aten.py 231.5 KB
Newer Older
S
SunAhong1993 已提交
1
# -*- coding:UTF-8 -*-
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
16
import copy
S
SunAhong1993 已提交
17
import numpy as np
S
SunAhong1993 已提交
18 19
from x2paddle.core.util import name_generator, string
from x2paddle.utils import paddle_dtypes
S
SunAhong1993 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
from x2paddle.core.program import PaddleGraph

dtype_dict = {
    0: string("uint8"),
    1: string("int8"),
    2: string("int16"),
    3: string("int32"),
    4: string("int64"),
    5: string("float16"),
    6: string("float32"),
    7: string("float64"),
    11: string("bool")
}


Y
yeliang2258 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
def aten_sum(mapper, graph, node):
    """ 构造获取元素求和的paddlelayer。
    TorchScript示例:
        %x_gap.15 : Tensor =  aten::sum(%x.58, %2166, %1450, %1453)
        参数含义:
        %x_gap.15 (Tensor): 求和后的Tensor。
        %n.3 (Tensor): 求和前的Tensor。
        %2166:axis
        %1450:keepdim
        %1453:dtype
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    if inputs_name[2] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
    if inputs_name[3] in mapper.attrs:
        layer_attrs["dtype"] = mapper.attrs[inputs_name[3]]
    graph.add_layer(
        "paddle.sum",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

W
WJJ1995 已提交
74

S
SunAhong1993 已提交
75 76 77 78 79 80 81 82
def aten_abs(mapper, graph, node):
    """ 构造获取绝对值的PaddleLayer。
    TorchScript示例:
        %n0.3 : Tensor = aten::abs(%n.3)
        参数含义:
        %n0.3 (Tensor): 绝对值后的Tensor。
        %n.3 (Tensor): 绝对值前的Tensor。
    """
S
SunAhong1993 已提交
83
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
84 85 86 87 88 89 90
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
S
SunAhong1993 已提交
91 92
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
93 94 95 96 97
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
98 99 100 101
        "paddle.abs",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
102 103 104
    return current_inputs, current_outputs


S
SunAhong1993 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def aten_adaptive_avg_pool1d(mapper, graph, node):
    """ 构造average adaptive pool1d的PaddleLayer。
    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool1d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的长度大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]][0]
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool1D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.getitem",
            inputs={"list": layer_inputs["output_size"]},
            outputs=[layer_inputs["output_size"]],
            scope_name=scope_name,
            index=0)
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool1d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
158 159 160 161 162 163 164 165 166
def aten_adaptive_avg_pool2d(mapper, graph, node):
    """ 构造average adaptive pool2d的PaddleLayer。
    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的宽、高大小。
    """
S
SunAhong1993 已提交
167 168
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
169
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
170
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
171 172 173 174 175 176
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
S
SunAhong1993 已提交
177 178
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
179
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
180 181 182 183
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
184
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
185 186 187 188 189 190
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool2D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
191 192
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
193 194
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
S
SunAhong1993 已提交
195
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
196 197 198 199 200 201
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool2d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    return current_inputs, current_outputs


def aten_addmm(mapper, graph, node):
    """ 构造addmm的PaddleLayer,该节点实现out = alpha ∗ x ∗ y + beta ∗ input。
    TorchScript示例:
        %ret.2 : Tensor = aten::addmm(%150, %input.3, %156, %151, %152)
        参数含义:
        %ret.2 (Tensor): addmm结果Tensor。
        %150 (Tensor): 输入Tensor input。
        %input.3 (Tensor): 输入Tensor x。
        %156 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
        %152 (int/float): 输入beta。
    """
S
SunAhong1993 已提交
217
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
218 219 220 221 222 223 224 225
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%150
S
SunAhong1993 已提交
226 227
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
228 229
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%input.3
S
SunAhong1993 已提交
230 231
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
232 233
    layer_inputs["x"] = inputs_name[1]
    # 处理输入2,即%156
S
SunAhong1993 已提交
234 235
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
236 237 238 239 240 241 242 243
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入3,即%152
    if inputs_name[3] in mapper.attrs:
        layer_attrs["beta"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
244
                            current_outputs, scope_name)
S
SunAhong1993 已提交
245 246 247 248 249 250 251
        layer_inputs["beta"] = inputs_name[3]
        current_inputs.append(inputs_name[3])
    # 处理输入4,即%151
    if inputs_name[4] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[4]]
    else:
        mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
252
                            current_outputs, scope_name)
S
SunAhong1993 已提交
253 254 255 256 257 258 259
        layer_inputs["alpha"] = inputs_name[4]
        current_inputs.append(inputs_name[4])

    graph.add_layer(
        "paddle.addmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
260
        scope_name=scope_name,
S
SunAhong1993 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274
        **layer_attrs)
    return current_inputs, current_outputs


def aten_add(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + alpha * y。
    TorchScript示例:
        %137 : Tensor = aten::add(%136, %130, %130)
        参数含义:
        %output.5 (Tensor): add结果Tensor。
        %output.2 (Tensor): 输入Tensor x。
        %150 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
    """
S
SunAhong1993 已提交
275
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
276 277 278 279 280 281 282 283
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%output.2
S
SunAhong1993 已提交
284 285
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
286 287
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%150
S
SunAhong1993 已提交
288 289
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
290 291 292
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
293 294 295 296 297 298 299 300 301
    if len(inputs_name) > 2:
        # 处理输入2,即%151
        if inputs_name[2] in mapper.attrs:
            layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs, scope_name)
            layer_inputs["alpha"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
S
SunAhong1993 已提交
302

303 304 305 306 307 308 309 310 311 312 313 314 315
        graph.add_layer(
            "prim.add_",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        graph.add_layer(
            "prim.add",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
316 317 318 319 320 321 322 323 324 325 326 327
    return current_inputs, current_outputs


def aten___and__(mapper, graph, node):
    """ 构造与计算的PaddleLayer。
    TorchScript示例:
        %361 : bool = aten::__and__(%360, %358)
        参数含义:
        %361 (bool): 输出,与计算结果。
        %360 (-): 输入 x。
        %358 (-): 输入 y。
    """
S
SunAhong1993 已提交
328
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
329 330 331 332 333 334 335
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
336 337
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
338 339
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
S
SunAhong1993 已提交
340 341
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
342 343 344 345
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
346 347 348 349 350
    graph.add_layer(
        "prim.and",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
351 352 353 354 355 356 357 358 359 360 361 362
    return current_inputs, current_outputs


def aten_append(mapper, graph, node):
    """ 构造对list进行append的PaddleLayer。
    TorchScript示例:
        %90 : int[] = aten::append(%_output_size.1, %v.1)
        参数含义:
        %90 (list): 输出,append后的list。
        %_output_size.1 (list): 需要进行append的list。
        %v.1 (-): append的元素。
    """
S
SunAhong1993 已提交
363
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
364 365 366 367 368 369
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    layer_outputs = [inputs_name[0]]
    # 获取当前节点输出的list
    current_outputs = [inputs_name[0]]
    # 处理输入0,即_output_size.1
S
SunAhong1993 已提交
370 371
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
372 373
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即v.1
S
SunAhong1993 已提交
374 375
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
376 377 378 379
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
380 381 382 383 384
    graph.add_layer(
        "prim.append",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
385 386 387 388 389 390 391 392
    return current_inputs, current_outputs


def aten_arange(mapper, graph, node):
    """ 构造以步长均匀分隔给定数值区间的PaddleLayer。
    TorchScript示例:
        有三种情况,分别处理。
    """
S
SunAhong1993 已提交
393
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    if len(inputs_name) == 5:
        # %position_ids.1 : Tensor = aten::arange(%52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%52,代表end
        if inputs_name[0] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
410
                                current_outputs, scope_name)
S
SunAhong1993 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
            layer_inputs["end"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%43,代表dtype
        if mapper.attrs[inputs_name[1]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
    elif len(inputs_name) == 6:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
426
                                current_outputs, scope_name)
S
SunAhong1993 已提交
427 428 429 430 431 432 433
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
434
                                current_outputs, scope_name)
S
SunAhong1993 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%43,代表dtype
        if mapper.attrs[inputs_name[2]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    elif len(inputs_name) == 7:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
450
                                current_outputs, scope_name)
S
SunAhong1993 已提交
451 452 453 454 455 456 457
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
458
                                current_outputs, scope_name)
S
SunAhong1993 已提交
459 460 461 462 463 464 465
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%53,代表step
        if inputs_name[2] in mapper.attrs:
            layer_attrs["step"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
466
                                current_outputs, scope_name)
S
SunAhong1993 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
            layer_inputs["step"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
        # 处理输入3,即%43,代表dtype
        if mapper.attrs[inputs_name[3]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[3]]]
    else:
        raise Exception("Unknown aten::arange signature taking " + str(
            len(inputs_name)) + " arguments.")

    graph.add_layer(
        "paddle.arange",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
482
        scope_name=scope_name,
S
SunAhong1993 已提交
483 484 485 486
        **layer_attrs)
    return current_inputs, current_outputs


W
wjj19950828 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
def aten_argmax(mapper, graph, node):
    """
    TorchScript:
        %x.28 : Tensor = aten::argmax(%result.1, %4967, %3, %2)
        Parameter meaning:
        %x.28 (Tensor): Output Tensor
        %result.1 (Tensor): Input Tensor
        %4967 (int/list): Axis
        %3 (bool): Keepdim
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # output list
    current_outputs = [output_name]
    # process Input Tensor
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # process Axis
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # process Keepdim
    if inputs_name[2] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.argmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549
def aten_avg_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
S
SunAhong1993 已提交
550 551
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
552
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
553
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
554 555 556 557 558 559
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
560 561
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
562 563 564 565
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
566
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
567
    # 处理输入2,即%539
S
SunAhong1993 已提交
568
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
569
    # 处理输入3,即%540
S
SunAhong1993 已提交
570
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
571 572 573 574 575 576 577 578
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
579
        outputs=[inputs_name[6] + "_assert"],
S
SunAhong1993 已提交
580
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
S
SunAhong1993 已提交
581 582 583
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)
S
SunAhong1993 已提交
584 585

    graph.add_layer(
S
SunAhong1993 已提交
586
        kernel="paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
587
        inputs=layer_inputs,
S
SunAhong1993 已提交
588
        outputs=layer_outputs,
S
SunAhong1993 已提交
589 590
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
591

S
SunAhong1993 已提交
592 593
    return current_inputs, current_outputs

S
SunAhong1993 已提交
594

S
SunAhong1993 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
def aten_avg_pool3d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
619 620
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
621 622 623 624
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
625
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
626
    # 处理输入2,即%539
S
SunAhong1993 已提交
627
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
628
    # 处理输入3,即%540
S
SunAhong1993 已提交
629
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

S
SunAhong1993 已提交
644
    graph.add_layer(
S
SunAhong1993 已提交
645
        kernel="paddle.nn.AvgPool3D",
S
SunAhong1993 已提交
646
        inputs=layer_inputs,
S
SunAhong1993 已提交
647
        outputs=layer_outputs,
S
SunAhong1993 已提交
648 649 650 651 652
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
fix  
SunAhong1993 已提交
653
def aten_avg_pool1d(mapper, graph, node):
S
SunAhong1993 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool1d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
677 678
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
679 680 681 682
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
683
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
684
    # 处理输入2,即%539
S
SunAhong1993 已提交
685
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
686
    # 处理输入3,即%540
S
SunAhong1993 已提交
687
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

    graph.add_layer(
S
SunAhong1993 已提交
703
        kernel="paddle.nn.AvgPool1D",
S
SunAhong1993 已提交
704
        inputs=layer_inputs,
S
SunAhong1993 已提交
705
        outputs=layer_outputs,
S
SunAhong1993 已提交
706
        scope_name=scope_name,
S
SunAhong1993 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        **layer_attrs)
    return current_inputs, current_outputs


def aten_batch_norm(mapper, graph, node):
    """ 构造BatchNorm的PaddleLayer。
    TorchScript示例:
        %input.81 : Tensor = aten::batch_norm(%input.80, %778, %779, %776, %777, %780,
                                              %exponential_average_factor.23, %766, %781)
        参数含义:
        %input.81 (Tensor): 输出,批处理后的结果。
        %input.80 (Tensor): 需要进行批处理的特征层。
        %778 (Tensor): weights。
        %779 (Tensor): bias。
        %776 (Tensor): 全局均值。
        %777 (Tensor): 全局方差。
        %780 (bool): 是否训练。
        %exponential_average_factor.23 (float): 用于计算均值和方差的比例。
        %766 (float): 为了数值稳定加在分母上的值。
        %781 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
728 729
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("batchnorm", mapper.nn_name2id)
S
SunAhong1993 已提交
730
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
731
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
732 733 734 735 736 737 738
    layer_inputs = {}
    layer_attrs = {}
    layer_attrs["is_test"] = True
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
739 740
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
741 742 743 744 745
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%778
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
746
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
747 748 749 750 751
    layer_attrs['num_channels'] = weights.shape[0]
    # 处理输入2,即%779
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
752
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
753
    else:
S
SunAhong1993 已提交
754
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
755 756
    # 处理输入3,即%776
    mean = mapper.pytorch_params[inputs_name[3]]
S
SunAhong1993 已提交
757
    mapper.paddle_params[op_name + "._mean"] = mean
S
SunAhong1993 已提交
758 759
    # 处理输入4,即%777
    var = mapper.pytorch_params[inputs_name[4]]
S
SunAhong1993 已提交
760
    mapper.paddle_params[op_name + "._variance"] = var
S
SunAhong1993 已提交
761 762 763 764 765 766 767 768 769
    # 处理输入6,即%exponential_average_factor.23
    layer_attrs["momentum"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%766
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "paddle.nn.BatchNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
770
        scope_name=scope_name,
S
SunAhong1993 已提交
771 772 773 774
        **layer_attrs)
    return current_inputs, current_outputs


W
WJJ1995 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
def aten_bitwise_not(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bitwise_not(%32)
        参数含义:
        %x.222 (Tensor): 输出,逻辑非运算后的结果。
        %32 (Tensor): 输入1。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%32
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.not",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


def aten_bitwise_xor(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bitwise_xor(%32, %8)
        参数含义:
        %x.222 (Tensor): 输出,逻辑或运算后的结果。
        %32 (Tensor): 输入1。
        %8 (Tensor): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%32
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%8
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.or",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


def aten_bitwise_and(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bitwise_and(%32, %8)
        参数含义:
        %x.222 (Tensor): 输出,逻辑与运算后的结果。
        %32 (Tensor): 输入1。
        %8 (Tensor): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%32
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%8
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.and",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
def aten_bmm(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bmm(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,矩阵相乘后的结果。
        %i.12 (list): 输入1。
        %7 (int): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
892 893
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
894 895
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
S
SunAhong1993 已提交
896 897
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
898 899 900 901
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
902 903 904 905 906
    graph.add_layer(
        "paddle.bmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
907 908 909
    return current_inputs, current_outputs


