subgraphs_union.py 7.2 KB
Newer Older
S
SunAhong1993 已提交
1
# -*- coding:UTF-8 -*-
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import copy
import pandas as pd
from x2paddle.optimizer.code_optimizer.layer_code_generator import rename_layers


def construct_attrs_table(sub_layers_list, node_name2sub_layers):
    """ 构造不同属性的表格。
    """
    def get_node_name(sub_layers):
        for k, v in node_name2sub_layers.items():
            if v == sub_layers:
                node_name = k
                break
        return node_name
    sub_layers = sub_layers_list[0]
    _, _, new_names = rename_layers(sub_layers)
    table = list()
    node_names = list()
    for sub_layers in sub_layers_list:
        attrs = dict()
        node_names.append(get_node_name(sub_layers))
        for i, (layer_id, layer) in enumerate(sub_layers.items()):
            for k, v in layer.attrs.items():
                attrs[new_names[i] + "_{}".format(k)] = v
        table.append(attrs)
    pd_table = pd.DataFrame(table, index=node_names)
    return pd_table

def get_inputs_outputs(pd_graph, layers):
    inputs = list()
    outputs = list()
    cur_outputs = list()
    layer_ids = list(layers.keys())
    for layer_id, layer in layers.items():
        # 获取输出节点名字
        if layer_id not in pd_graph.edges_out:
S
fix  
SunAhong1993 已提交
53
            for index, output_name in enumerate(layer.outputs):
S
SunAhong1993 已提交
54
                if not output_name.startswith("x") or output_name in outputs \
S
fix  
SunAhong1993 已提交
55
                        or layer.kernel == "prim.assert":
S
SunAhong1993 已提交
56
                    continue
S
fix  
SunAhong1993 已提交
57 58 59
                elif layer.kernel == "prim.if" or layer.kernel == "prim.loop":
                        if index != 0:
                            outputs.append(output_name)
S
SunAhong1993 已提交
60 61 62 63 64
                elif output_name not in outputs:
                    outputs.append(output_name)
        else:
            for out_layer_id in pd_graph.edges_out[layer_id]:
                if out_layer_id not in layer_ids:
S
fix  
SunAhong1993 已提交
65
                    for index, output_name in enumerate(layer.outputs):
S
SunAhong1993 已提交
66
                        if not output_name.startswith("x") or output_name in outputs \
S
fix  
SunAhong1993 已提交
67
                                or layer.kernel == "prim.assert":
S
SunAhong1993 已提交
68
                            continue
S
fix  
SunAhong1993 已提交
69 70 71
                        elif layer.kernel == "prim.if" or layer.kernel == "prim.loop":
                            if index != 0:
                                outputs.append(output_name)
S
SunAhong1993 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
                        else:
                            outputs.append(output_name)
        # 获取输入节点名字
        for k, v in layer.inputs.items():
            if v not in cur_outputs and v not in inputs:
                inputs.append(v)
                
        if ("paddle.nn" in layer.kernel and "functional" not in layer.kernel):
            cur_outputs.extend(layer.outputs[1:])
        else:
            cur_outputs.extend(layer.outputs)
    return inputs, outputs

def get_inputs_count(pd_graph, sub_layers):
    input_ct2sub_layer_id = dict()
    for i, sub_layer in enumerate(sub_layers):
        inputs, outputs = get_inputs_outputs(pd_graph, sub_layer)
        if len(inputs) not in input_ct2sub_layer_id:
            input_ct2sub_layer_id[len(inputs)] = [i]
        else:
            input_ct2sub_layer_id[len(inputs)].append(i)
    return input_ct2sub_layer_id

def distinguish_sequential(pd_graph, module_name, sub_layers, sub_identifiers, node_name2sub_layers):
    """ 获取不同的layers组成的序列
    """
    def distinguish_sequential_by_inputs(part_layers, part_identifiers, part_module_name):
        new_sub_layers = dict()
        new_sub_sequentials = dict()
        sequentials2attrs_table = dict()
        input_ct2sub_layer_id = get_inputs_count(pd_graph, part_layers)
        if len(input_ct2sub_layer_id) == 1:
            new_sub_layers["{}".format(part_module_name)] = part_layers
            new_sub_sequentials["{}".format(part_module_name)] = part_identifiers
            sequentials2attrs_table["{}".format(part_module_name)] = construct_attrs_table(part_layers, node_name2sub_layers)
        else:
            for i, (k, indexes) in enumerate(input_ct2sub_layer_id.items()):
                new_sub_layers["{}__{}".format(part_module_name, i)] = list()
                new_sub_sequentials["{}__{}".format(part_module_name, i)] = list()
                for index in indexes:
                    new_sub_layers["{}__{}".format(part_module_name, i)].append(part_layers[index])
                    new_sub_sequentials["{}__{}".format(part_module_name, i)].append(part_identifiers[index])
                sequentials2attrs_table["{}__{}".format(part_module_name, i)] = \
                        construct_attrs_table(new_sub_layers["{}__{}".format(part_module_name, i)], node_name2sub_layers)
        return new_sub_layers, new_sub_sequentials, sequentials2attrs_table
        
    new_sub_layers = dict()
    new_sub_sequentials = dict()
    sequentials2attrs_table = dict()
    identifiers_str_list = list()
    for identifiers in sub_identifiers:
        identifiers_str_list.append(", ".join(list(identifiers.values())))
    identifiers_str_set = list(set(identifiers_str_list))
    if len(identifiers_str_set) == 1:
        return distinguish_sequential_by_inputs(sub_layers, sub_identifiers, module_name)
    else:
        for i in range(len(identifiers_str_set)):
            new_sub_layers["{}{}".format(module_name, i)] = list()
            new_sub_sequentials["{}{}".format(module_name, i)] = list()
    no_same_module_count = 0
    for j, identifiers in enumerate(sub_identifiers):
        identifiers_str = identifiers_str_list[j]
        for i in range(len(identifiers_str_set)):
            if identifiers_str_set[i] == identifiers_str:
                is_diff = False
                if identifiers_str_set[i].replace(", ", "").isdigit() or module_name == "ModuleList":
                    new_sub_layers["{}{}".format(module_name, len(identifiers_str_set) + no_same_module_count)] = [sub_layers[j]]
                    new_sub_sequentials["{}{}".format(module_name, len(identifiers_str_set) + no_same_module_count)] = [identifiers]
                    no_same_module_count += 1
                else:
                    new_sub_layers["{}{}".format(module_name, i)].append(sub_layers[j])
                    new_sub_sequentials["{}{}".format(module_name, i)].append(identifiers)
                break
    new_new_sub_layers = dict()
    new_new_sub_sequentials = dict()
    for k, v in new_sub_layers.items():
        part_sub_layers, part_sub_sequentials, part_sequentials2attrs_table = \
                    distinguish_sequential_by_inputs(v, new_sub_sequentials[k], k)
        new_new_sub_layers.update(part_sub_layers)
        new_new_sub_sequentials.update(part_sub_sequentials)
        sequentials2attrs_table.update(part_sequentials2attrs_table)
    return new_new_sub_layers, new_new_sub_sequentials, sequentials2attrs_table