module_graph.py 16.4 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
# -*- coding:UTF-8 -*-
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import os
import os.path as osp
from x2paddle.core.program import PaddleLayer
from x2paddle.optimizer.code_optimizer.subgraphs_union import construct_attrs_table, get_inputs_outputs
from x2paddle.optimizer.code_optimizer.layer_code_generator import gen_layer_code, rename_layers
from x2paddle.optimizer.code_optimizer.parameter_tree import PamareterNode, PamareterTree


NoModuleStart = ["paddle.nn.ReLU"]

class Apriori(object):
    """ 使用Apriori算法挖掘频繁子图
    1. 构建频繁1项集
    2. 挖掘频繁k项集
    3. 最终k项集和节点数满足最少节点数的子图组成集合GS
    
    Args:
       min_support (int): 子图出现次数的最小值。
    """
    def __init__(self, min_support):
        self.min_support = min_support 
        
    def is_match(self, item, sublayers):
        for i in range(len(item)):
            if len(sublayers) <= i or item[i] != sublayers[i].kernel:
                return False
        return True
    
    def create_C1(self):
        # 构建候选1-项集
        C1 = list()
        for layer_id, layer in self.layers.items():
            if layer.kernel == "paddle.to_tensor" or \
                    layer.kernel == "prim.if" or \
                    layer.kernel == "prim.loop": #or \
#                     layer.kernel == "prim.list" or \
#                     layer.kernel == "prim.tuple" or \
#                     layer.kernel == "prim.dict_construct":
                continue
            if self.pd_graph.edges_in.get(layer_id, 0) == 0 and \
                    self.pd_graph.edges_out.get(layer_id, 0) == 0:
                continue
            if [layer.kernel] not in C1:
                C1.append([layer.kernel])
        return C1
        
    def create_Ck(self, Lk_last, C1):
        # 构建候选k-项集
        Ck = list()
        for item in Lk_last:
            for item_one in C1:
                new_item = copy.deepcopy(item)
                new_item.append(item_one[0])
                if new_item[0] in NoModuleStart:
                    continue
                Ck.append(new_item)
        return Ck
        
    def generate_Lk_by_Ck(self, Ck):
        # 生成频繁k-项集
        Lk = list()
        for item in Ck:
            count = 0
            for i in range(len(self.layers)):
                sublayers = list(self.layers.values())[i:]
                if self.is_match(item, sublayers):
                    count += 1
            if count >= self.min_support:
                Lk.append(item) 
        return Lk
                
    def run(self, graph):
        self.pd_graph = graph
        self.layers = graph.layers
        itemset = list()
        C1 = self.create_C1()
        L1 = self.generate_Lk_by_Ck(C1)
        Lk = L1
        while len(Lk) > 0:
            Ck = self.create_Ck(Lk, C1)
            Lk = self.generate_Lk_by_Ck(Ck)
            itemset.extend(Lk)
        return itemset
        

class DP(object):
    """ 使用动动态规划找到使代码最短的组合方式。
    """
    def __init__(self, combination_itemset):
        self.combination_itemset = combination_itemset
        
    def get_combination_id(self, combination, layers):
        combination_id = list()
        for layer_obj in combination:
            if len(layer_obj) > 1:
                kernel_itemset = list()
                for layer_id in layer_obj:
                    kernel_itemset.append(layers[layer_id].kernel)
                id = self.combination_itemset.index(kernel_itemset)
                combination_id.append(id)
            else:
                combination_id.append(-1)
        return combination_id
        
    def run(self, graph):
        layers = graph.layers
        layer_combination_list = list()
        for i, (layer_id, layer) in enumerate(layers.items()):
            if i == 0:
                layer_combination_list.append([[layer_id]])
                continue
            current_itemset = [layer_id]
            kernel_itemset = [layer.kernel]
            candidate_itemset = list()
            min_count = len(layers)
            prefix_ids = list(range(i))
            prefix_ids.reverse()
            for j in prefix_ids:
                current_layer_id = list(layers.keys())[j]
                current_layer = list(layers.values())[j]
                current_itemset.insert(0, current_layer_id)
                kernel_itemset.insert(0, current_layer.kernel) 
                if kernel_itemset in self.combination_itemset:
                    current_count = len(layer_combination_list[j - 1])
                    all_count = current_count + 1
                    if all_count < min_count:
                        min_count = all_count
                        candidate_itemset = copy.deepcopy(current_itemset)
                        if j - 1 < 0:
                            last_itemset = list()
                        else:
                            last_itemset = copy.deepcopy(layer_combination_list[j - 1])
                else:
                    if j == prefix_ids[0]:
                        min_count = len(layer_combination_list[j]) + 1
                        current_itemset.pop(0)
                        candidate_itemset = copy.deepcopy(current_itemset)
                        last_itemset = copy.deepcopy(layer_combination_list[j])
                    break
            last_itemset.append(candidate_itemset)
            layer_combination_list.append(last_itemset)
        final_combination = layer_combination_list[-1]
        combination_id = self.get_combination_id(final_combination, layers)
        return final_combination, combination_id
                    