S
SunAhong1993 已提交
910 911 912 913 914 915 916 917 918
def aten_cat(mapper, graph, node):
    """ 构造连接Tensor的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::cat(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,连接后的结果。
        %i.12 (list): 需要连接的Tensor组成的list。
        %7 (int): 连接的轴。
    """
S
SunAhong1993 已提交
919
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
920 921 922 923 924 925 926 927
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
928 929
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
930
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
931 932 933 934 935 936 937
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
938
                            current_outputs, scope_name)
S
SunAhong1993 已提交
939 940 941
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
942
        "paddle.concat",
S
SunAhong1993 已提交
943 944
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
945
        scope_name=scope_name,
S
SunAhong1993 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959
        **layer_attrs)
    return current_inputs, current_outputs


def aten_chunk(mapper, graph, node):
    """构造分割Tensor的PaddleLayer。
    TorchScript示例:
        %724 : Tensor[] = aten::chunk(%input.170, %720, %719)
        参数含义:
        %724 (Tensor): 输出,分割后的结果。
        %input.170 (Tensor): 需要进行分割的Tensor。
        %720 (int): 分割的块数。
        %719 (int): 分割的维度。
    """
S
SunAhong1993 已提交
960
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
961 962 963 964 965 966 967 968
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.170
S
SunAhong1993 已提交
969 970
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
971
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
972 973 974 975 976 977 978
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%720
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
979
                            current_outputs, scope_name)
S
SunAhong1993 已提交
980 981 982 983
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%719
    if inputs_name[2] in mapper.attrs:
S
SunAhong1993 已提交
984
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
985 986
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
987 988
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
989 990
        current_inputs.append(inputs_name[2])
    graph.add_layer(
S
SunAhong1993 已提交
991
        "paddle.split",
S
SunAhong1993 已提交
992 993
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
994
        scope_name=scope_name,
S
SunAhong1993 已提交
995 996 997 998
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
def aten_clamp(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::clamp(%input.1, %46, %48, %49)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
        %48 (float/Tensor): 最大值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
1018 1019
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%48,代表dtype
    if inputs_name[2] in mapper.attrs:
        layer_attrs["max"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["max"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
def aten_clamp_min(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::clamp_min(%input.1, %46)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
1067 1068
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


W
wjj19950828 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
def aten_complex(mapper, graph, node):
    """
    TorchScript示例:
        %ret.2 : Tensor = aten::complex(%150, %156)
        参数含义:
        %ret.2 (Tensor): complex结果Tensor。
        %150 (Tensor): 实部输入Tensor。
        %156 (Tensor): 虚部输入Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%150
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["real"] = inputs_name[0]
    # 处理输入1,即%156
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["imag"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.complex",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


W
wjj19950828 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
def aten_copy(mapper, graph, node):
    """
    TorchScript Code:
        %107 : Tensor = aten::copy(%new_mem.1)
        Parameter meaning:
        %107 (Tensor): Output Tensor
        %new_mem.1 (Tensor): Input Tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # output list
    current_outputs = [output_name]
    # process Input Tensor
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)

    return current_inputs, current_outputs


S
SunAhong1993 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164
def aten___contains__(mapper, graph, node):
    """ 构造in的PaddleLayer。
    TorchScript示例:
        %51 : bool = aten::__contains__(%50, %name.1)
        参数含义:
        %51 (bool): 输出,第一个元素是否包含第二个元素。
        %50 (-): 需对比的输入1。
        %name.1 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1165
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1166 1167 1168 1169 1170 1171 1172
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%50
S
SunAhong1993 已提交
1173 1174
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1175 1176
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%name.1
S
SunAhong1993 已提交
1177 1178
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1179 1180 1181 1182
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1183 1184 1185 1186 1187
    graph.add_layer(
        "prim.contain",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    return current_inputs, current_outputs


def aten_constant_pad_nd(mapper, graph, node):
    """ 构造填充固定值的PaddleLayer。
    TorchScript示例:
        %58 : Tensor = aten::constant_pad_nd(%input1.24, %4876, %42)
        参数含义:
        %58 (Tensor): 输出,填充后的Tensor。
        %input1.24 (Tensor): 需要填充的Tensor。
        %4876 (list): 填充大小。
        %42 (-): 填充值。
    """
S
SunAhong1993 已提交
1201 1202
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad", mapper.nn_name2id)
S
SunAhong1993 已提交
1203
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1204
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1205 1206 1207 1208 1209 1210
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input1.24
S
SunAhong1993 已提交
1211 1212
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1213
    layer_inputs["input"] = inputs_name[0]
1214 1215 1216 1217 1218
    # 处理输入1,即%4876
    is_padding_tensor = False
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
W
WJJ1995 已提交
1219 1220
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
1221 1222
        layer_inputs["pad"] = inputs_name[1]
        is_padding_tensor = True
S
SunAhong1993 已提交
1223 1224 1225
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%42
S
SunAhong1993 已提交
1226
    layer_attrs["value"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    if not is_padding_tensor:
        graph.add_layer(
            "prim.shape",
            inputs={"input": inputs_name[0]},
            outputs=[inputs_name[0] + "_shape"],
            scope_name=scope_name)
        graph.add_layer(
            "prim.len",
            inputs={"input": inputs_name[0] + "_shape"},
            outputs=[inputs_name[0] + "_len"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1239 1240 1241 1242 1243 1244

    def add_pad_layers(kernel, dim):
        graph.add_layer(
            "prim.ne",
            inputs={"x": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
1245
            scope_name=scope_name,
S
SunAhong1993 已提交
1246 1247 1248
            y=dim)
        graph.add_layer(
            "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1249 1250
            outputs=[inputs_name[0] + "_if", output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
1251
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
1252
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
1253 1254 1255 1256
        block.add_layer(
            "prim.sub",
            inputs={"y": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_len0"],
S
SunAhong1993 已提交
1257
            scope_name=scope_name,
1258
            alpha=1.0,
S
SunAhong1993 已提交
1259 1260 1261 1262
            x=dim)
        block.add_layer(
            "prim.len2list",
            inputs={"len": inputs_name[0] + "_len0"},
S
SunAhong1993 已提交
1263 1264
            outputs=[inputs_name[0] + "_list"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1265
        block.add_layer(
S
SunAhong1993 已提交
1266
            "paddle.unsqueeze",
S
SunAhong1993 已提交
1267 1268
            inputs={"x": inputs_name[0],
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
1269 1270
            outputs=[inputs_name[0] + "_var"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1271 1272 1273
        block.add_layer(
            kernel,
            inputs={"input": inputs_name[0] + "_var"},
S
SunAhong1993 已提交
1274
            outputs=copy.deepcopy(layer_outputs),
S
SunAhong1993 已提交
1275
            scope_name=scope_name,
S
SunAhong1993 已提交
1276 1277
            **layer_attrs)
        block.add_layer(
S
SunAhong1993 已提交
1278
            "paddle.squeeze",
S
SunAhong1993 已提交
1279 1280
            inputs={"x": output_name,
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
1281 1282
            outputs=[output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
1283
        if_layer.add_block(block)
W
WJJ1995 已提交
1284
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
1285 1286
        layer_inputs["input"] = inputs_name[0]
        block.add_layer(
S
SunAhong1993 已提交
1287 1288 1289 1290 1291
            kernel,
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1292 1293 1294 1295
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[0]
        if_layer.inputs["input-1"] = inputs_name[0] + "_len"

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    if not is_padding_tensor:
        if len(layer_attrs["padding"]) == 2:
            layer_outputs[0] = layer_outputs[0].replace("pad", "pad1d")
            add_pad_layers("paddle.nn.Pad1D", 3)
        elif len(layer_attrs["padding"]) == 4:
            layer_outputs[0] = layer_outputs[0].replace("pad", "pad2d")
            add_pad_layers("paddle.nn.Pad2D", 4)
        elif len(layer_attrs["padding"]) == 6:
            layer_outputs[0] = layer_outputs[0].replace("pad", "pad3d")
            add_pad_layers("paddle.nn.Pad3D", 5)
        else:
            raise Exception("The lenght of padding list must be 2, 4 or 6!")
S
SunAhong1993 已提交
1308
    else:
1309 1310 1311 1312 1313 1314
        graph.add_layer(
            "custom_layer:Pad",
            inputs=layer_inputs,
            outputs=[output_name],
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    return current_inputs, current_outputs


def aten_contiguous(mapper, graph, node):
    """ 构造在内存中连续存储的PaddleLayer。
    TorchScript示例:
        %x.7 : Tensor = aten::contiguous(%4058, %4046)
        参数含义:
        %x.7 (Tensor): 输出,在内存中连续存储的Tensor。
        %4058 (Tensor): 原始Tensor。
        %4046 (int): 存储的形式。
    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
1328
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1329 1330 1331 1332 1333 1334 1335
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4058
S
SunAhong1993 已提交
1336 1337
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1338 1339 1340 1341
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1342 1343 1344 1345 1346
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
    return current_inputs, current_outputs


def aten_conv2d(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。
    TorchScript示例:
        %input.10 : Tensor = aten::conv2d(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
S
SunAhong1993 已提交
1361
        %30 (int): 空洞大小。
S
SunAhong1993 已提交
1362 1363
        %26 (int): 卷积的组数。
    """
S
SunAhong1993 已提交
1364 1365
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
S
SunAhong1993 已提交
1366
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1367
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1368 1369 1370 1371 1372 1373
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1374 1375
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1376 1377 1378 1379 1380
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
1381
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
1382 1383 1384 1385 1386 1387
    layer_attrs["out_channels"] = weights.shape[0]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1388
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[inputs_name[6]]

    graph.add_layer(
S
SunAhong1993 已提交
1404
        "paddle.nn.Conv2D",
S
SunAhong1993 已提交
1405 1406
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1407
        scope_name=scope_name,
S
SunAhong1993 已提交
1408 1409 1410 1411 1412 1413 1414
        **layer_attrs)
    return current_inputs, current_outputs


def aten__convolution(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。
    TorchScript示例:
S
SunAhong1993 已提交
1415
        %input.10 : Tensor = aten::_convolution(%input.1, %18, %10, %19, %20, %21, %13, %22, %12, %13, %13, %15)
S
SunAhong1993 已提交
1416 1417 1418
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
S
SunAhong1993 已提交
1419 1420 1421 1422
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
S
SunAhong1993 已提交
1423
        %21 (list): 空洞大小。
S
SunAhong1993 已提交
1424 1425 1426
        %13 (bool): 是否进行转置卷积。
        %22 (list): 输出形状上一侧额外添加的大小。
        %12 (int): 卷积的组数。
S
SunAhong1993 已提交
1427
    """
S
SunAhong1993 已提交
1428
    scope_name = mapper.normalize_scope_name(node)
W
WJJ1995 已提交
1429 1430 1431 1432
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    weights = mapper.pytorch_params[inputs_name[1]]
    if len(weights.shape) == 3:
        op_name = name_generator("conv1d", mapper.nn_name2id)
W
wjj19950828 已提交
1433
    elif len(weights.shape) == 4:
W
WJJ1995 已提交
1434
        op_name = name_generator("conv2d", mapper.nn_name2id)
W
wjj19950828 已提交
1435 1436
    else:
        op_name = name_generator("conv3d", mapper.nn_name2id)
S
SunAhong1993 已提交
1437
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1438
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1439 1440 1441 1442 1443
    layer_inputs = {}
    layer_attrs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1444 1445
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1446 1447 1448
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1449
    # 处理输入1,即%18
S
SunAhong1993 已提交
1450 1451
    mapper.paddle_params[op_name +
                         ".weight"] = weights  #np.swapaxes(weights, 0, 1)
S
SunAhong1993 已提交
1452 1453 1454 1455
    if mapper.attrs[inputs_name[6]]:
        layer_attrs["out_channels"] = weights.shape[1]
    else:
        layer_attrs["out_channels"] = weights.shape[0]
S
SunAhong1993 已提交
1456
    layer_attrs["kernel_size"] = weights.shape[2:]
S
SunAhong1993 已提交
1457
    # 处理输入2,即%10
S
SunAhong1993 已提交
1458 1459 1460
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1461
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1462 1463 1464 1465
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
1466
    # 处理输入3,即%19
S
SunAhong1993 已提交
1467
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
1468
    # 处理输入4,即%20
S
SunAhong1993 已提交
1469
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1470
    # 处理输入5,即%21
S
SunAhong1993 已提交
1471
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
1472 1473 1474 1475 1476 1477
    # 处理输入6,即%13
    if mapper.attrs[inputs_name[6]]:
        # 处理输入7,即%22
        layer_attrs["output_padding"] = mapper.attrs[inputs_name[7]]
    # 处理输入8,即%12
    layer_attrs["groups"] = mapper.attrs[inputs_name[8]]
S
SunAhong1993 已提交
1478
    if mapper.attrs[inputs_name[6]]:
S
SunAhong1993 已提交
1479 1480
        layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[
            inputs_name[8]]
S
SunAhong1993 已提交
1481
    else:
S
SunAhong1993 已提交
1482 1483
        layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[
            inputs_name[8]]
W
wjj19950828 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
    if len(weights.shape) == 3:
        if mapper.attrs[inputs_name[6]]:
            graph.add_layer(
                "paddle.nn.Conv1DTranspose",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
        else:
            graph.add_layer(
                "paddle.nn.Conv1D",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
    elif len(weights.shape) == 4:
W
WJJ1995 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        if mapper.attrs[inputs_name[6]]:
            graph.add_layer(
                "paddle.nn.Conv2DTranspose",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
        else:
            graph.add_layer(
                "paddle.nn.Conv2D",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
S
SunAhong1993 已提交
1514
    else:
W
WJJ1995 已提交
1515 1516
        if mapper.attrs[inputs_name[6]]:
            graph.add_layer(
W
wjj19950828 已提交
1517
                "paddle.nn.Conv3DTranspose",
W
WJJ1995 已提交
1518 1519 1520 1521 1522 1523
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
        else:
            graph.add_layer(
W
wjj19950828 已提交
1524
                "paddle.nn.Conv3D",
W
WJJ1995 已提交
1525 1526 1527 1528
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
S
SunAhong1993 已提交
1529 1530 1531
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
def aten_conv_transpose2d(mapper, graph, node):
    """ 构造conv_transpose2d的PaddleLayer。
    TorchScript示例:
        %input.10 : Tensor = aten::conv_transpose2d(%input.1, %18, %10, %19, %20, %21, %13, %22)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
        %21 (int/tuple): 输出形状上一侧额外添加的大小。
        %13 (int): 二维卷积层的组数。
        %22 (int/tuple): 空洞大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1557 1558
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%18
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["out_channels"] = weights.shape[1]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%10
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[op_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%19
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%20
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%21
    layer_attrs["output_padding"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%13
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%22
    layer_attrs["dilation"] = mapper.attrs[inputs_name[7]]
S
SunAhong1993 已提交
1586
    layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[inputs_name[6]]
S
SunAhong1993 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595
    graph.add_layer(
        "paddle.nn.Conv2DTranspose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1596 1597 1598 1599 1600 1601 1602 1603
def aten_cos(mapper, graph, node):
    """ 构造数学计算cos的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::cos(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,cos之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
1604
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1605 1606 1607 1608 1609 1610 1611
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1612 1613
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1614 1615 1616 1617
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1618 1619 1620 1621 1622
    graph.add_layer(
        "paddle.cos",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
    return current_inputs, current_outputs


def aten_cumsum(mapper, graph, node):
    """ 构造与前一个元素累加的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::cumsum(%mask.1, %46, %48)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %mask.1 (Tensor): 输入,需要累加的Tensor。
        %46 (int): 累加的维度。
        %48 (int/None): Tensor的类型。
    """
S
SunAhong1993 已提交
1636
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1637 1638 1639 1640 1641 1642 1643 1644
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
1645 1646
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1647 1648 1649 1650 1651 1652 1653 1654
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
1655
                            current_outputs, scope_name)
S
SunAhong1993 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入1,即%48,代表dtype
    if mapper.attrs[inputs_name[2]] is None:
        layer_attrs["dtype"] = None
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.cumsum",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1668
        scope_name=scope_name,
S
SunAhong1993 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
        **layer_attrs)
    return current_inputs, current_outputs


def aten_detach(mapper, graph, node):
    """ 构造返回一个新的Tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置的PaddleLayer。
    TorchScript示例:
        %107 : Tensor = aten::detach(%new_mem.1)
        参数含义:
        %107 (Tensor): 输出,得到的Scalar。
        %new_mem.1 (Tensor): 输入。
    【注意】由于Paddle无此操作,所以此处制转换为赋值。
    """
S
SunAhong1993 已提交
1682
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1683 1684 1685 1686 1687 1688 1689
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
1690 1691
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1692 1693 1694
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1695 1696 1697 1698 1699
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

    return current_inputs, current_outputs


def aten_dict(mapper, graph, node):
    """ 构造初始化dict的PaddleLayer。
    TorchScript示例:
        %features.1 : Dict(str, Tensor) = aten::dict()
        参数含义:
        %features.1: 输出,初始化的dict。
    """
S
SunAhong1993 已提交
1711
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1712 1713 1714 1715 1716 1717 1718
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    current_inputs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]

