graph.py 13.7 KB
Newer Older
R
Renwb1991 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
from google.protobuf import text_format

from .caffe import get_caffe_resolver
from .errors import KaffeError, print_stderr
from .layers import LayerAdapter, LayerType, NodeKind, NodeDispatch
from .shapes import make_tensor


class Node(object):
    def __init__(self, name, kind, layer=None):
        self.name = name
        self.kind = kind
        self.layer = LayerAdapter(layer, kind) if layer else None
        self.parents = []
        self.children = []
        self.data = None  #parameters of this node
        self.output_shape = None  #output shape of this node
        self.metadata = {}

    def add_parent(self, parent_node):
        assert parent_node not in self.parents
        self.parents.append(parent_node)
        if self not in parent_node.children:
            parent_node.children.append(self)

    def add_child(self, child_node):
        assert child_node not in self.children
        self.children.append(child_node)
        if self not in child_node.parents:
            child_node.parents.append(self)

    def get_only_parent(self):
        if len(self.parents) != 1:
            raise KaffeError('Node (%s) expected to have 1 parent. Found %s.' %
                             (self, len(self.parents)))
        return self.parents[0]

    @property
    def parameters(self):
        """ get parameters stored in a protobuf object
        """
        if self.layer is not None:
            return self.layer.parameters
        return None

    @property
    def params(self):
        """ get parameters stored in a dict
        """
        from .protobuf_to_dict import protobuf_to_dict

        p = self.parameters
        if p is not None:
            return protobuf_to_dict(p)
        else:
            return None

    def __str__(self):
        return '[%s] %s' % (self.kind, self.name)

    def __repr__(self):
        return '%s (0x%x)' % (self.name, id(self))


class Graph(object):
    def __init__(self, nodes=None, name=None, trace={}):
        self.nodes = nodes or []
        self.node_lut = {node.name: node for node in self.nodes}
        self.output_trace = trace
        if name is None or name == '':
            self.name = 'MyNet'
        else:
            self.name = name

    def add_node(self, node):
        self.nodes.append(node)
        self.node_lut[node.name] = node

    def get_node(self, name):
        try:
            return self.node_lut[name]
        except KeyError:
            raise KaffeError('Layer not found: %s' % name)

    def add_name_trace(self, trace, which='caffe'):
        self.output_trace[which] = trace

    def get_name_trace(self, which=None):
        if which is not None:
            return self.output_trace[which]
        else:
            return self.output_trace

    def get_input_nodes(self):
        return [node for node in self.nodes if len(node.parents) == 0]

    def get_output_nodes(self):
        return [node for node in self.nodes if len(node.children) == 0]

    def topologically_sorted(self):
        sorted_nodes = []
        unsorted_nodes = list(self.nodes)
        temp_marked = set()
        perm_marked = set()

        def visit(node):
            if node in temp_marked:
                raise KaffeError('Graph is not a DAG.')
            if node in perm_marked:
                return
            temp_marked.add(node)
            for child in node.children:
                visit(child)
            perm_marked.add(node)
            temp_marked.remove(node)
            sorted_nodes.insert(0, node)

        while len(unsorted_nodes):
            visit(unsorted_nodes.pop())
        return sorted_nodes

    def compute_output_shapes(self):
        sorted_nodes = self.topologically_sorted()
        for node in sorted_nodes:
            node.output_shape = make_tensor(
                *NodeKind.compute_output_shape(node))

    def replaced(self, new_nodes):
        return Graph(nodes=new_nodes, name=self.name, trace=self.output_trace)

    def transformed(self, transformers):
        graph = self
        for transformer in transformers:
            graph = transformer(graph)
            if graph is None:
                raise KaffeError('Transformer failed: {}'.format(transformer))
            assert isinstance(graph, Graph)

        return graph

    def __contains__(self, key):
        return key in self.node_lut

    def __str__(self):
        hdr = '{:<20} {:<30} {:>20} {:>20}'.format('Type', 'Name', 'Param',
                                                   'Output')
        s = [hdr, '-' * 94]
        for node in self.topologically_sorted():
            # If the node has learned parameters, display the first one's shape.
            # In case of convolutions, this corresponds to the weights.
            if node.data is None:
                data_shape = '--'
                out_shape = node.output_shape or '--'
                s.append('{:<20} {:<30} {:>20} {:>20}'.format(
155
                    node.kind, node.name, data_shape, str(tuple(out_shape))))
R
Renwb1991 已提交
156 157 158 159 160 161
            else:
                for d in node.data:
                    #data_shape = node.data[0].shape if node.data else '--'
                    data_shape = d.shape
                    out_shape = node.output_shape or '--'
                    s.append('{:<20} {:<30} {:>20} {:>20}'.format(
162
                        node.kind, node.name, str(data_shape), str(tuple(out_shape))))
R
Renwb1991 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
        return '\n'.join(s)


class GraphBuilder(object):
    '''Constructs a model graph from a Caffe protocol buffer definition.'''