        
class ModuleGraph(object):
    """ 更新PaddleGraph,生成代码。
    """
    def __init__(self, graph):
        self.pd_graph = graph
        self.global_layers = graph.get_global_layers()
        self.codes = list()
        self.param_tree = PamareterTree()
    
    def get_updation_information(self):
        aprior = Apriori(3)
        combination_itemset = aprior.run(self.pd_graph)
        dp = DP(combination_itemset)
        combination, combination_id = dp.run(self.pd_graph)
        return combination, combination_id
    
    def analyze_attrs_table(self, attrs_table):
        """ 分析属性表格,哪些属性取值不一致。
        """
        diff_attrs_column = list()
        for column in list(attrs_table.columns):
            elements = list(attrs_table.get(column))
            base = elements[0]
            for element in elements[1:]:
                if isinstance(base, str) and "'" not in base:
                    break
                if element != base:
                    diff_attrs_column.append(column)
                    break
        return diff_attrs_column
    
    def analyze_graph(self, sub_layers_list):
        def is_same(sub_layers1, sub_layers2, id1, id2):
            inputs1, outputs1 = ipt_opt_list[id1]
            inputs2, outputs2 = ipt_opt_list[id2]
            if len(inputs1) != len(inputs2) or len(outputs1) != len(outputs2):
                return False
            layer_id_list1 = list(sub_layers1.keys())
            layer_id_list2 = list(sub_layers2.keys())
            for i, layer_id1 in enumerate(layer_id_list1):
                layer_id2 = layer_id_list2[i]
                if len(self.pd_graph.edges_in[layer_id1]) != len(self.pd_graph.edges_in[layer_id2]):
                    return False
                for j, ipt_layer_id1 in enumerate(self.pd_graph.edges_in[layer_id1]):
                    ipt_layer_id2 = self.pd_graph.edges_in[layer_id2][j]
                    if (ipt_layer_id1 in layer_id_list1) ^ (ipt_layer_id2 in layer_id_list2):
                        return False
                if (layer_id1 in self.pd_graph.edges_out) ^ (layer_id2 in self.pd_graph.edges_out):
                    return False
                if (layer_id1 in self.pd_graph.edges_out) and (layer_id2 in self.pd_graph.edges_out):
                    if (len(self.pd_graph.edges_out[layer_id1]) > 1 and len(self.pd_graph.edges_out[layer_id2]) == 1) or \
                       (len(self.pd_graph.edges_out[layer_id1]) == 1 and len(self.pd_graph.edges_out[layer_id2]) > 1):
                        return False
                    for j, opt_layer_id1 in enumerate(self.pd_graph.edges_out[layer_id1]):
                        if len(self.pd_graph.edges_out[layer_id1]) == 1 and len(self.pd_graph.edges_out[layer_id2]) == 1:
                            opt_layer_id2 = self.pd_graph.edges_out[layer_id2][j]
                            if (opt_layer_id1 in layer_id_list1) ^ (opt_layer_id2 in layer_id_list2):
                                return False
            return True
        sub_layers_list_list = list()
        id_list = list()
        ipt_opt_list = list()
        sub_layers_list_list.append([sub_layers_list[0]])
        id_list.append(0)
        for i, sub_layer in enumerate(sub_layers_list):
            ipt_opt_list.append(get_inputs_outputs(self.pd_graph, sub_layer))
            if i == 0:
                continue
            id_list_cp = copy.deepcopy(id_list)
            for j, index in enumerate(id_list_cp):
                if is_same(sub_layers_list[index], sub_layer, index, i):
                    sub_layers_list_list[j].append(sub_layer)
                    break
                if j == len(id_list_cp) - 1:
                    sub_layers_list_list.append(list())
                    sub_layers_list_list[j + 1].append(sub_layer)
                    id_list.append(i)
        return sub_layers_list_list
                
    
    def merge_node(self, sub_layers_list, attrs_table, module_name):
        sub_layers = sub_layers_list[0]
        diff_attrs_column = self.analyze_attrs_table(attrs_table)
        sub_layers, _, _ = rename_layers(sub_layers)
        code_str = gen_layer_code(self.pd_graph, 
                                  sub_layers, 
                                  module_name, 
                                  different_attrs=diff_attrs_column)
        self.codes.append(code_str)
        for index, sub_layers in enumerate(sub_layers_list):
            inputs, outputs = get_inputs_outputs(self.pd_graph, sub_layers)
            inputs_dict = dict()
            for i, input in enumerate(inputs):
                inputs_dict["input_{}".format(i)] = input
            mn = module_name.lower()
            outputs = ["{}_{}".format(mn, index)] + outputs
            node_name = "{}_{}".format(module_name, index)
            diff_attrs = dict() 
            for column in diff_attrs_column:
                diff_attrs[column] = attrs_table.get(column).loc[node_name]
            new_layer = PaddleLayer(id=list(sub_layers.keys())[-1],
                                    kernel="module",
                                    inputs=inputs_dict,
                                    outputs=outputs,
                                    module=module_name,
                                    **diff_attrs)
            