S
SunAhong1993 已提交
1719 1720 1721 1722 1723
    graph.add_layer(
        "prim.dict",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
    return current_inputs, current_outputs


def aten_dim(mapper, graph, node):
    """ 构造获取维度的PaddleLayer。
    TorchScript示例:
        %106 : int = aten::dim(%101)
        参数含义:
        %106 (int): 输出,Tensor的维度。
        %101 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
1735
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1736 1737 1738 1739 1740 1741
    output_name = mapper._get_outputs_name(node)[0]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1742 1743
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1744
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1745 1746 1747 1748
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1749 1750 1751 1752
        "prim.shape",
        inputs=layer_inputs,
        outputs=[output_name],
        scope_name=scope_name)
S
SunAhong1993 已提交
1753
    graph.add_layer(
S
SunAhong1993 已提交
1754 1755 1756 1757
        "prim.len",
        inputs={"input": output_name},
        outputs=[output_name],
        scope_name=scope_name)
S
SunAhong1993 已提交
1758 1759 1760 1761 1762 1763
    return current_inputs, current_outputs


def aten_div(mapper, graph, node):
    """ 构造除法的PaddleLayer。
    TorchScript示例:
W
WJJ1995 已提交
1764
        %bx_bw0.3 : Tensor = aten::div(%bx_bw.3, %2678)
S
SunAhong1993 已提交
1765 1766 1767 1768 1769
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
S
SunAhong1993 已提交
1770
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1771 1772 1773 1774 1775 1776 1777
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1778 1779
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1780 1781
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1782 1783
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1784 1785 1786 1787
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1788 1789 1790 1791 1792
    graph.add_layer(
        "prim.div",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
    return current_inputs, current_outputs


def aten_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
1805 1806
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
S
SunAhong1993 已提交
1807
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1808
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1809 1810 1811 1812 1813
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1814 1815
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1816 1817 1818 1819 1820
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1821 1822 1823 1824 1825
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
    return current_inputs, current_outputs


def aten_embedding(mapper, graph, node):
    """ 构造embedding的PaddleLayer。
    TorchScript示例:
        %inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46)
        参数含义:
        %inputs_embeds.1 (Tensor): 输出,embedding后的结果。
        %57 (Tensor): weights。
        %input_ids.1 (Tensor): 需要进行embedding的特征层。
        %45 (int): padding_idx。
        %46 (bool): scale_grad_by_freq。
        %46 (bool): sparse。
    """
S
SunAhong1993 已提交
1841 1842
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("embedding", mapper.nn_name2id)
S
SunAhong1993 已提交
1843
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1844
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1845 1846 1847 1848 1849 1850 1851
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%57
    weights = mapper.pytorch_params[inputs_name[0]]
S
SunAhong1993 已提交
1852 1853 1854
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["num_embeddings"] = weights.shape[0]
    layer_attrs["embedding_dim"] = weights.shape[1]
S
SunAhong1993 已提交
1855
    # 处理输入1,即%input_ids.1
S
SunAhong1993 已提交
1856 1857
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866
    layer_inputs["input"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%45
    if mapper.attrs[inputs_name[2]] == -1:
        layer_attrs["padding_idx"] = None
    else:
        layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]]
    # 处理输入4,即%46
S
SunAhong1993 已提交
1867
    layer_attrs["sparse"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1868 1869

    graph.add_layer(
S
SunAhong1993 已提交
1870
        "paddle.nn.Embedding",
S
SunAhong1993 已提交
1871 1872
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1873
        scope_name=scope_name,
S
SunAhong1993 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
        **layer_attrs)
    return current_inputs, current_outputs


def aten_eq(mapper, graph, node):
    """ 构造判断数值是否相等的PaddleLayer。
    TorchScript示例:
        %125 : bool = aten::eq(%124, %123)
        参数含义:
        %125 (bool): 对比后结果。
        %124 (-): 需对比的输入1。
        %123 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1887
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1888 1889 1890 1891 1892 1893 1894
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1895 1896
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1897 1898 1899 1900
    layer_inputs["x"] = inputs_name[0]
    x_value = list(node.inputs())[0]
    x_type = x_value.type()
    # 处理输入1,即%123
S
SunAhong1993 已提交
1901 1902
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1903 1904 1905 1906 1907
    layer_inputs["y"] = inputs_name[1]
    y_value = list(node.inputs())[1]
    y_type = y_value.type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1908 1909 1910 1911 1912
    graph.add_layer(
        "prim.eq",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1913 1914 1915
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
def aten_erf(mapper, graph, node):
    """ 构造逐元素计算 Erf 激活函数的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::erf(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,erf之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行erf的Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1932 1933
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1934 1935 1936 1937
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1938 1939 1940 1941 1942
    graph.add_layer(
        "paddle.erf",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1943 1944 1945
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1946 1947 1948 1949 1950 1951 1952 1953
def aten_exp(mapper, graph, node):
    """ 构造以自然数e为底指数运算的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,运算后的结果。
        %54 (Tensor): 需要指数运算的Tensor。
    """
S
SunAhong1993 已提交
1954
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1955 1956 1957 1958 1959 1960 1961
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
1962 1963
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1964 1965 1966 1967 1968
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1969 1970 1971 1972
        "paddle.exp",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
    return current_inputs, current_outputs


def aten_expand(mapper, graph, node):
    """ 构造对某维度进行广播的PaddleLayer。
    TorchScript示例:
        %1889 : Tensor = aten::expand(%1875, %1888, %1567)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (int): 广播的维度。
        %1567 (bool): 未使用。
    """
S
SunAhong1993 已提交
1986
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1987 1988 1989
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
1990
    layer_attrs = {}
S
SunAhong1993 已提交
1991 1992 1993 1994
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1995 1996
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1997
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
2007
    graph.add_layer(
S
SunAhong1993 已提交
2008 2009 2010
        "paddle.expand",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2011
        scope_name=scope_name,
S
SunAhong1993 已提交
2012
        **layer_attrs)
S
SunAhong1993 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
    return current_inputs, current_outputs


def aten_expand_as(mapper, graph, node):
    """ 构造广播的PaddleLayer。
    TorchScript示例:
        %1889 : Tensor = aten::expand_as(%1875, %1888)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (Tensor): 广播的示例。
    """
S
SunAhong1993 已提交
2025
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2026 2027 2028 2029 2030 2031 2032
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
2033 2034
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2035 2036
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1888
S
SunAhong1993 已提交
2037 2038
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2039
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
2040 2041
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2042

S
SunAhong1993 已提交
2043 2044 2045
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
2046 2047
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2048 2049 2050 2051
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
2052
        scope_name=scope_name,
S
SunAhong1993 已提交
2053
        y=paddle_dtypes.t_bool)
S
SunAhong1993 已提交
2054 2055
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
W
WJJ1995 已提交
2056
        outputs=[inputs_name[0] + "_if1", inputs_name[0]],
S
SunAhong1993 已提交
2057
        scope_name=scope_name)
S
SunAhong1993 已提交
2058
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
2059
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2060 2061 2062
    block.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
2063 2064
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2065
    block.add_layer(
S
SunAhong1993 已提交
2066
        "paddle.cast",
S
SunAhong1993 已提交
2067 2068
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
S
SunAhong1993 已提交
2069
        scope_name=scope_name,
S
SunAhong1993 已提交
2070 2071
        dtype=inputs_name[1] + "_type")
    if_layer.add_block(block)
W
WJJ1995 已提交
2072
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2073 2074 2075 2076
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.inputs["input-1"] = inputs_name[1]
    graph.add_layer(
S
SunAhong1993 已提交
2077 2078 2079 2080
        "paddle.expand_as",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2081 2082
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
W
WJJ1995 已提交
2083
        outputs=[inputs_name[0] + "_if2", output_name],
S
SunAhong1993 已提交
2084
        scope_name=scope_name)
S
SunAhong1993 已提交
2085
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
2086
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2087
    block.add_layer(
S
SunAhong1993 已提交
2088
        "paddle.cast",
S
SunAhong1993 已提交
2089
        inputs={"x": layer_outputs[0]},
S
SunAhong1993 已提交
2090 2091
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name,
S
SunAhong1993 已提交
2092 2093
        dtype=string("bool"))
    if_layer.add_block(block)
W
WJJ1995 已提交
2094
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2095 2096
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
S
SunAhong1993 已提交
2097
    # TODO(syf): check expand_as
S
SunAhong1993 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
    #     # 处理输入0,即%1875
    #     mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    #     layer_inputs["x"] = inputs_name[0]
    #     # 处理输入1,即%1888
    #     mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
    #     layer_inputs["y"] = inputs_name[1]
    #     # 获取当前节点输入的list
    #     current_inputs = list(layer_inputs.values())
    #     graph.add_layer(
    #         "paddle.expand_as", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
    return current_inputs, current_outputs


def aten_eye(mapper, graph, node):
    """ 构造批次二维矩阵的PaddleLayer。
    TorchScript示例:
        %68 : Tensor = aten::eye(%49, %_50, %_51, %15, %9, %67, %7)
        参数含义:
        %68 (Tensor): 输出,构造的矩阵。
        %49 (int): 行数。
        %_50 (int): 列数,非必须。
        %_51 (Tensor): 非必须。
        %9 (int): layout。
        %67 (str): 设备。
        %7 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
2124
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2125 2126 2127 2128 2129 2130 2131 2132
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%49
S
SunAhong1993 已提交
2133 2134
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2135 2136 2137 2138
    layer_inputs["num_rows"] = inputs_name[0]
    if len(inputs_name) > 5:
        # 处理输入1,即%_50
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2139
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2140 2141 2142 2143 2144 2145 2146
        layer_inputs["num_columns"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理倒数第4个输入,即%15
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[-4]]]

    graph.add_layer(
S
SunAhong1993 已提交
2147
        "paddle.eye",
S
SunAhong1993 已提交
2148 2149
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2150
        scope_name=scope_name,
S
SunAhong1993 已提交
2151 2152 2153
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
2154

S
SunAhong1993 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
def aten_feature_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::feature_dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
2173 2174
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2175 2176 2177 2178 2179
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2180 2181 2182 2183 2184
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
2185 2186
    return current_inputs, current_outputs

S
SunAhong1993 已提交
2187

W
wjj19950828 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
def aten_fft_rfftn(mapper, graph, node):
    """
    TorchScript示例:
        %x_gap.15 : Tensor =  aten::fft_rfftn(%x.58, %2166, %1450, %1453)
        参数含义:
        %x_gap.15 (Tensor): Output Tensor。
        %x.58 (Tensor): Input Tensor。
        %2166:Sequence Length
        %1450:axes
        %1453:norm mode
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if inputs_name[1] in mapper.attrs:
        layer_attrs["s"] = mapper.attrs[inputs_name[1]]
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axes"] = mapper.attrs[inputs_name[2]]
    if inputs_name[3] in mapper.attrs:
        layer_attrs["norm"] = mapper.attrs[inputs_name[3]]
    graph.add_layer(
        "paddle.fft.rfftn",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_fft_irfftn(mapper, graph, node):
    """
    TorchScript示例:
        %x_gap.15 : Tensor =  aten::fft_irfftn(%x.58, %2166, %1450, %1453)
        参数含义:
        %x_gap.15 (Tensor): Output Tensor。
        %x.58 (Tensor): Input Tensor。
        %2166:Sequence Length
        %1450:axes
        %1453:norm mode
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if inputs_name[1] in mapper.attrs:
        layer_attrs["s"] = mapper.attrs[inputs_name[1]]
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axes"] = mapper.attrs[inputs_name[2]]
    if inputs_name[3] in mapper.attrs:
        layer_attrs["norm"] = mapper.attrs[inputs_name[3]]
    graph.add_layer(
        "paddle.fft.irfftn",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
def aten_flatten(mapper, graph, node):
    """ 构造flatten的PaddleLayer。
    TorchScript示例:
        %x.8 : Tensor = aten::flatten(%x, %4, %2)
        参数含义:
        %x.8 (Tensor): flatten后结果。
        %x (Tensor): 输入Tensor。
        %4 (int): flatten的开始维度。
        %2 (int): flatten的结束维度。
    """
S
SunAhong1993 已提交
2278
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2279 2280 2281
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
2282
    layer_attrs = {}
S
SunAhong1993 已提交
2283 2284 2285 2286
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x
S
SunAhong1993 已提交
2287 2288
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2289 2290 2291 2292
    # 处理输入1,即%4
    layer_attrs["start_axis"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%20
    layer_attrs["stop_axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
2293 2294 2295 2296 2297
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2298
        "paddle.flatten",
S
SunAhong1993 已提交
2299 2300
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2301 2302
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
    return current_inputs, current_outputs


def aten_Float(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。
    TorchScript示例:
        %3992 : float = aten::Float(%3991)
        参数含义:
        %3992 (int): 向上取整后的整数。
        %3991 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
2314
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2315 2316 2317 2318 2319 2320 2321
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3991
S
SunAhong1993 已提交
2322 2323
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2324 2325 2326 2327
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2328 2329 2330 2331 2332
    graph.add_layer(
        "prim.float",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
    return current_inputs, current_outputs


def aten_floor(mapper, graph, node):
    """ 构造向上取整的PaddleLayer。
    TorchScript示例:
        %3978 : int = aten::floor(%scale.18)
        参数含义:
        %3978 (int): 向上取整后的整数。
        %scale.18 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
2344
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2345 2346 2347 2348 2349 2350 2351
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%scale.18
S
SunAhong1993 已提交
2352 2353
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2354
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2355 2356
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2357
    graph.add_layer(
S
SunAhong1993 已提交
2358
        "prim.type", {'input': inputs_name[0]},
S
SunAhong1993 已提交
2359 2360 2361
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
S
SunAhong1993 已提交
2362
        "prim.str", {'input': inputs_name[0] + "_type"},
S
SunAhong1993 已提交
2363 2364 2365
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
S
SunAhong1993 已提交
2366 2367
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
S
SunAhong1993 已提交
2368 2369
        outputs=[inputs_name[0] + "_cond"],
        scope_name=scope_name,
S
SunAhong1993 已提交
2370
        y=paddle_dtypes.t_bool)
S
SunAhong1993 已提交
2371
    graph.add_layer(
S
SunAhong1993 已提交
2372
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
2373 2374 2375
        outputs=[inputs_name[0] + "_if"],
        scope_name=scope_name)
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
2376
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2377 2378 2379 2380 2381
    block.add_layer(
        "paddle.floor",
        inputs=copy.deepcopy(layer_inputs),
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name)
S
SunAhong1993 已提交
2382
    if_layer.add_block(block)
W
WJJ1995 已提交
2383
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2384 2385 2386 2387 2388
    block.add_layer(
        "prim.floor",
        inputs=copy.deepcopy(layer_inputs),
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name)
S
SunAhong1993 已提交
2389 2390 2391
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.outputs.append(output_name)
S
SunAhong1993 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
    return current_inputs, current_outputs


def aten_floordiv(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。
    TorchScript示例:
        %channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
2404
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2405 2406 2407 2408 2409 2410 2411
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
2412 2413
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2414 2415
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
2416 2417
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2418 2419 2420 2421
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2422 2423 2424 2425 2426
    graph.add_layer(
        "prim.floordiv",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
    return current_inputs, current_outputs


def aten_floor_divide(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。
    TorchScript示例:
        %channels_per_group.2 : int = aten::floor_divide(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
2439
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2440 2441 2442 2443 2444 2445 2446
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
2447 2448
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2449 2450
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
2451 2452
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2453 2454 2455 2456
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2457 2458 2459 2460 2461
    graph.add_layer(
        "prim.floordiv",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2462 2463 2464
    return current_inputs, current_outputs


