adaptive_pool2d_fuser.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from x2paddle.optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *


class AdaptivePool2dFuser(FuseBase):
    def __init__(self):
        super(AdaptivePool2dFuser, self).__init__(graph_type="dygraph")

    def build_pattern(self):
        """ 描述需要替换的adaptive pool2d图结构。
        adaptive pool2d层模式python实现代码示例:
            x72 = [6, 6]
            x73 = x71.shape
            x75 = 'Exception'
            x76 = 9223372036854775807
            x77 = 1
            x78 = len(x73)
            x79 = 2
            x80 = x78 <= x79
            if x80 :
                raise RaiseException(x75)
            x83 = []
            x84 = -2
            x85 = x73[x84: x76: x77]
            x86 = 2
            x87 = len(x85)
            x88 = [x86, x87]
            x89 = min(x88)
            for _x91 in range(x89):
                x92 = x72[_x91]
                x83.append(x92)
            x93 = fluid.layers.adaptive_pool2d(input=x71, pool_size=x83, pool_type='avg')
        """

        def gen_name(id):
            return "x" + str(id)

        self.pattern.add_layer(
            "prim.constant", inputs={}, outputs=[gen_name(0)], value=[6, 6])
        self.pattern.add_layer(
            "prim.shape",
            inputs={'input': "pool-input-0"},
            outputs=[gen_name(1)])
        self.pattern.add_layer(
            "prim.constant", inputs={}, outputs=[gen_name(2)], value=True)
        self.pattern.add_layer(
            "prim.constant",
            inputs={},
            outputs=[gen_name(3)],
            value="Exception")
        self.pattern.add_layer(
            "prim.constant",
            inputs={},
            outputs=[gen_name(4)],
            value=9223372036854775807)
        self.pattern.add_layer(
            "prim.constant", inputs={}, outputs=[gen_name(5)], value=1)
        self.pattern.add_layer(
            "prim.len", inputs={"input": gen_name(1)}, outputs=[gen_name(6)])
        self.pattern.add_layer(
            "prim.constant", inputs={}, outputs=[gen_name(7)], value=2)
        self.pattern.add_layer(
            "prim.le",
            inputs={"x": gen_name(6),
                    "y": gen_name(7)},
            outputs=[gen_name(8)])
        self.pattern.add_layer("prim.if", {'input': gen_name(8)}, [gen_name(9)])
        if_layer = self.pattern.layers[list(self.pattern.layers.keys())[-1]]
        pattern_block0 = PaddleGraph(if_layer, graph_type="dygraph")
        pattern_block0.add_layer(
            "prim.exception",
            inputs={"input": gen_name(3)},
            outputs=[gen_name(9)])
        if_layer.inputs["input-0"] = gen_name(3)
        if_layer.add_block(pattern_block0)
        pattern_block1 = PaddleGraph(if_layer, graph_type="dygraph")
        if_layer.add_block(pattern_block1)
        self.pattern.add_layer("prim.list", inputs={}, outputs=[gen_name(10)])
        self.pattern.add_layer(
            "prim.constant", inputs={}, outputs=[gen_name(11)], value=-2)
        self.pattern.add_layer(
            "prim.slice",
            inputs={
                "input": gen_name(1),
                "start": gen_name(11),
                "end": gen_name(4),
                "step": gen_name(5)
            },
            outputs=[gen_name(12)])
        self.pattern.add_layer(
            "prim.constant", inputs={}, outputs=[gen_name(13)], value=2)
        self.pattern.add_layer(
            "prim.len", inputs={"input": gen_name(12)}, outputs=[gen_name(14)])
        self.pattern.add_layer(
            "prim.list",
            inputs={"input0": gen_name(13),
                    "input1": gen_name(14)},
            outputs=[gen_name(15)])
        self.pattern.add_layer(
            "prim.min", inputs={"input": gen_name(15)}, outputs=[gen_name(16)])
        self.pattern.add_layer("prim.loop", {'input': gen_name(16)},
                               [gen_name(17), gen_name(18)])
        loop_layer = self.pattern.layers[list(self.pattern.layers.keys())[-1]]
        pattern_block = PaddleGraph(loop_layer, graph_type="dygraph")
        pattern_block.add_layer(
            "prim.getitem",
            inputs={"list": gen_name(0),
                    "index": gen_name(18)},
            outputs=[gen_name(19)])
        pattern_block.add_layer(
            "prim.append",
            inputs={"list": gen_name(10),
                    "index": gen_name(19)},
            outputs=[gen_name(20)])
        loop_layer.inputs["input-0"] = gen_name(0)
        loop_layer.inputs["input-2"] = gen_name(10)
        loop_layer.add_block(pattern_block)
        pool_attrs = {'pool_type': string("avg")}
        self.pattern.add_layer(
            "fluid.layers.adaptive_pool2d",
            inputs={'input': "pool-input-0",
                    "pool_size": gen_name(10)},
            outputs=[gen_name(21)],
            **pool_attrs)
        self.pattern.build(inputs={"input-0": "pool-input-0"})

    def insert_new_layer(self, graph, parameters, matches):
        parameters = graph.parameters
        new_layer = self.gen_new_layer(parameters, matches)
        new_layer_id = list(matches.keys())[0]
        graph.layers[new_layer_id] = new_layer
        matches.pop(new_layer_id)

    def gen_new_layer(self, parameters, matches):
        layers_id = list(matches.keys())
        layer = matches[layers_id[0]]
        pool_size = layer.attrs["value"]
        layer = matches[layers_id[1]]
        input_name = layer.inputs["input"]
        layer = matches[layers_id[-1]]
        output_name = layer.outputs[0]
        pool_type = layer.attrs["pool_type"]
        attrs = dict()
        attrs["pool_size"] = pool_size
        attrs["pool_type"] = pool_type
        new_layer = PaddleLayer(
            layers_id[0],
            "fluid.layers.adaptive_pool2d",
            inputs={"input": input_name},
            outputs=[output_name],
            **attrs)
        return new_layer