            _, nn_param_nodes, _ = rename_layers(sub_layers, self.param_tree)
            param_node = PamareterNode(old_name=outputs[0])
            for node in nn_param_nodes:
                param_node.add_child(node)
            self.param_tree.add_node(param_node)

            for i, (layer_id, layer) in enumerate(sub_layers.items()):
                if i == len(sub_layers) - 1:
                    self.pd_graph.layers[layer_id] = new_layer
                else:
                    if len(layer_id.split(".")) > 1:
                        continue
                    self.pd_graph.layers.pop(layer_id)

            self.pd_graph.build()
    
    def convert_subgraph_to_layer(self, combination, combination_id):
        combination_id_set = set(combination_id)
        for s in list(combination_id_set):
            if s == -1:
                continue
            module_name = "Block{}".format(s)
            sub_layers_list = list()
            for i, c in enumerate(combination):
                if len(c) > 1 and combination_id[i] == s:
                    sub_layers = dict()
                    for layer_id in c:
                        sub_layers[layer_id] = self.global_layers[layer_id]
                    sub_layers_list.append(sub_layers)
            sub_layers_list_list = self.analyze_graph(sub_layers_list)
            for i, sub_layers_list in enumerate(sub_layers_list_list):
                if i == 0:
                    real_module_name = module_name
                else:
                    real_module_name = module_name + "__{}".format(i)
                if len(sub_layers_list) > 1:
                    attrs_table = construct_attrs_table(sub_layers_list, module_name=real_module_name)
                    self.merge_node(sub_layers_list, attrs_table, real_module_name)
        layers, nn_param_nodes, _ = rename_layers(self.pd_graph.layers, self.param_tree, is_rename_module=True)
        code_str = gen_layer_code(self.pd_graph, 
                                  layers, 
                                  self.pd_graph.name)
        self.codes.append(code_str)
        param_node = PamareterNode(old_name="Module")
        for node in nn_param_nodes:
            param_node.add_child(node)
        self.param_tree.add_node(param_node)
        
    def update_parameters(self):
        """ 更新参数。
        """
        self.param_tree.traverse()
        full_old_name_list = copy.deepcopy(list(self.pd_graph.parameters.keys()))
        for old_name, new_name in self.param_tree.old2new.items():
            for full_old_name in full_old_name_list:
                if full_old_name.startswith("{}.".format(old_name)):
                    full_new_name = full_old_name.replace("{}.".format(old_name), "{}.".format(new_name))
                    params = self.pd_graph.parameters.pop(full_old_name)
                    self.pd_graph.parameters[full_new_name] = params
                if full_old_name == old_name:
                    full_new_name = full_old_name.replace(old_name, new_name)
                    params = self.pd_graph.parameters.pop(full_old_name)
                    self.pd_graph.parameters[full_new_name] = params
    
    def save_source_files(self, save_dir):
        def gen_main_code():
            input_data_name = ', '.join(self.pd_graph.inputs)
            run_func_list = list()
            run_func_list.append("def main({}):".format(input_data_name))
            run_func_list.append("    # 共{}个输入".format(len(self.pd_graph.inputs_info)))
            for k, v in self.pd_graph.inputs_info.items():
                run_func_list.append("    # {}: 形状为{},类型为{}。".format(k, v[0], v[1]))
            run_func_list.extend(
                ["    paddle.disable_static()",
                 "    params = paddle.load('{}/model.pdparams')".format(osp.abspath(save_dir)),
                 "    model = {}()".format(self.pd_graph.name),
                 "    model.set_dict(params)",
                 "    model.eval()",
                 "    out = model({})".format(input_data_name),
                 "    return out"])
            return "\n".join(run_func_list)
        combination, combination_id = self.get_updation_information()
        self.convert_subgraph_to_layer(combination, combination_id)
        self.update_parameters()
        import_list = ["import paddle",
                       "import paddle.fluid as fluid",
                       "from paddle.fluid.initializer import Constant",
                       "from paddle.fluid.param_attr import ParamAttr",
                       "import math",
                       "from x2paddle.op_mapper.dygraph.pytorch2paddle " + \
                                 "import pytorch_custom_layer as x2paddle_nn"
                       "\n",]
        import_str = "\n".join(import_list)
        if not osp.exists(save_dir):
            os.makedirs(save_dir)
        f = open(osp.join(save_dir, 'x2paddle_code.py'), 'w')
        f.write(import_str)
        for code in self.codes:
            f.write(code)
            f.write("\n")
        run_func = gen_main_code()
        f.write(run_func)
        f.close()