2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
def aten_format(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。
    TorchScript示例:
        %628 : str = aten::format(%8, %627)
        参数含义:
        %628 (str): 输出,为一个字符串
        %8 (str): 输入字符串
        %627 (-): format后的参数
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入
    for i in range(len(inputs_node)):
        mapper._check_input(graph, inputs_node[i], inputs_name[i],
                            current_outputs, scope_name)
        layer_inputs["input" + str(i)] = inputs_name[i]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.format",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


W
wjj19950828 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
def aten_full(mapper, graph, node):
    """
    TorchScript Code:
        %159 : Tensor = aten::full(%775, %50, %49, %56, %48, %53)
        Parameter meaning:
        %159 (Tensor): Output Tensor
        %775 (Tensor): size
        %50 (int/float/bool): fill_value
        %49 (int): dtype
        %56 (int): layout
        %48 (int): device
        %53 (bool): requires_grad
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # output list
    current_outputs = [output_name]
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["shape"] = inputs_name[0]
    # input list
    current_inputs = list(layer_inputs.values())

    if inputs_name[1] in mapper.attrs:
        layer_attrs["fill_value"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["fill_value"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # dtype
    if mapper.attrs[inputs_name[2]] is not None:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.full",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
def aten_full_like(mapper, graph, node):
    """ 构造创建一个与输入具有相同的形状并且数据类型固定的Tensor的PaddleLayer。
    TorchScript示例:
        %159 : Tensor = aten::full_like(%val_if_large.3, %51, %50, %62, %53, %65, %66)
        参数含义:
        %159 (Tensor): 输出,全为固定值的Tensor。
        %val_if_large.3 (Tensor): 类似形状的Tensor。
        %51 (int/float/bool): 填充值。
        %50 (int): dtype。
        %62 (int): layout。
        %53 (int): device。
        %65 (bool): 是否计算梯度。
        %66 (int): 内存形式。
    """
S
SunAhong1993 已提交
2558
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2559 2560 2561 2562 2563 2564 2565 2566
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%val_if_large.3
S
SunAhong1993 已提交
2567 2568
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2569 2570 2571 2572 2573 2574 2575 2576
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["fill_value"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2577
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586
        layer_inputs["fill_value"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%50,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.full_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2587
        scope_name=scope_name,
S
SunAhong1993 已提交
2588 2589 2590 2591
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
def aten_gather(mapper, graph, node):
    """ 构造gather激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::gather(%input.5, %18, %19, %20, %21)
        参数含义:
        %result.3 (Tensor): 输出,gather后的结果。
        %result.5 (Tensor): 需要gather的Tensor。
        %18 (int): 需要gather的维度。
        %19 (Tensor): 需要gather的索引。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gather", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2612 2613
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2614 2615 2616 2617
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%18
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%19
S
SunAhong1993 已提交
2618 2619
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2620 2621 2622
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2623

S
SunAhong1993 已提交
2624
    graph.add_layer(
S
SunAhong1993 已提交
2625 2626 2627
        "custom_layer:Gather",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2628 2629 2630 2631 2632
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641
def aten_gelu(mapper, graph, node):
    """ 构造GeLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::gelu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,GELU后的结果。
        %result.5 (Tensor): 需要GELU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2642 2643
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gelu", mapper.nn_name2id)
S
SunAhong1993 已提交
2644
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2645
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2646 2647 2648 2649 2650
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2651 2652
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2653 2654 2655 2656 2657
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2658 2659 2660 2661
        "paddle.nn.GELU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
    return current_inputs, current_outputs


def aten___getitem__(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。
    TorchScript示例:
        %v.1 : int = aten::__getitem__(%72, %88)
        参数含义:
        %v.1 (-): 输出,list中的元素。
        %72 (list): 需要获取元素的list。
        %88 (int): 索引。
    """
S
SunAhong1993 已提交
2674
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2675 2676 2677 2678 2679 2680 2681
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
2682 2683
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2684 2685
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即%88
S
SunAhong1993 已提交
2686 2687
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2688 2689 2690 2691
    layer_inputs["index"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2692 2693 2694 2695 2696
    graph.add_layer(
        "prim.getitem",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
    return current_inputs, current_outputs


def aten_gt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %83 : bool = aten::gt(%82, %78)
        参数含义:
        %83 (bool): 输出,第一个元素是否大于第二个元素。
        %82 (-): 需对比的输入1。
        %78 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2709
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2710 2711 2712 2713 2714 2715 2716
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%82
S
SunAhong1993 已提交
2717 2718
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2719 2720
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%78
S
SunAhong1993 已提交
2721 2722
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2723 2724 2725 2726
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2727 2728 2729 2730 2731
    graph.add_layer(
        "prim.gt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2732 2733 2734
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
def aten_gru(mapper, graph, node):
    """ 构造门控循环单元网络(GRU)的PaddleLayer。
    TorchScript示例:
        %21, %22 = aten::gru(%input, %hx, %20, %11, %10, %9, %11, %8, %11)
        参数含义:
        %21 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %22 (Tensor): 输出,最终状态。
        %input (Tensor): 网络输入。
        %hx (Tensor): 网络的初始状态。
        %20 (list): 所有权重组合成的list。
        %11 (bool): 是否使用bias。
        %10 (int): 网络层数。
        %9 (float): dropout概率。
        %11 (bool): 是否为训练阶段。
        %8 (bool): 是否使用双向LSTM。
        %11 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gru", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
S
SunAhong1993 已提交
2763 2764
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2765 2766
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
S
SunAhong1993 已提交
2767 2768
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2769 2770 2771 2772
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
S
SunAhong1993 已提交
2773 2774
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2775 2776 2777 2778 2779
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
S
SunAhong1993 已提交
2780 2781 2782 2783
            layer_attrs["hidden_size"] = int(
                mapper.paddle_params[param_name].shape[0] / 3)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name]
                                            .shape[1])
S
add gru  
SunAhong1993 已提交
2784 2785
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
S
SunAhong1993 已提交
2786 2787 2788 2789
            mapper.paddle_params["{}.weight_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name,
                                                               part_name))
S
add gru  
SunAhong1993 已提交
2790 2791
        else:
            part_name = param_name.split("_bias_")[-1]
S
SunAhong1993 已提交
2792 2793
            mapper.paddle_params["{}.bias_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
S
add gru  
SunAhong1993 已提交
2794
        mapper.paddle_params.pop(param_name)
S
SunAhong1993 已提交
2795

S
add gru  
SunAhong1993 已提交
2796 2797 2798 2799 2800
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
S
SunAhong1993 已提交
2801 2802 2803
            bias_shape = mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype(
                "float32")
S
add gru  
SunAhong1993 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.GRU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


2825
def aten_hardtanh(mapper, graph, node):
S
SunAhong1993 已提交
2826 2827
    """ 构造hardtanh激活的PaddleLayer。
    TorchScript示例:
2828
        %result.9 : Tensor = aten::hardtanh(%input.20, %67, %66)
S
SunAhong1993 已提交
2829 2830 2831 2832 2833 2834
        参数含义:
        %result.9 (Tensor): 输出,hardtanh激活后的Tensor。
        %input.20 (Tensor): 需要hardtanh激活的Tensor。
        %67 (float): hardtanh激活的最小阈值。
        %66 (float): hardtanh激活的最大阈值。
    """
S
SunAhong1993 已提交
2835 2836
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardtanh", mapper.nn_name2id)
S
SunAhong1993 已提交
2837
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2838
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2839 2840 2841 2842 2843 2844
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.20
S
SunAhong1993 已提交
2845 2846
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2847 2848 2849 2850 2851 2852 2853 2854
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%67
    layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%66
    layer_attrs["max"] = mapper.attrs[inputs_name[2]]

S
SunAhong1993 已提交
2855
    if layer_attrs["min"] == 0 and layer_attrs["max"] == 6:
S
SunAhong1993 已提交
2856
        graph.add_layer(
S
SunAhong1993 已提交
2857 2858 2859 2860
            "paddle.nn.ReLU6",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
2861 2862 2863 2864 2865 2866 2867
    else:
        graph.add_layer(
            'paddle.nn.Hardtanh',
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
2868 2869 2870
    return current_inputs, current_outputs


W
wjj19950828 已提交
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
def aten_hardsigmoid(mapper, graph, node):
    """
    TorchScript Code:
        %55 : Tensor = aten::hardsigmoid(%54)
        Parameter meaning:
        %55 (Tensor): output
        %54 (Tensor): input tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardsigmoid", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]

    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Hardsigmoid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


def aten_hardswish(mapper, graph, node):
    """
    TorchScript Code:
        %55 : Tensor = aten::hardswish(%54)
        Parameter meaning:
        %55 (Tensor): output
        %54 (Tensor): input tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardswish", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]

    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Hardswish",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
def aten_index(mapper, graph, node):
    """ 构造选择元素的PaddleLayer。
    TorchScript示例:
        %1681 : Float = aten::index(%1653, %1680)
        参数含义:
        %1681 (Tensor): 输出,选择后的Tensor。
        %1653 (Tensor): 需要选择的Tensor。
        %1680 (int): 选择的索引。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1653
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1680
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["index"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.getitem",
        inputs={"list": layer_inputs["index"]},
        outputs=[layer_inputs["index"]],
        scope_name=scope_name,
        index=0)
    graph.add_layer(
        "paddle.index_select",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2974

S
SunAhong1993 已提交
2975

W
wjj19950828 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
def aten_imag(mapper, graph, node):
    """ 构造获取绝对值的PaddleLayer。
    TorchScript示例:
        %n0.3 : Tensor = aten::imag(%1)
        参数含义:
        %1 (Tensor): Complex Tensor。
        %n0.3 (Tensor): 返回虚部 Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.imag",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3006 3007
def aten_index_select(mapper, graph, node):
    """ 构造选择元素的PaddleLayer。
S
SunAhong1993 已提交
3008 3009 3010 3011 3012 3013 3014 3015
    TorchScript示例:
        %bd.3 : Tensor = aten::index_select(%x2.3, %320, %371)
        参数含义:
        %bd.3 (Tensor): 输出,选择后的Tensor。
        %x2.3 (Tensor): 需要选择的Tensor。
        %320 (int): 维度。
        %371 (Tensor): 选择的索引。
    """
S
SunAhong1993 已提交
3016
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3017 3018 3019 3020 3021 3022 3023 3024
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x2.3
S
SunAhong1993 已提交
3025 3026
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3027 3028 3029 3030 3031 3032
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%320
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3033
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3034 3035
        layer_inputs["axis"] = inputs_name[1]
    # 处理输入2,即%371
S
SunAhong1993 已提交
3036 3037
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3038 3039 3040 3041 3042 3043 3044
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.index_select",
        inputs=layer_inputs,
3045
        outputs=layer_outputs,
S
SunAhong1993 已提交
3046
        scope_name=scope_name,
S
SunAhong1993 已提交
3047 3048 3049 3050
        **layer_attrs)
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
def aten_instance_norm(mapper, graph, node):
    """构造InstanceNorm的PaddleLayer
    TorchScript示例:
        %res.7 : Tensor = aten::instance_norm(%res.5, %88, %85, %84, %83, %87, %91, %92, %87)
        参数含义:
        %res.7 (Tensor): 输出,InstanceNorm的结果。
        %res.5 (Tensor): 需要进行InstanceNorm的特征层。
        %88 (Tensor): weights。
        %85 (Tensor): bias。
        %84 (Tensor): 全局均值。
        %83 (Tensor): 全局方差。
        %87 (bool): 是否使用输入的统计。
        %91 (float): momentum。
        %92 (float): eps。
        %87 (bool): 是否启用cudnn。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("instance_norm", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
3077 3078
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
3079 3080 3081 3082 3083 3084
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%88
    if inputs_name[1] in mapper.pytorch_params:
        weights = mapper.pytorch_params[inputs_name[1]]
3085
        mapper.paddle_params[op_name + ".scale"] = weights
S
add gru  
SunAhong1993 已提交
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
        layer_attrs['num_features'] = weights.shape[0]
    # 处理输入2,即%85
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        mapper.paddle_params[op_name + ".bias"] = bias
    # 处理输入3,即%84
    if inputs_name[3] in mapper.pytorch_params:
        mean = mapper.pytorch_params[inputs_name[3]]
        mapper.paddle_params[op_name + "._mean"] = mean
    # 处理输入4,即%83
    if inputs_name[4] in mapper.pytorch_params:
        var = mapper.pytorch_params[inputs_name[4]]
        mapper.paddle_params[op_name + "._variance"] = var
    # 处理输入6,即%91
    layer_attrs["momentum"] = 1 - mapper.attrs[inputs_name[6]]
    # 处理输入7,即%92
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "custom_layer:InstanceNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3113 3114 3115 3116 3117 3118 3119 3120
def aten_Int(mapper, graph, node):
    """ 构造强转为int的PaddleLayer。
    TorchScript示例:
        %1739 : int = aten::Int(%1738)
        参数含义:
        %1739 (int): 输出,int型数据。
        %1738 (-): 需要强转的数据。
    """
S
SunAhong1993 已提交
3121
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3122 3123 3124 3125 3126 3127 3128
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1738
S
SunAhong1993 已提交
3129 3130
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3131 3132 3133 3134
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3135 3136 3137 3138 3139
    graph.add_layer(
        "prim.int",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
    return current_inputs, current_outputs


def aten___is__(mapper, graph, node):
    """ 构造is not的PaddleLayer。
    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3152
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3153 3154 3155 3156 3157 3158 3159
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
3160 3161
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3162 3163
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
3164 3165
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3166 3167 3168 3169
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3170 3171 3172 3173 3174
    graph.add_layer(
        "prim.is",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
    return current_inputs, current_outputs


def aten___isnot__(mapper, graph, node):
    """ 构造is not的PaddleLayer。
    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3187
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3188 3189 3190 3191 3192 3193 3194
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
3195 3196
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3197 3198
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
3199 3200
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3201 3202 3203 3204
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3205 3206 3207 3208 3209
    graph.add_layer(
        "prim.isnot",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
    return current_inputs, current_outputs


def aten_layer_norm(mapper, graph, node):
    """ 构造层归一化的PaddleLayer。
    TorchScript示例:
        %input0.4 : Tensor = aten::layer_norm(%input.6, %1181, %174, %173, %70, %71)
        参数含义:
        %input0.4 (Tensor): 输出,层归一化后的结果。
        %input.6 (Tensor): 需要进行层归一化的特征层。
        %1181 (list/int/tuple): 需规范化的shape。
        %174 (Tensor): weights。
        %173 (Tensor): bias。
        %70 (float): 指明在计算过程中是否添加较小的值到方差中以防止除零。
        %71 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
3226 3227
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("layernorm", mapper.nn_name2id)
S
SunAhong1993 已提交
3228
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3229
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3230 3231 3232 3233 3234 3235
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.6
S
SunAhong1993 已提交
3236 3237
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3238 3239 3240 3241 3242 3243 3244
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1181
    layer_attrs["normalized_shape"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%174
    weights = mapper.pytorch_params[inputs_name[2]]
S
SunAhong1993 已提交
3245
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
3246 3247 3248 3249
    # 处理输入3,即%173
    if inputs_name[3] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[3]]
        if bias is not None:
S
SunAhong1993 已提交
3250
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
3251
    else:
S
SunAhong1993 已提交
3252
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
3253 3254 3255 3256 3257 3258 3259
    # 处理输入4,即%70
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
        "paddle.nn.LayerNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3260
        scope_name=scope_name,
S
SunAhong1993 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
        **layer_attrs)
    return current_inputs, current_outputs


def aten_le(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %80 : bool = aten::le(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于等于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3274
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3275 3276 3277 3278 3279 3280 3281
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
3282 3283
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3284 3285
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
3286 3287
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3288 3289 3290 3291
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3292 3293 3294 3295 3296
    graph.add_layer(
        "prim.le",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3297 3298 3299
    return current_inputs, current_outputs


