dygraph")
S
SunAhong1993 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        self.patterns = list()

    def build_pattern(self):
        """ 描述需要替换的conv2d+add图结构。
        conv2d+add层模式python实现代码示例:
        模式一:
        MobilenetV1_Logits_Conv2d_1c_1x1_biases = self.MobilenetV1_Logits_Conv2d_1c_1x1_biases
        conv2d_transpose_14 = paddle.transpose(x=MobilenetV1_Logits_AvgPool_1a_AvgPool, perm=[0, 3, 1, 2])
        MobilenetV1_Logits_Conv2d_1c_1x1_Conv2D = self.conv27(conv2d_transpose_14)
        MobilenetV1_Logits_Conv2d_1c_1x1_Conv2D = paddle.transpose(x=MobilenetV1_Logits_Conv2d_1c_1x1_Conv2D, perm=[0, 2, 3, 1])
        MobilenetV1_Logits_Conv2d_1c_1x1_BiasAdd = paddle.add(x=MobilenetV1_Logits_Conv2d_1c_1x1_Conv2D, y=MobilenetV1_Logits_Conv2d_1c_1x1_biases)
        模式二:
        MobilenetV1_Logits_Conv2d_1c_1x1_biases = self.MobilenetV1_Logits_Conv2d_1c_1x1_biases
        MobilenetV1_Logits_Conv2d_1c_1x1_Conv2D = self.conv27(conv2d_transpose_14)
        MobilenetV1_Logits_Conv2d_1c_1x1_BiasAdd = paddle.add(x=MobilenetV1_Logits_Conv2d_1c_1x1_Conv2D, y=MobilenetV1_Logits_Conv2d_1c_1x1_biases)
        """

        def gen_name(id):
            return "x" + str(id)

        pattern = PaddleGraph(graph_type="dygraph")
        pattern.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[gen_name(0)])
        pattern.add_layer(
            kernel="paddle.transpose",
            inputs={"x": "conv-input-0"},
            outputs=[gen_name(1)],
            perm=[0, 3, 1, 2])
        pattern.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": gen_name(1)},
            outputs=[gen_name(2)])
        pattern.add_layer(
            kernel="paddle.transpose",
            inputs={"x": gen_name(2)},
            outputs=[gen_name(2)],
            perm=[0, 2, 3, 1])
        pattern.add_layer(
            kernel="paddle.add",
            inputs={"x": gen_name(2),
                    "y": gen_name(0)},
            outputs=[gen_name(3)])
        pattern.build(inputs={"input-0": "conv-input-0", })
        self.patterns.append(pattern)
        
        pattern = PaddleGraph(graph_type="dygraph")
        pattern.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[gen_name(0)])
        pattern.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": "conv-input-0"},
            outputs=[gen_name(1)])
        pattern.add_layer(
            kernel="paddle.add",
            inputs={"x": gen_name(1),
                    "y": gen_name(0)},
            outputs=[gen_name(2)])
        pattern.build(inputs={"input-0": "conv-input-0", })
        self.patterns.append(pattern)

    def insert_new_layer(self, graph, parameters, matches):
        self.gen_new_layer(matches, graph)
        matches_copy = copy.deepcopy(matches)
        for layer_id, layer in matches_copy.items():
            if layer.kernel not in ["self.create_parameter", "paddle.add"]:
                matches.pop(layer_id)

    def gen_new_layer(self, matches, graph):
        is_transpose = False
        for layer_id, layer in matches.items():
            if layer.kernel == "self.create_parameter":
                bias_name = layer.attrs["attr"]
            if layer.kernel == "paddle.transpose":
                is_transpose = True
            if layer.kernel == "paddle.add":
                output_name = layer.outputs[0]
            if layer.kernel == "paddle.nn.Conv2D":
                conv_id = layer_id
        for layer_id, layer in matches.items():
            if layer.kernel == "paddle.nn.Conv2D":
                layer.attrs["bias_attr"] = bias_name
                if not is_transpose:
                    layer.outputs[1] = output_name
            if layer.kernel == "paddle.transpose":
                if conv_id in graph.edges_in[layer_id]:
                    layer.outputs[0] = output_name