test_auto_scan_conv2d.py 4.5 KB
Newer Older
W
wjj19950828 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2022  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import onnx
from onnx import helper
from onnx import TensorProto
import numpy as np
import unittest


W
wjj19950828 已提交
25
class TestConv2dConvert(OPConvertAutoScanTest):
W
wjj19950828 已提交
26
    """
W
wjj19950828 已提交
27 28
    ONNX op: Conv
    OPset version: 7, 9
W
wjj19950828 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    """

    def sample_convert_config(self, draw):
        input_shape = draw(
            st.lists(
                st.integers(
                    min_value=20, max_value=30), min_size=4, max_size=4))

        kernel_size = draw(
            st.lists(
                st.integers(
                    min_value=1, max_value=7), min_size=4, max_size=4))

        data_format = "NCHW"

        groups = draw(st.integers(min_value=1, max_value=4))
        muti1 = draw(st.integers(min_value=1, max_value=4))
        kernel_size[0] = groups * muti1
        input_shape[1] = kernel_size[1] * groups

        strides = draw(
            st.lists(
                st.integers(
                    min_value=1, max_value=5), min_size=1, max_size=2))
        if len(strides) == 1:
            strides = strides[0]
            if strides > kernel_size[2]:
                strides = kernel_size[2]
            if strides > kernel_size[3]:
                strides = kernel_size[3]
            strides = [strides, strides]
        else:
            if strides[0] > kernel_size[2]:
                strides[0] = kernel_size[2]
            if strides[1] > kernel_size[3]:
                strides[1] = kernel_size[3]

        if draw(st.booleans()):
            auto_pad = "NOTSET"
            padding = None
            if draw(st.booleans()):
                padding = draw(
                    st.lists(
                        st.integers(
                            min_value=1, max_value=5),
                        min_size=2,
                        max_size=2))
                padding = [0, 0] + padding
            else:
                padding = draw(
                    st.lists(
                        st.integers(
                            min_value=1, max_value=5),
                        min_size=4,
                        max_size=4))
        else:
            auto_pad = draw(
                st.sampled_from(
                    ["SAME_LOWER", "SAME_UPPER", "VALID", "NOTSET"]))
            padding = None

        dilations = draw(
            st.lists(
                st.integers(
                    min_value=1, max_value=3), min_size=2, max_size=2))

        config = {
            "op_names": ["Conv"],
            "test_data_shapes": [input_shape, kernel_size],
            "test_data_types": [['float32'], ['float32']],
            "inputs_shape": [[-1, input_shape[1], -1, -1], kernel_size],
            "outputs_shape": [[-1, kernel_size[0], -1, -1]],
            "outputs_dtype": [['float32']],
W
wjj19950828 已提交
102
            "opset_version": [7, 9, 14],
W
wjj19950828 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
            "inputs_name": ["x", "W"],
            "outputs_name": ["y"],
            "delta": 1e-4,
            "rtol": 1e-4
        }

        # Warning:
        # 1、SAME_UPPER and SAME_LOWER does not yet support dynamic shapes
        # 2、dilations only support 1
        if "SAME" in auto_pad:
            dilations = [1, 1]
            config["inputs_shape"] = [input_shape, kernel_size]
            config["outputs_shape"] = [[
                input_shape[0], kernel_size[0],
                int(input_shape[2] / strides[0]),
                int(input_shape[3] / strides[1])
            ]]

        if not isinstance(dilations, (tuple, list)):
            dilations = [dilations]
        if not isinstance(strides, (tuple, list)):
            strides = [strides]

        attrs = {
            "auto_pad": auto_pad,
            "dilations": dilations,
            "group": groups,
            "kernel_shape": kernel_size[2:],
            "pads": padding,
            "strides": strides,
        }

        return (config, attrs)

    def test(self):
        self.run_and_statis(max_examples=30)


if __name__ == "__main__":
    unittest.main()