3300 3301 3302 3303 3304 3305 3306
def aten_leaky_relu(mapper, graph, node):
    """ 构造leaky relu激活的PaddleLayer。
    TorchScript示例:
        %input.117 : Tensor = aten::leaky_relu(%input.114, %1570)
        参数含义:
        %input.117 (Tensor): 输出,leaky relu后的结果。
        %input.114 (Tensor): 需要leaky relu的Tensor。
S
SunAhong1993 已提交
3307 3308
        %1570 (float): 输入中的元素小于0时的斜率。
    """
S
SunAhong1993 已提交
3309 3310
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("leakly_relu", mapper.nn_name2id)
S
SunAhong1993 已提交
3311
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3312
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3313 3314 3315 3316 3317 3318
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
3319 3320
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1570
    layer_attrs["negative_slope"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.LeakyReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3331
        scope_name=scope_name,
S
SunAhong1993 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
        **layer_attrs)
    return current_inputs, current_outputs


def aten_len(mapper, graph, node):
    """ 构造获取list长度的PaddleLayer。
    TorchScript示例:
        %85 : int = aten::len(%83)
        参数含义:
        %85 (int): 输出,list的长度。
        %72 (list): 需要获取长度的list。
    """
S
SunAhong1993 已提交
3344
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3345 3346 3347 3348 3349 3350 3351
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
3352 3353
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3354 3355 3356 3357
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3358 3359 3360 3361 3362
    graph.add_layer(
        "prim.len",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3363 3364 3365
    return current_inputs, current_outputs


W
wjj19950828 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
def aten_linear(mapper, graph, node):
    """
    TorchScript Code:
        %x.6 : Float(1, 128, strides=[128, 1]) = aten::linear(%input.305, %weight.629, %bias.317)
        Parameter meaning:
        %x.6 (Tensor): output
        %input.305 (Tensor): input tensor
        %weight.629 (Tensor): weight tensor
        %bias.317 (Tensor): bias tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # transpose weight
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
W
WJJ1995 已提交
3391 3392
    layer_inputs["y"] = inputs_name[1]
    layer_attrs["transpose_y"] = True
W
wjj19950828 已提交
3393
    graph.add_layer(
W
WJJ1995 已提交
3394 3395 3396
        "paddle.matmul",
        inputs=layer_inputs,
        outputs=layer_outputs,
W
wjj19950828 已提交
3397
        scope_name=scope_name,
W
WJJ1995 已提交
3398
        **layer_attrs)
W
wjj19950828 已提交
3399 3400 3401
    if len(inputs_name) == 3:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
W
WJJ1995 已提交
3402 3403 3404 3405 3406 3407
        graph.add_layer(
            "paddle.add",
            inputs={"x": output_name,
                    "y": inputs_name[2]},
            outputs=layer_outputs,
            scope_name=scope_name)
W
wjj19950828 已提交
3408 3409 3410 3411 3412
    current_inputs = list(layer_inputs.values())

    return current_inputs, current_outputs


S
SunAhong1993 已提交
3413 3414 3415 3416 3417 3418 3419 3420
def aten_log(mapper, graph, node):
    """ 构构造log的PaddleLayer。
    TorchScript示例:
        %787 : Tensor = aten::log(%786)
        参数含义:
        %787 (Tensor): 输出,取log的Tensor。
        %786 (Tensor): 需要获取log的Tensor。
    """
S
SunAhong1993 已提交
3421
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3422 3423 3424 3425 3426 3427 3428
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
3429 3430
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3431 3432 3433 3434 3435
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
3436 3437 3438 3439
        "paddle.log",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3440 3441 3442
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
def aten_log_softmax(mapper, graph, node):
    """ 构造log_softmax的PaddleLayer。
    TorchScript示例:
        %4 = aten::log_softmax(%input, %2, %3)
        参数含义:
        %4 (Tensor): 输出的Tensor。
        %input (Tensor): 输入的Tensor。
        %2 (int): 指定对输入进行运算的轴。
        %3 (int): 输入Tensor的数据类型。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%input
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%2,代表dtype
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
    # 处理输入2,即%3,代表dtype
    if mapper.attrs[inputs_name[2]] is not None:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.functional.log_softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
def aten_lstm(mapper, graph, node):
    """ 构造长短期记忆网络(LSTM)的PaddleLayer。
    TorchScript示例:
        %input.96, %551, %552 = aten::lstm(%input.95, %734, %549, %526, %525, %524, %526, %526, %526)
        参数含义:
        %input.96 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %551 (Tensor): cell state。
        %552 (Tensor): hidden state。
        %input.95 (Tensor): 网络输入。
        %734 (Tensor): 网络的初始状态。
        %549 (list): 所有权重组合成的list。
        %526 (bool): 是否使用bias。
        %525 (int): 网络层数。
        %524 (float): dropout概率。
        %526 (bool): 是否为训练阶段。
        %526 (bool): 是否使用双向LSTM。
        %526 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("lstm", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
S
SunAhong1993 已提交
3517 3518
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3519 3520
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
S
SunAhong1993 已提交
3521 3522
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3523 3524 3525 3526
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
S
SunAhong1993 已提交
3527 3528
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3529 3530 3531 3532 3533
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
S
SunAhong1993 已提交
3534 3535 3536 3537
            layer_attrs["hidden_size"] = int(
                mapper.paddle_params[param_name].shape[0] / 4)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name]
                                            .shape[1])
S
SunAhong1993 已提交
3538 3539
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
S
SunAhong1993 已提交
3540 3541 3542 3543
            mapper.paddle_params["{}.weight_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name,
                                                               part_name))
S
SunAhong1993 已提交
3544 3545
        else:
            part_name = param_name.split("_bias_")[-1]
S
SunAhong1993 已提交
3546 3547
            mapper.paddle_params["{}.bias_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
S
SunAhong1993 已提交
3548
        mapper.paddle_params.pop(param_name)
S
SunAhong1993 已提交
3549

S
SunAhong1993 已提交
3550 3551 3552 3553 3554
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
S
SunAhong1993 已提交
3555 3556 3557
            bias_shape = mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype(
                "float32")
S
SunAhong1993 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.LSTM",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587
def aten_lt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %80 : bool = aten::lt(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3588
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3589 3590 3591 3592 3593 3594 3595
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
3596 3597
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3598 3599
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
3600 3601
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3602 3603 3604 3605
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3606 3607 3608 3609 3610
    graph.add_layer(
        "prim.lt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3611 3612 3613 3614
    return current_inputs, current_outputs


def aten_masked_fill(mapper, graph, node):
W
wjj19950828 已提交
3615 3616
    """
    TorchScript Code:
S
SunAhong1993 已提交
3617
        %input.4 : Tensor = aten::masked_fill(%scores.2, %mask.2, %46)
W
wjj19950828 已提交
3618 3619 3620 3621 3622
        Parameter meaning:
        %input.4 (Tensor): Output Tensor
        %scores.2 (Tensor): Input Tensor
        %mask.2 (Tensor): bool mask
        %46 (-): fill value
S
SunAhong1993 已提交
3623
    """
S
SunAhong1993 已提交
3624
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3625 3626 3627
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    inputs_name, inputs_node = mapper._get_inputs_name(node)
W
wjj19950828 已提交
3628 3629 3630
    layer_full_inputs = {}
    layer_full_attrs = {}
    layer_where_inputs = {}
S
SunAhong1993 已提交
3631 3632
    current_inputs = []
    current_outputs = [output_name]
W
wjj19950828 已提交
3633
    # input list
S
SunAhong1993 已提交
3634 3635
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3636
    current_inputs.append(inputs_name[0])
W
wjj19950828 已提交
3637
    # paddle.full
S
SunAhong1993 已提交
3638
    graph.add_layer(
W
wjj19950828 已提交
3639
        "prim.shape",
S
SunAhong1993 已提交
3640
        inputs={"input": inputs_name[0]},
W
wjj19950828 已提交
3641
        outputs=[inputs_name[0] + "_shape"],
S
SunAhong1993 已提交
3642
        scope_name=scope_name)
W
wjj19950828 已提交
3643 3644 3645 3646 3647 3648 3649 3650 3651
    layer_full_inputs["shape"] = inputs_name[0] + "_shape"
    if inputs_name[2] in mapper.attrs:
        layer_full_attrs["fill_value"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_full_inputs["fill_value"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

S
SunAhong1993 已提交
3652
    graph.add_layer(
W
wjj19950828 已提交
3653 3654 3655
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"],
S
SunAhong1993 已提交
3656
        scope_name=scope_name)
W
wjj19950828 已提交
3657
    layer_full_attrs["dtype"] = inputs_name[0] + "_type"
S
SunAhong1993 已提交
3658
    graph.add_layer(
W
wjj19950828 已提交
3659 3660 3661
        "paddle.full",
        inputs=layer_full_inputs,
        outputs=[inputs_name[0] + "_full"],
S
SunAhong1993 已提交
3662
        scope_name=scope_name,
W
wjj19950828 已提交
3663 3664 3665 3666 3667 3668 3669 3670
        **layer_full_attrs)
    # paddle.where
    layer_where_inputs["condition"] = inputs_name[1]
    layer_where_inputs["x"] = inputs_name[0] + "_full"
    layer_where_inputs["y"] = inputs_name[0]
    graph.add_layer(
        "paddle.where",
        inputs=layer_where_inputs,
S
SunAhong1993 已提交
3671 3672
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
    return current_inputs, current_outputs


def aten_max(mapper, graph, node):
    """ 构造获取最大值的PaddleLayer。
    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::max(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
3685
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3696
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3697 3698 3699
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3700
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3701 3702 3703 3704
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
3705 3706 3707 3708
            "paddle.maximum",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3709 3710 3711 3712 3713
    else:
        pass
    return current_inputs, current_outputs


W
WJJ1995 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
def aten_max_pool1d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %input.8 : Tensor = aten::max_pool1d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.11
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%23
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
    # 处理输入3,即%21
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]

    graph.add_layer(
        "paddle.nn.MaxPool1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
def aten_max_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %input.8 : Tensor = aten::max_pool2d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
S
SunAhong1993 已提交
3773 3774
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
3775
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3776
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3777 3778
    layer_inputs = {}
    layer_attrs = {}
S
SunAhong1993 已提交
3779
    layer_attrs_tmp = {}
S
SunAhong1993 已提交
3780 3781 3782 3783
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.11
S
SunAhong1993 已提交
3784 3785
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3786 3787 3788 3789
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
S
SunAhong1993 已提交
3790 3791
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
    layer_attrs_tmp["pool_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3792
    # 处理输入2,即%23
S
SunAhong1993 已提交
3793 3794
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
    layer_attrs_tmp["pool_stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3795
    # 处理输入3,即%21
S
SunAhong1993 已提交
3796 3797
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
    layer_attrs_tmp["pool_padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
3798 3799 3800 3801
    # 处理输入4,即%22
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
3802
        outputs=[inputs_name[4] + "_assert"],
S
SunAhong1993 已提交
3803
        scope_name=scope_name + "_assert",
S
SunAhong1993 已提交
3804 3805 3806 3807 3808
        type="eq",
        key=mapper.attrs[inputs_name[4]],
        value=[1, [1, 1]])
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
3809
    layer_attrs_tmp["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
3810

S
SunAhong1993 已提交
3811 3812 3813 3814 3815 3816
    graph.add_layer(
        "paddle.nn.MaxPool2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
    return current_inputs, current_outputs


def aten_matmul(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %output.2 : Tensor = aten::matmul(%101, %111)
        参数含义:
        %output.2 (Tensor): 输出,相乘后的结果。
        %101 (Tensor): 矩阵1。
        %102 (Tensor): 矩阵2。
    """
S
SunAhong1993 已提交
3829
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3830 3831 3832 3833 3834 3835 3836
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%101
S
SunAhong1993 已提交
3837 3838
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3839 3840
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%102
S
SunAhong1993 已提交
3841 3842
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3843 3844 3845 3846
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3847 3848 3849 3850 3851
    graph.add_layer(
        "paddle.matmul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
    return current_inputs, current_outputs


def aten_min(mapper, graph, node):
    """ 构造获取最小值的PaddleLayer。
    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::min(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
3864
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3875
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3876 3877 3878
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3879
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3880 3881 3882 3883
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
3884 3885 3886 3887
            "paddle.minimum",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
    else:
        pass
    return current_inputs, current_outputs


def aten_mean(mapper, graph, node):
    """ 构造求均值的PaddleLayer。
    TorchScript示例:
        %x.28 : Tensor = aten::mean(%result.1, %4967, %3, %2)
        参数含义:
        %x.28 (Tensor): 输出,求均值后的结果。
        %result.1 (Tensor): 输入,需要求均值的Tensor。
        %4967 (int/list): 求平均值运算的维度。
        %3 (bool): 是否在输出Tensor中保留减小的维度。
        %2 (Tensor): 结果Tensor。
    """
S
SunAhong1993 已提交
3904
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3905 3906 3907 3908 3909 3910 3911 3912
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.1
S
SunAhong1993 已提交
3913 3914
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3915
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3916 3917 3918
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4967
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3919
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3920 3921
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3922 3923
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
3924 3925 3926
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%3
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3927
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3928 3929
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
3930 3931
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
S
SunAhong1993 已提交
3932 3933 3934
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
3935
        "paddle.mean",
S
SunAhong1993 已提交
3936 3937
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3938
        scope_name=scope_name,
S
SunAhong1993 已提交
3939 3940
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958


def aten_meshgrid(mapper, graph, node):
    """ 构造对每个张量做扩充操作的PaddleLayer。
    TorchScript示例:
        %out.39 : int = aten::mshgrid(%input.1)
        参数含义:
        %out.39 (Tensor): 输出,扩充后的结果。
        %input.1 (Tensor): 输入。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
3959 3960
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3961 3962 3963 3964 3965
    layer_inputs["args"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = layer_inputs.values()
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3966 3967 3968 3969 3970
    graph.add_layer(
        "paddle.meshgrid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3971
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982


def aten_mul(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。
    TorchScript示例:
        %size_prods.39 : int = aten::mul(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
S
SunAhong1993 已提交
3983
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3984 3985 3986 3987 3988 3989 3990
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
S
SunAhong1993 已提交
3991 3992
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3993 3994
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
S
SunAhong1993 已提交
3995 3996
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3997 3998 3999 4000 4001
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

S
SunAhong1993 已提交
4002 4003 4004 4005 4006
    graph.add_layer(
        "prim.mul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
    return current_inputs, current_outputs


def aten_ne(mapper, graph, node):
    """ 构造判断数值是否不相等的PaddleLayer。
    TorchScript示例:
        %134 : bool = aten::ne(%133, %132)
        参数含义:
        %134 (bool): 对比后结果。
        %133 (-): 需对比的输入1。
        %132 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
4019
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4020 4021 4022 4023 4024 4025 4026
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
4027 4028
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4029 4030
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
4031 4032
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4033 4034 4035 4036
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4037 4038 4039 4040 4041
    graph.add_layer(
        "prim.ne",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
    return current_inputs, current_outputs


def aten_neg(mapper, graph, node):
    """ 构造对数值取负的PaddleLayer。
    TorchScript示例:
        %909 : int = aten::neg(%908)
        参数含义:
        %909 (int): 取负后结果。
        %908 (int): 需取负的输入。
    """
S
SunAhong1993 已提交
4053
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4054 4055 4056 4057 4058 4059 4060
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
4061 4062
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4063 4064 4065 4066
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4067 4068 4069 4070 4071
    graph.add_layer(
        "prim.neg",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4072 4073 4074
    return current_inputs, current_outputs


W
WJJ1995 已提交
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
def aten_frobenius_norm(mapper, graph, node):
    """ 构造计算范数的PaddleLayer。
    TorchScript示例:
        %25 = aten::frobenius_norm(%input, %58, %24)
        参数含义:
        %25 (Tensor): 取范数后的结果。
        %input (Tensor): 输入。
        %58 (int): 使用范数计算的轴。
        %24 (bool): 是否在输出的Tensor中保留和输入一样的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    layer_attrs["p"] = 2
    # 处理输入1,即%58
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%24
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.norm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
def aten_norm(mapper, graph, node):
    """ 构造计算范数的PaddleLayer。
    TorchScript示例:
        %25 = aten::norm(%input, %21, %58, %24)
        参数含义:
        %25 (Tensor): 取范数后的结果。
        %input (Tensor): 输入。
        %21 (int): 范数的种类。
        %58 (int): 使用范数计算的轴。
        %24 (bool): 是否在输出的Tensor中保留和输入一样的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4145 4146
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%21
    if inputs_name[1] in mapper.attrs:
        layer_attrs["p"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["p"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%58
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 处理输入3,即%24
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[3]
        current_inputs.append(inputs_name[3])

    graph.add_layer(
        "paddle.norm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4183 4184 4185 4186 4187 4188 4189 4190
def aten___not__(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。
    TorchScript示例:
        %4498 : bool = aten::__not__(%aux_defined.2)
        参数含义:
        %4498 (bool): 取负后结果。
        %aux_defined.2 (bool): 需取负的输入。
    """
S
SunAhong1993 已提交
4191
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4192 4193 4194 4195 4196 4197 4198
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
4199 4200
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4201 4202 4203 4204
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4205 4206 4207 4208 4209
    graph.add_layer(
        "prim.not",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
    return current_inputs, current_outputs


def aten_ones(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %input.49 : Tensor = aten::ones(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
4225
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
4239
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.ones",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4249
        scope_name=scope_name,
S
SunAhong1993 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
        **layer_attrs)
    return current_inputs, current_outputs


def aten_permute(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。
    TorchScript示例:
        %2385 : Tensor = aten::permute(%cls_confs0.2, %2384)
        参数含义:
        %2385 (Tensor): 重排后的结果。
        %cls_confs0.2 (Tensor): 需要重排的Tensor。
        %2348 (list): 依照此参数进行重排。
    """
S
SunAhong1993 已提交
4263
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4264 4265 4266 4267 4268 4269 4270 4271
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%cls_confs0.2
S
SunAhong1993 已提交
4272 4273
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4274 4275 4276 4277 4278 4279 4280 4281
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2348
    if inputs_name[1] in mapper.attrs:
        layer_attrs["perm"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4282
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4283 4284 4285 4286
        layer_inputs["perm"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
4287
        "paddle.transpose",
S
SunAhong1993 已提交
4288 4289
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4290
        scope_name=scope_name,
S
SunAhong1993 已提交
4291 4292 4293 4294
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
def aten_pixel_shuffle(mapper, graph, node):
    """ 构造以像素的方式重排的PaddleLayer。
    TorchScript示例:
        %x.6 : aten::pixel_shuffle(%input.101, %726)
        参数含义:
        %x.6 (Tensor): 输出,重排后的Tensor。
        %input.101 (Tensor): 需要重排的Tensor。
        %726 (int): 增大空间分辨率的增大因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.101
S
SunAhong1993 已提交
4313 4314
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%726
    layer_attrs["upscale_factor"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.functional.pixel_shuffle",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
4328

S
SunAhong1993 已提交
4329 4330 4331 4332 4333 4334 4335 4336
def aten_pow(mapper, graph, node):
    """ 构造指数激活的PaddleLayer。
    TorchScript示例:
        %x.6 : Tensor = aten::pow(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,指数激活后的Tensor。
        %4700 (Tensor): 需要指数激活的Tensor。
    """
S
SunAhong1993 已提交
4337
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4338 4339 4340 4341 4342 4343 4344 4345
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
4346 4347
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4348 4349 4350 4351 4352
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
4353
        layer_attrs["y"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
4354 4355
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4356 4357
                            current_outputs, scope_name)
        layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
4358 4359 4360
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
4361
        "paddle.pow",
S
SunAhong1993 已提交
4362 4363
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4364
        scope_name=scope_name,
S
SunAhong1993 已提交
4365 4366 4367 4368
        **layer_attrs)
    return current_inputs, current_outputs


4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
def aten_prelu(mapper, graph, node):
    """ 构造prelu激活的PaddleLayer。
    TorchScript示例:
        %result.3 : aten::prelu(%input.150, %999)
        参数含义:
        %result.3 (Tensor): 输出,prelu后的结果。
        %input.150 (Tensor): 需要prelu的Tensor。
        %999 (Tnsor): 权重。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.150
S
SunAhong1993 已提交
4387 4388
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
4389 4390 4391 4392 4393 4394 4395 4396
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%999
    weight = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + "._weight"] = weight
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4397 4398 4399 4400
        "paddle.nn.PReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
4401 4402 4403 4404
        num_parameters=weight.shape[0])
    return current_inputs, current_outputs


W
wjj19950828 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
def aten_real(mapper, graph, node):
    """
    TorchScript示例:
        %n0.3 : Tensor = aten::real(%n.3)
        参数含义:
        %n0.3 (Tensor): Return Real Tensor。
        %n.3 (Tensor): Input Complex Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.real",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
def aten_reflection_pad1d(mapper, graph, node):
    """ 构造1维映射填充的PaddleLayer。
    TorchScript示例:
        %6 = aten::reflection_pad1d(%input, %7)
        参数含义:
        %6 (Tensor): 输出,填充后的Tensor。
        %input (Tensor): 需要填充的Tensor。
        %7 (list|Tensor): 填充大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4454 4455
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%7
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        ipt_node = inputs_node[1]
        while ipt_node.kind() != "prim::GetAttr":
            inputs_name, inputs_node = mapper._get_inputs_name(ipt_node)
            ipt_node = inputs_node[0]
        layer_attrs["padding"] = list(mapper.pytorch_params[inputs_name[0]])
    layer_attrs["mode"] = string("reflect")
S
SunAhong1993 已提交
4471

S
add gru  
SunAhong1993 已提交
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
    graph.add_layer(
        "paddle.nn.Pad1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_reflection_pad2d(mapper, graph, node):
    """ 构造2维映射填充的PaddleLayer。
    TorchScript示例:
        %6 = aten::reflection_pad2d(%input, %7)
        参数含义:
        %6 (Tensor): 输出,填充后的Tensor。
        %input (Tensor): 需要填充的Tensor。
        %7 (list|Tensor): 填充大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4500 4501
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%7
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        ipt_node = inputs_node[1]
        while ipt_node.kind() != "prim::GetAttr":
            inputs_name, inputs_node = mapper._get_inputs_name(ipt_node)
            ipt_node = inputs_node[0]
        layer_attrs["padding"] = list(mapper.pytorch_params[inputs_name[0]])
    layer_attrs["mode"] = string("reflect")
S
SunAhong1993 已提交
4517

S
add gru  
SunAhong1993 已提交
4518 4519 4520 4521 4522 4523 4524 4525 4526
    graph.add_layer(
        "paddle.nn.Pad2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4527 4528 4529 4530 4531 4532 4533 4534 4535
def aten_relu(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4536 4537
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
S
SunAhong1993 已提交
4538
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4539
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4540 4541 4542 4543 4544
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4545 4546
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4547 4548 4549 4550 4551
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4552 4553 4554 4555
        "paddle.nn.ReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
    return current_inputs, current_outputs


def aten_relu6(mapper, graph, node):
    """ 构造ReLU6激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu6(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU6后的结果。
        %result.5 (Tensor): 需要ReLU6的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4568 4569
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu6", mapper.nn_name2id)
S
SunAhong1993 已提交
4570
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4571
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4572 4573 4574 4575 4576
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4577 4578
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4579 4580 4581 4582 4583
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4584 4585 4586 4587
        "paddle.nn.ReLU6",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4588 4589 4590
    return current_inputs, current_outputs


4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
def aten_remainder(mapper, graph, node):
    """ 构造取余数的PaddleLayer。
    TorchScript示例:
        %701 : Tensor = aten::remainder(%661, %139)
        参数含义:
        %701 (Tensor): 输出,取余结果的Tensor。
        %661 (Tensor): 需要取余的Tensor。
        %139 (Tensor): 除数Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%661
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%139
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
W
WJJ1995 已提交
4617

4618 4619 4620 4621 4622 4623 4624 4625
    graph.add_layer(
        "prim.remainder",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4626 4627 4628
def aten_repeat(mapper, graph, node):
    """ 构造根据参数对输入各维度进行复制的PaddleLayer。
    TorchScript示例:
4629
        %701 : Tensor = aten::repeat(%699, %700)
S
SunAhong1993 已提交
4630 4631 4632 4633 4634
        参数含义:
        %701 (Tensor): 输出,复制后的Tensor。
        %699 (Tensor): 需要复制的Tensor。
        %700 (list): 指定每个维度复制的次数。
    """
S
SunAhong1993 已提交
4635
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4636 4637 4638 4639 4640 4641 4642 4643
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%699
S
SunAhong1993 已提交
4644 4645
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4646 4647 4648 4649 4650 4651 4652 4653
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%700
    if inputs_name[1] in mapper.attrs:
        layer_attrs["repeat_times"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4654
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4655 4656 4657 4658 4659 4660 4661
        layer_inputs["repeat_times"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.tile",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4662
        scope_name=scope_name,
S
SunAhong1993 已提交
4663 4664 4665 4666
        **layer_attrs)
    return current_inputs, current_outputs


W
WJJ1995 已提交
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
def aten_repeat_interleave(mapper, graph, node):
    """ 构造根据参数对输入各维度进行复制的PaddleLayer。
    TorchScript示例:
        %701 : Tensor = aten::repeat(%699, %700, %702)
        参数含义:
        %701 (Tensor): 输出,复制后的Tensor。
        %699 (Tensor): 需要复制的Tensor。
        %700 (int | Tensor): 指定每个维度复制的次数。
        %702 (int): 指定在哪个轴上进行复制。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%699
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%700
    if inputs_name[1] in mapper.attrs:
        layer_attrs["repeat_times"] = [int(mapper.attrs[inputs_name[1]])]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["repeat_times"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.tile",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)

    layer_attrs_reshape = {}
    layer_attrs_reshape["shape"] = [0, int(mapper.attrs[inputs_name[1]]), -1]
    graph.add_layer(
        "paddle.reshape",
        inputs={"x": layer_outputs[0]},
        outputs=[layer_outputs[0] + "_reshape"],
        scope_name=scope_name,
        **layer_attrs_reshape)

    layer_attrs_transpose = {}
    layer_attrs_transpose["perm"] = [0, 2, 1]
    graph.add_layer(
        "paddle.transpose",
        inputs={"x": layer_outputs[0] + "_reshape"},
        outputs=[layer_outputs[0] + "_transpose"],
        scope_name=scope_name,
        **layer_attrs_transpose)

    layer_attrs_reshape = {}
    layer_attrs_reshape["shape"] = [0, -1]
    graph.add_layer(
        "paddle.reshape",
        inputs={"x": layer_outputs[0] + "_transpose"},
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs_reshape)

    return current_inputs, current_outputs


W
WJJ1995 已提交
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
def aten_replication_pad1d(mapper, graph, node):
    """
    TorchScript Code:
        %58 : Tensor = aten::replication_pad1d(%input.1, %152)
        Parameter meaning:
        %58 (Tensor): Output Tensor
        %input.1 (Tensor): Input Tensor
        %%152 (list): Padding size
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # output list
    current_outputs = [output_name]
    # input list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    layer_attrs["mode"] = string("replicate")
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Pad1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)

    return current_inputs, current_outputs


S
SunAhong1993 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781
def aten_reshape(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。
    TorchScript示例:
        %x.6 : Tensor = aten::reshape(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,reshape后的Tensor。
        %4700 (Tensor): 需要reshape的Tensor。
        %4703 (list): 形状大小组成的list。
    """
S
SunAhong1993 已提交
4782
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4783 4784 4785 4786 4787 4788 4789 4790
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
4791 4792
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4793 4794 4795 4796 4797 4798 4799 4800
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4801
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4802 4803
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
4804

S
SunAhong1993 已提交
4805
    graph.add_layer(
S
SunAhong1993 已提交
4806
        "paddle.reshape",
S
SunAhong1993 已提交
4807 4808
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4809
        scope_name=scope_name,
S
SunAhong1993 已提交
4810 4811 4812 4813
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
def aten_roll(mapper, graph, node):
    """ 构造循环滚动的PaddleLayer。
    TorchScript示例:
        %x.87 : Float = aten::roll(%x.86, %1862, %1863)
        参数含义:
        %x.87 (Tensor): 输出Tensor。
        %x.86 (Tensor): 输入Tensor。
        %1862 (int/list/tuple): 滚动位移。
        %1863 (int/list/tuple): 滚动轴。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.86
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1862
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shifts"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shifts"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%1863
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.roll",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
def aten_rsub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer,计算公式为:out = y - alpha * x。
    TorchScript示例:
        %31 : Tensor = aten::rsub(%30, %13, %7)
        参数含义:
        %31 (Tensor): 相减结果。
        %30 (Tensor): 输入Tensor x。
        %13 (int/float): 输入数值 y。
        %7 (int/float): alpha。
    """
S
SunAhong1993 已提交
4874
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4875 4876 4877 4878 4879 4880 4881
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%30
S
SunAhong1993 已提交
4882 4883
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4884 4885
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%13
S
SunAhong1993 已提交
4886 4887
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4888 4889
    layer_inputs["y"] = inputs_name[1]
    # 处理输入2,即%7
S
SunAhong1993 已提交
4890 4891
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4892 4893 4894 4895
    layer_inputs["alpha"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4896 4897 4898 4899 4900
    graph.add_layer(
        "prim.rsub",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4901 4902 4903
    return current_inputs, current_outputs


W
wjj19950828 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
def aten_rsqrt(mapper, graph, node):
    """
    TorchScript Code:
        %n0.3 : Tensor = aten::rsqrt(%n.3)
        Parameter meaning:
        %n0.3 (Tensor): output tensor
        %n.3 (Tensor): input tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]

    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.rsqrt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4934 4935 4936 4937 4938 4939 4940 4941 4942
def aten_ScalarImplicit(mapper, graph, node):
    """ 构造获取scalar的PaddleLayer。
    TorchScript示例:
        %89 : Scalar = aten::ScalarImplicit(%end.1)
        参数含义:
        %89 (Scalar): 输出,得到的Scalar。
        %end.1 (-): 组要转换的数据。
    【注意】由于Paddle无Scalar,所以最后转换为Tensor。
    """
S
SunAhong1993 已提交
4943
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4944 4945 4946 4947 4948 4949 4950
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
4951 4952
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4953 4954 4955 4956 4957 4958
    layer_inputs["input"] = inputs_name[0]
    input_type = list(node.inputs())[0].type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if str(input_type) == "Tensor":
        graph.add_layer(
S
SunAhong1993 已提交
4959 4960 4961 4962
            "prim.equal",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
    else:
        raise Exception(
            "The input type {} of aten::ScalarImplicit is not implemented yet!"
        ).format(input_type)
    return current_inputs, current_outputs


def aten_select(mapper, graph, node):
    """ 构造选取特定维度Variable的PaddleLayer。
    TorchScript示例:
        %19 : Tensor = aten::select(%18, %8, %7)
        参数含义:
        %19 (Tensor): 输出,选取的Tensor。
        %18 (Tensor): 需要选取的Tensor。
        %8 (int): select的维度。
        %7 (int): select的第n个向量。
    """
S
SunAhong1993 已提交
4980
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4981 4982 4983 4984 4985 4986 4987 4988
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%18
S
SunAhong1993 已提交
4989 4990
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4991 4992 4993 4994
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%8
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%75
S
SunAhong1993 已提交
4995 4996
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4997 4998 4999 5000 5001 5002 5003
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.select",
        inputs=layer_inputs,
5004
        outputs=layer_outputs,
S
SunAhong1993 已提交
5005
        scope_name=scope_name,
S
SunAhong1993 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
        **layer_attrs)
    return current_inputs, current_outputs


def aten__set_item(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。
    TorchScript示例:
        = aten::_set_item(%features.1, %out_name.1, %x.3)
        参数含义:
        %features.1 (list): dict。
        %out_name.1 (-): dict的key。
        %x.3 (-): dict的value。
    """
S
SunAhong1993 已提交
5019
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5020 5021 5022 5023 5024
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = []
    # 处理输入0,即%features.1
S
SunAhong1993 已提交
5025 5026
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5027 5028
    layer_inputs["dict"] = inputs_name[0]
    # 处理输入1,即%out_name.1
S
SunAhong1993 已提交
5029 5030
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5031 5032
    layer_inputs["key"] = inputs_name[1]
    # 处理输入2,即%x.3
S
SunAhong1993 已提交
5033 5034
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5035 5036 5037 5038
    layer_inputs["value"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5039 5040
    graph.add_layer(
        "prim.set_item", inputs=layer_inputs, outputs=[], scope_name=scope_name)
S
SunAhong1993 已提交
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
    return current_inputs, current_outputs


def aten_sigmoid(mapper, graph, node):
    """ 构造sigmoid激活的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::sigmoid(%54)
        参数含义:
        %55 (Tensor): 输出,sigmoid后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
5052 5053
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("sigmoid", mapper.nn_name2id)
S
SunAhong1993 已提交
5054
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5055
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5056 5057 5058 5059 5060
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%54
S
SunAhong1993 已提交
5061 5062
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5063 5064 5065 5066 5067
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5068 5069 5070 5071
        "paddle.nn.Sigmoid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5072 5073 5074
    return current_inputs, current_outputs


5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
def aten_silu(mapper, graph, node):
    """ 构造Silu激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::silu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,Silu后的结果。
        %input.5 (Tensor): 需要Silu的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("silu", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Silu",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5107 5108 5109 5110 5111 5112 5113 5114
def aten_sin(mapper, graph, node):
    """ 构造数学计算sin的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::sin(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,sin之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
5115
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5116 5117 5118 5119 5120 5121 5122
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
5123 5124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5125 5126 5127 5128
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5129 5130 5131 5132 5133
    graph.add_layer(
        "paddle.sin",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
    return current_inputs, current_outputs


def aten_size(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。
    TorchScript示例:
        %73 : int[] = aten::size(%x.12, %10)
        参数含义:
        %73 (list): 输出,shape的list。
        %x.12 (Tensor): 需要获取shape的Tensor。
        %10 (int): 非必须,代表维度。
    """
S
SunAhong1993 已提交
5146
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5147 5148 5149 5150 5151 5152 5153 5154
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
5155 5156
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5157 5158 5159 5160 5161 5162 5163 5164 5165
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if len(inputs_name) > 1:
        # 处理输入1,即%12
        if inputs_name[1] in mapper.attrs:
            layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5166
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5167 5168 5169 5170 5171 5172
            layer_inputs["dim"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.shape_dim",
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
5173
            scope_name=scope_name,
S
SunAhong1993 已提交
5174 5175 5176 5177
            **layer_attrs)
        return current_inputs, current_outputs

    graph.add_layer(
S
SunAhong1993 已提交
5178 5179 5180 5181
        "prim.shape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
    return current_inputs, current_outputs


def aten_slice(mapper, graph, node):
    """ 构造切分list或Variable的PaddleLayer。
    TorchScript示例:
        %83 : int[] = aten::slice(%73, %_81, %82, %75, %77)
        参数含义:
        %83 (list/Tensor): 输出,切分后的list。
        %73 (list/Tensor): 需要切分的list。
        %_81 (int): 切分的维度,不一定存在。
        %82 (int): 切分的开始索引。
        %75 (int): 切分的结束索引。
        %77 (int): 切分的步长。
    """
S
SunAhong1993 已提交
5197
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5198 5199 5200 5201 5202 5203 5204 5205 5206
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    if len(inputs_name) == 5:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
5207 5208
                            current_outputs, scope_name)
        layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
5209 5210 5211 5212 5213 5214 5215 5216 5217

        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        # 处理输入1,即%_81
        if inputs_name[1] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[1] + "_list"],
S
SunAhong1993 已提交
5218
                scope_name=scope_name,
S
SunAhong1993 已提交
5219 5220 5221
                input0=mapper.attrs[inputs_name[1]])
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5222
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5223 5224 5225
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[1]},
S
SunAhong1993 已提交
5226 5227
                outputs=[inputs_name[1] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
            current_inputs.append(inputs_name[1])
        layer_inputs["axes"] = inputs_name[1] + "_list"
        current_inputs.append(inputs_name[1] + "_list")
        current_outputs.append(inputs_name[1] + "_list")
        # 处理输入2,即%82
        if inputs_name[2] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[2] + "_list"],
S
SunAhong1993 已提交
5238
                scope_name=scope_name,
S
SunAhong1993 已提交
5239 5240 5241
                input0=mapper.attrs[inputs_name[2]])
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
5242
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5243 5244 5245
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[2]},
S
SunAhong1993 已提交
5246 5247
                outputs=[inputs_name[2] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
            current_inputs.append(inputs_name[2])
        layer_inputs["starts"] = inputs_name[2] + "_list"
        current_inputs.append(inputs_name[2] + "_list")
        current_outputs.append(inputs_name[2] + "_list")
        # 处理输入3,即%85
        if inputs_name[3] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[3] + "_list"],
S
SunAhong1993 已提交
5258
                scope_name=scope_name,
S
SunAhong1993 已提交
5259 5260 5261
                input0=mapper.attrs[inputs_name[3]])
        else:
            mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
5262
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5263 5264 5265
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[3]},
S
SunAhong1993 已提交
5266 5267
                outputs=[inputs_name[3] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
            current_inputs.append(inputs_name[3])
        layer_inputs["ends"] = inputs_name[3] + "_list"
        current_inputs.append(inputs_name[3] + "_list")
        current_outputs.append(inputs_name[3] + "_list")
        # 处理输入4,即%77
        if inputs_name[4] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[4] + "_list"],
S
SunAhong1993 已提交
5278
                scope_name=scope_name,
S
SunAhong1993 已提交
5279 5280 5281
                input0=mapper.attrs[inputs_name[4]])
        else:
            mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
5282
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5283 5284 5285
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[4]},
S
SunAhong1993 已提交
5286 5287
                outputs=[inputs_name[4] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5288 5289 5290 5291 5292 5293
            current_inputs.append(inputs_name[4])
        layer_inputs["strides"] = inputs_name[4] + "_list"
        current_inputs.append(inputs_name[4] + "_list")
        current_outputs.append(inputs_name[4] + "_list")

        graph.add_layer(
S
SunAhong1993 已提交
5294
            "paddle.strided_slice",
S
SunAhong1993 已提交
5295
            inputs=layer_inputs,
S
SunAhong1993 已提交
5296 5297
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
5298 5299 5300
    else:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
5301
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5302 5303 5304
        layer_inputs["input"] = inputs_name[0]
        # 处理输入1,即%82
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5305
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5306 5307 5308
        layer_inputs["start"] = inputs_name[1]
        # 处理输入2,即%75
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
5309
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5310 5311 5312
        layer_inputs["end"] = inputs_name[2]
        # 处理输入3,即%77
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
5313
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5314 5315 5316 5317 5318
        layer_inputs["step"] = inputs_name[3]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())

        graph.add_layer(
S
SunAhong1993 已提交
5319 5320 5321 5322
            "prim.slice",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
    return current_inputs, current_outputs


def aten_softmax(mapper, graph, node):
    """ 构造softmax激活的PaddleLayer。
    TorchScript示例:
        %input2.1 : Tensor = aten::softmax(%input.5, %80, %72)
        参数含义:
        %input2.1 (Tensor): 激活后结果。
        %input.5 (Tensor): 需要激活的Tensor。
        %80 (int): 指定对输入Tensor进行运算的轴。
        %72 (str): 类型,默认为None。
    """
S
SunAhong1993 已提交
5336 5337
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softmax", mapper.nn_name2id)
S
SunAhong1993 已提交
5338
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5339
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5340 5341 5342 5343 5344 5345
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
5346 5347
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5348 5349 5350 5351 5352 5353 5354 5355 5356
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["axis"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.Softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5357
        scope_name=scope_name,
S
SunAhong1993 已提交
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
        **layer_attrs)
    return current_inputs, current_outputs


def aten_softplus(mapper, graph, node):
    """ 构造softplus激活的PaddleLayer。
    TorchScript示例:
        %54 : Tensor = aten::softplus(%x.31, %30, %29)
        参数含义:
        %54 (Tensor): 激活后结果。
        %x.31 (Tensor): 需要激活的Tensor。
        %30 (int): beta。
        %29 (int): 阈值。
    """
S
SunAhong1993 已提交
5372 5373
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softplus", mapper.nn_name2id)
S
SunAhong1993 已提交
5374
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5375
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5376 5377 5378 5379 5380 5381
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
5382 5383
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["beta"] = mapper.attrs[inputs_name[1]]
    layer_attrs["threshold"] = mapper.attrs[inputs_name[2]]

    graph.add_layer(
        "paddle.nn.Softplus",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5394
        scope_name=scope_name,
S
SunAhong1993 已提交
5395 5396 5397 5398
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
def aten_split_with_sizes(mapper, graph, node):
    """ 构构造split的PaddleLayer。
    TorchScript示例:
        %1450 : Tensor[] = aten::split_with_sizes(%1446, %1750, %41)
        参数含义:
        %1450 (Tensor): 输出,split后的Tensor。
        %1446 (Tensor): 需要获取split的Tensor。
        %1750 (list): 子Tensor的数量列表。
        %41 (int): 需要分割的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1446
S
SunAhong1993 已提交
5418 5419
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1750
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%135
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.split",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5449 5450 5451 5452 5453 5454 5455 5456
def aten_sqrt(mapper, graph, node):
    """ 构构造sqrt的PaddleLayer。
    TorchScript示例:
        %787 : Tensor = aten::sqrt(%786)
        参数含义:
        %787 (Tensor): 输出,取sqrt的Tensor。
        %786 (Tensor): 需要获取sqrt的Tensor。
    """
S
SunAhong1993 已提交
5457
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5458 5459 5460 5461 5462 5463 5464
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
5465 5466
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5467 5468 5469 5470 5471
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5472 5473 5474 5475
        "paddle.sqrt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
    return current_inputs, current_outputs


def aten_squeeze(mapper, graph, node):
    """ 构造删除位数为1的维度的PaddleLayer。
    TorchScript示例:
        %12 : Tensor = aten::squeeze(%start_logits.1, %4)
        参数含义:
        %12 (Tensor): 输出,删除维度后的Tensor。
        %start_logits.1 (Tensor): 需要删除维度的Tensor。
        %4 (int): 维度。
    """
S
SunAhong1993 已提交
5488
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5489 5490 5491 5492 5493 5494 5495 5496
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%start_logits.1
S
SunAhong1993 已提交
5497 5498
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5499 5500 5501 5502 5503 5504 5505 5506
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5507
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5508 5509 5510
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
5511
        "paddle.squeeze",
S
SunAhong1993 已提交
5512 5513
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5514
        scope_name=scope_name,
S
SunAhong1993 已提交
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
        **layer_attrs)
    return current_inputs, current_outputs


def aten_stack(mapper, graph, node):
    """ 构造堆叠Tensor的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::stack(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,堆叠后的结果。
        %i.12 (Tensor): 需要堆叠的Tensor组成的Tensor。
        %7 (int): 堆叠的轴。
    """
S
SunAhong1993 已提交
5528
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5529 5530 5531 5532 5533 5534 5535 5536
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5537 5538
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5539 5540 5541 5542 5543 5544 5545 5546
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5547
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5548 5549 5550 5551 5552 5553
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.stack",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5554
        scope_name=scope_name,
S
SunAhong1993 已提交
5555 5556 5557 5558 5559 5560 5561
        **layer_attrs)
    return current_inputs, current_outputs


def aten_sub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。
    TorchScript示例:
S
SunAhong1993 已提交
5562
        %840 : int = aten::sub(%839, %836, %3)
S
SunAhong1993 已提交
5563 5564 5565 5566
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
S
SunAhong1993 已提交
5567
        %3 (-): alpha。
S
SunAhong1993 已提交
5568
    """
S
SunAhong1993 已提交
5569
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5570 5571 5572
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
5573
    layer_attrs = {}
S
SunAhong1993 已提交
5574 5575 5576 5577
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%839
S
SunAhong1993 已提交
5578 5579
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5580 5581
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%836
S
SunAhong1993 已提交
5582 5583
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5584
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
    # 处理输入2,即%3
    if len(inputs_node) > 2:
        if inputs_name[2] in mapper.attrs:
            layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs, scope_name)
            layer_inputs["alpha"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
    else:
        layer_attrs["alpha"] = 1.0
S
SunAhong1993 已提交
5596 5597 5598
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5599 5600 5601 5602 5603 5604
    graph.add_layer(
        "prim.sub",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
    return current_inputs, current_outputs


def aten_t(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。
    TorchScript示例:
        %840 : int = aten::sub(%839, %836)
        参数含义:
        %109 (Tensor): 输出,转置后的矩阵。
        %102 (Tensor): 需要转置的Tensor。
    """
S
SunAhong1993 已提交
5616
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5617 5618 5619 5620 5621 5622 5623
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
5624 5625
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5626 5627 5628 5629 5630
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5631
        "paddle.transpose",
S
SunAhong1993 已提交
5632 5633
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5634
        scope_name=scope_name,
S
SunAhong1993 已提交
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
        perm=[1, 0])
    return current_inputs, current_outputs


def aten_tanh(mapper, graph, node):
    """ 构造tanh激活的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,tanh后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
5647 5648
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("tanh", mapper.nn_name2id)
S
SunAhong1993 已提交
5649
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5650
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5651 5652 5653 5654 5655
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
5656 5657
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5658 5659 5660 5661 5662
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5663 5664 5665 5666
        "paddle.nn.Tanh",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
    return current_inputs, current_outputs


def aten_split(mapper, graph, node):
    """ 构造分割Tensor的PaddleLayer。
    TorchScript示例:
        %160 : Tensor[] = aten::split(%159, %135, %123)
        参数含义:
        %160 (Tensor): 输出,分割后的矩阵。
        %159 (Tensor): 需要分割的Tensor。
        %135 (int): 分割的数量。
W
WJJ1995 已提交
5678
        %123 (int): 轴。
S
SunAhong1993 已提交
5679
    """
S
SunAhong1993 已提交
5680
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5681 5682 5683 5684 5685 5686 5687 5688
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%159
S
SunAhong1993 已提交
5689 5690
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5691
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
5692
    # 处理输入2,即%723
S
SunAhong1993 已提交
5693 5694
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5695
    layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
5696
    # 处理输入1,即%135
S
SunAhong1993 已提交
5697 5698
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5699 5700 5701 5702
    input_type = list(node.inputs())[0].type()
    if "[]" in str(input_type):
        layer_inputs["num_or_sections"] = inputs_name[1]
    else:
W
WJJ1995 已提交
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
        index = mapper.attrs[inputs_name[2]]
        graph.add_layer(
            "prim.shape",
            inputs={"input": inputs_name[0]},
            outputs=[inputs_name[0] + '_shape'],
            scope_name=scope_name)
        graph.add_layer(
            "prim.getitem",
            inputs={"list": inputs_name[0] + '_shape'},
            outputs=[inputs_name[0] + '_dim'],
            scope_name=scope_name,
            index=index)
        graph.add_layer(
            "prim.floordiv",
            inputs={'x': inputs_name[0] + '_dim',
                    'y': inputs_name[1]},
            outputs=[inputs_name[1] + '_div'],
            scope_name=scope_name)
        layer_attrs["num_or_sections"] = inputs_name[1] + '_div'
S
SunAhong1993 已提交
5722 5723 5724 5725
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5726
        "paddle.split",
S
SunAhong1993 已提交
5727 5728
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5729
        scope_name=scope_name,
S
SunAhong1993 已提交
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
        **layer_attrs)
    return current_inputs, current_outputs


def aten_transpose(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。
    TorchScript示例:
        %715 : Tensor = aten::transpose(%x.21, %704, %705)
        参数含义:
        %715 (Tensor): 输出,转置后的矩阵。
        %x.21 (Tensor): 需要转置的Tensor。
        %704 (int): 转置的维度1。
        %705 (int): 转置的维度2。
    """
S
SunAhong1993 已提交
5744
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5745 5746 5747 5748 5749 5750 5751
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.21
S
SunAhong1993 已提交
5752 5753
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5754 5755
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%704
S
SunAhong1993 已提交
5756 5757
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5758 5759
    dim1 = inputs_name[1]
    # 处理输入2,即%705
S
SunAhong1993 已提交
5760 5761
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5762 5763
    dim2 = inputs_name[2]
    # 获取当前节点输入的list
S
SunAhong1993 已提交
5764
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
5765
    graph.add_layer(
S
SunAhong1993 已提交
5766
        "prim.shape",
S
SunAhong1993 已提交
5767
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
5768 5769
        outputs=[output_name + "_shape"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5770 5771 5772 5773
    current_outputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len",
        inputs={"input": output_name + "_shape"},
S
SunAhong1993 已提交
5774 5775
        outputs=[output_name + "_len"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5776 5777 5778 5779 5780
    current_outputs.append(output_name + "_len")
    current_inputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len2list",
        inputs={"len": output_name + "_len"},
S
SunAhong1993 已提交
5781 5782
        outputs=[output_name + "_list"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5783 5784 5785 5786 5787 5788
    current_outputs.append(output_name + "_list")
    current_inputs.append(output_name + "_len")
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim1},
S
SunAhong1993 已提交
5789 5790
        outputs=[dim1 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5791 5792 5793 5794
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim2},
S
SunAhong1993 已提交
5795 5796
        outputs=[dim2 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5797 5798 5799 5800 5801 5802 5803
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim1 + "_new",
            "item": dim2 + "_new"
        },
S
SunAhong1993 已提交
5804 5805
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
5806 5807 5808 5809 5810 5811 5812
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim2 + "_new",
            "item": dim1 + "_new"
        },
S
SunAhong1993 已提交
5813 5814
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
5815
    graph.add_layer(
S
SunAhong1993 已提交
5816
        "paddle.transpose",
S
SunAhong1993 已提交
5817 5818
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5819
        scope_name=scope_name,
S
SunAhong1993 已提交
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
        perm=output_name + "_list")
    return current_inputs, current_outputs


def aten_to(mapper, graph, node):
    """ 构造类型转换的PaddleLayer。
    TorchScript示例:
        %30 : Tensor = aten::to(%extended_attention_mask.1, %12, %5, %5, %4)
        参数含义:
        %30 (Tensor): 转换后的Tensor。
        %extended_attention_mask.1 (Tensor): 需要转换的Tensor。
        %12 (int): 转换的类型。
    """
S
SunAhong1993 已提交
5833
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5834 5835 5836 5837 5838 5839 5840 5841
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5842 5843
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if len(inputs_name) == 6:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
S
SunAhong1993 已提交
5854
        "paddle.cast",
S
SunAhong1993 已提交
5855 5856
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5857
        scope_name=scope_name,
S
SunAhong1993 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
        **layer_attrs)
    return current_inputs, current_outputs


def aten_type_as(mapper, graph, node):
    """ 构造转换Tensor类型的PaddleLayer。
    TorchScript示例:
        %57 : Tensor = aten::type_as(%56, %mask.1)
        参数含义:
        %57 (Tensor): 输出,改变类型后的Tensor。
        %56 (Tensor): 需要改变类型的Tensor。
        %mask.1 (Tensor): 转换成与该Tensor相一致的类型。
    """
S
SunAhong1993 已提交
5871
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5872 5873 5874 5875 5876 5877 5878
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%56
S
SunAhong1993 已提交
5879 5880
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5881 5882 5883 5884
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
5885 5886
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5887 5888 5889
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
5890 5891
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5892 5893 5894 5895
    layer_inputs["dtype"] = inputs_name[1] + "_type"
    current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
5896 5897 5898 5899
        "paddle.cast",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
    return current_inputs, current_outputs


def aten_unsqueeze(mapper, graph, node):
    """ 构造插入维度的PaddleLayer。
    TorchScript示例:
        %13 : Tensor = aten::unsqueeze(%12, %7)
        参数含义:
        %13 (Tensor): 输出,插入维度后的Tensor。
        %12 (Tensor): 需要插入维度的Tensor。
        %7 (int): 维度。
    """
S
SunAhong1993 已提交
5912
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5913 5914 5915 5916 5917 5918 5919 5920
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5921 5922
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5923 5924 5925 5926 5927 5928 5929 5930
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5931
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5932 5933 5934
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
5935
        "paddle.unsqueeze",
S
SunAhong1993 已提交
5936 5937
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5938
        scope_name=scope_name,
S
SunAhong1993 已提交
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
        **layer_attrs)
    return current_inputs, current_outputs


def aten_upsample_bilinear2d(mapper, graph, node):
    """ 构造使用bilinear上采样的PaddleLayer。
    TorchScript示例:
        %4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
        %4995 (float): 高度的乘数因子。
W
WJJ1995 已提交
5953
        %4996 (float): 宽度的乘数因子。
S
SunAhong1993 已提交
5954
    """
S
SunAhong1993 已提交
5955
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5956 5957 5958 5959 5960 5961 5962 5963
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
5964 5965
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5966 5967 5968 5969 5970 5971 5972 5973
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5974
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5975 5976 5977 5978 5979 5980
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
S
SunAhong1993 已提交
5981
            scope_name=scope_name,
S
SunAhong1993 已提交
5982
            cls="paddle.fluid.Variable")
S
SunAhong1993 已提交
5983
        # TODO(syf): paddle.Variable
S
SunAhong1993 已提交
5984 5985
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
S
SunAhong1993 已提交
5986 5987
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
S
SunAhong1993 已提交
5988
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
5989
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
5990 5991 5992
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
5993 5994
            outputs=[inputs_name[1]],
            scope_name=scope_name)
S
SunAhong1993 已提交
5995
        if_layer.add_block(block)
W
WJJ1995 已提交
5996
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
5997 5998 5999 6000 6001 6002 6003
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
    # 处理输入2,即%5421
    if inputs_name[2] in mapper.attrs:
        layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
6004
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6005 6006
        layer_inputs["align_corners"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
S
fix2  
SunAhong1993 已提交
6007 6008 6009 6010
    if "size" in layer_attrs and layer_attrs["size"] is None:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
6011
    layer_attrs["align_mode"] = 0
C
channingss 已提交
6012
    layer_attrs["mode"] = string("bilinear")
S
SunAhong1993 已提交
6013 6014 6015 6016
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6017
        scope_name=scope_name,
S
SunAhong1993 已提交
6018 6019 6020
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
6021

S
SunAhong1993 已提交
6022 6023 6024 6025 6026 6027 6028 6029
def aten_upsample_nearest2d(mapper, graph, node):
    """ 构造使用nearest上采样的PaddleLayer。
    TorchScript示例:
        %4997 : Tensor = aten::upsample_nearest2d(%x.13, %4963, %5421, %4995)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
W
WJJ1995 已提交
6030
        %5421 (float): 高度的乘数因子。
S
SunAhong1993 已提交
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
        %4995 (float): 宽度的乘数因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
6042 6043
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
            scope_name=scope_name,
            cls="paddle.fluid.Variable")
        # TODO(syf): paddle.Variable
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
6067
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
6068 6069 6070 6071 6072 6073
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1]],
            scope_name=scope_name)
        if_layer.add_block(block)
W
WJJ1995 已提交
6074
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
6075 6076
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
S
fix  
SunAhong1993 已提交
6077
    if "size" in layer_attrs and layer_attrs["size"] is None:
6078
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
fix  
SunAhong1993 已提交
6079
                            current_outputs, scope_name)
6080
        layer_inputs["scale_factor"] = inputs_name[2]
S
SunAhong1993 已提交
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
    layer_attrs["align_mode"] = 0
    layer_attrs["mode"] = string("nearest")
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
6091

S
SunAhong1993 已提交
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
def aten_values(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %5 : Float(1, *, 1024, 2048)[] = aten::values(%1)
        参数含义:
        %5 (list): 输出,由字典获取的values的list。
        %1 (dict): 字典。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
6108 6109
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6110 6111 6112 6113
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
6114 6115 6116 6117 6118
    graph.add_layer(
        "prim.dict2values",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
6119 6120 6121
    return current_inputs, current_outputs


S
SunAhong1993 已提交
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
def aten_view(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。
    TorchScript示例:
        %input.152 : Tensor = aten::view(%x.20, %430)
        参数含义:
        %input.152 (Tensor): 输出,view后的Tensor。
        %x.20 (Tensor): 需要view的Tensor。
        %430 (list): 形状大小组成的list。
    【注意】view 函数只能用于contiguous后的Tensor上,
          也就是只能用于内存中连续存储的Tensor。
          如果对Tensor调用过transpose,permute等操作的话会使该Tensor在内存中变得不再连续,
          此时就不能再调用view函数。因此,需要先使用contiguous来返回一个contiguous copy。
          reshape则不需要依赖目标Tensor是否在内存中是连续的。
    """
S
SunAhong1993 已提交
6136
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6137 6138 6139 6140 6141 6142 6143 6144
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.20
S
SunAhong1993 已提交
6145 6146
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6147 6148 6149 6150 6151 6152 6153 6154
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%430
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
6155
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6156 6157 6158
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
6159
        "paddle.reshape",
S
SunAhong1993 已提交
6160 6161
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6162
        scope_name=scope_name,
S
SunAhong1993 已提交
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
        **layer_attrs)
    return current_inputs, current_outputs


def aten_warn(mapper, graph, node):
    """ 构造warning的PaddleLayer。
    TorchScript示例:
        = aten::warn(%3, %2)
        参数含义:
        %3 (str): warning的提示字符串。
        %2 (int): warning的stacklevel。
    """
S
SunAhong1993 已提交
6175
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6176 6177 6178 6179 6180 6181 6182 6183
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3
S
SunAhong1993 已提交
6184 6185
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6186 6187 6188 6189 6190 6191 6192 6193
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2
    if inputs_name[1] in mapper.attrs:
        layer_attrs["stacklevel"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
6194
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6195 6196 6197 6198 6199 6200 6201
        layer_inputs["stacklevel"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "prim.warnings",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6202
        scope_name=scope_name,
S
SunAhong1993 已提交
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
        **layer_attrs)
    return current_inputs, current_outputs


def aten_where(mapper, graph, node):
    """ 构造返回一个根据输入condition, 选择x或y的元素组成的多维Tensor的PaddleLayer,该节点实现out = x + y。
    TorchScript示例:
        %input.4 : Tensor = aten::where(%209, %w0.2, %210)
        参数含义:
        %input.4 (Tensor): 选择的结果。
        %209 (Tensor): 条件。
        %w0.2 (Tensor): 输入数值 x。
        %210 (Tensor): 输入数值 y。
    """
S
SunAhong1993 已提交
6217
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6218 6219 6220 6221 6222 6223 6224
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%209
S
SunAhong1993 已提交
6225 6226
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6227 6228
    layer_inputs["condition"] = inputs_name[0]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
6229 6230
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6231 6232
    layer_inputs["x"] = inputs_name[1]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
6233 6234
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6235 6236 6237 6238
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
6239 6240 6241 6242 6243
    graph.add_layer(
        "paddle.where",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
    return current_inputs, current_outputs


def aten_zeros(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %input.49 : Tensor = aten::zeros(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
6259
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
6273
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6274 6275 6276 6277 6278 6279 6280 6281 6282
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6283
        scope_name=scope_name,
S
SunAhong1993 已提交
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
        **layer_attrs)
    return current_inputs, current_outputs


def aten_zeros_like(mapper, graph, node):
    """ 构造创建与输入Tensor形状一致的、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %782 : Tensor = aten::zeros_like(%n.2, %655, %670, %662, %671, %672)
        参数含义:
        %782 (Tensor): 输出,全0的Tensor。
        %n.2 (Tensor): 标准Tensor。
        %655 (int): 类型dtype。
        %670 (int): layout。
        %662 (Device): 设备。
        %671 (bool): 是否计算梯度。
        %672 (memory_format): 存储类型。
    """
S
SunAhong1993 已提交
6301
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6302 6303 6304 6305 6306 6307 6308 6309
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.2
S
SunAhong1993 已提交
6310 6311
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%655,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6322
        scope_name=scope_name,
S
SunAhong1993 已提交
6323 6324
        **layer_attrs)
    return current_inputs, current_outputs