    def __init__(self, def_path, phase='test'):
        '''
        def_path: Path to the model definition (.prototxt)
        data_path: Path to the model data (.caffemodel)
        phase: Either 'test' or 'train'. Used for filtering phase-specific nodes.
        '''
        self.def_path = def_path
        self.phase = phase
        self.load()

    def load(self):
        '''Load the layer definitions from the prototxt.'''
        self.params = get_caffe_resolver().NetParameter()
        with open(self.def_path, 'rb') as def_file:
            text_format.Merge(def_file.read(), self.params)

    def filter_layers(self, layers):
        '''Filter out layers based on the current phase.'''
        phase_map = {0: 'train', 1: 'test'}
        filtered_layer_names = set()
        filtered_layers = []
        for layer in layers:
            phase = self.phase
            if len(layer.include):
                phase = phase_map[layer.include[0].phase]
            if len(layer.exclude):
                phase = phase_map[1 - layer.include[0].phase]
            exclude = (phase != self.phase)
            # Dropout layers appear in a fair number of Caffe
            # test-time networks. These are just ignored. We'll
            # filter them out here.
            if (not exclude) and (phase == 'test'):
                exclude = (layer.type == LayerType.Dropout)
            if not exclude:
                filtered_layers.append(layer)
                # Guard against dupes.
                assert layer.name not in filtered_layer_names
                filtered_layer_names.add(layer.name)
        return filtered_layers

    def make_node(self, layer):
        '''Create a graph node for the given layer.'''
        kind = NodeKind.map_raw_kind(layer.type)
        if kind is None:
            raise KaffeError('Unknown layer type encountered: %s' % layer.type)

        # We want to use the layer's top names (the "output" names), rather than the
        # name attribute, which is more of readability thing than a functional one.
        # Other layers will refer to a node by its "top name".
        return Node(layer.name, kind, layer=layer)

    def make_input_nodes(self):
        '''
        Create data input nodes.

        This method is for old-style inputs, where the input specification
        was not treated as a first-class layer in the prototext.
        Newer models use the "Input layer" type.
        '''
        nodes = [Node(name, NodeKind.Data) for name in self.params.input]
        inputs_num = len(nodes)
        if inputs_num > 0:
            input_dims_num = len(self.params.input_dim)
            if input_dims_num > 0 and input_dims_num != inputs_num * 4:
                raise KaffeError('invalid input_dim[%d] param in prototxt' %
                                 (input_dims_num))

            input_dims = [[]] * inputs_num
            for i in range(input_dims_num):
                dim = self.params.input_dim[i]
                which = int(i / 4)
                input_dims[which].append(int(dim))

            for i in range(inputs_num):
                if len(self.params.input_shape) == inputs_num:
                    input_dim = map(int, self.params.input_shape[i].dim)
                    input_dims[i] = input_dim

                nodes[i].output_shape = tuple(input_dims[i])
        return nodes

    def build(self):
        '''
        Builds the graph from the Caffe layer definitions.
        '''
        # Get the layers
        layers = self.params.layers or self.params.layer
        # Filter out phase-excluded layers
        layers = self.filter_layers(layers)
        # Get any separately-specified input layers
        nodes = self.make_input_nodes()
        nodes += [self.make_node(layer) for layer in layers]
        # Initialize the graph
        graph = Graph(nodes=nodes, name=self.params.name)
        # Connect the nodes
        #
        # A note on layers and outputs:
        # In Caffe, each layer can produce multiple outputs ("tops") from a set of inputs
        # ("bottoms"). The bottoms refer to other layers' tops. The top can rewrite a bottom
        # (in case of in-place operations). Note that the layer's name is not used for establishing
        # any connectivity. It's only used for data association. By convention, a layer with a
        # single top will often use the same name (although this is not required).
        #
        # The current implementation only supports single-output nodes (note that a node can still
        # have multiple children, since multiple child nodes can refer to the single top's name).
        node_outputs = {}
        output_trace = {}
        for layer in layers:
            node = graph.get_node(layer.name)
            for input_name in layer.bottom:
                assert input_name != layer.name
                parent_node = node_outputs.get(input_name)
                if (parent_node is None) or (parent_node == node):
                    parent_node = graph.get_node(input_name)
                node.add_parent(parent_node)

            if len(layer.top) > 1:
                raise KaffeError('Multiple top nodes are not supported.')

            for output_name in layer.top:
                if output_name == layer.name:
                    # Output is named the same as the node. No further action required.
                    continue
                # There are two possibilities here:
                #
                # Case 1: output_name refers to another node in the graph.
                # This is an "in-place operation" that overwrites an existing node.
                # This would create a cycle in the graph. We'll undo the in-placing
                # by substituting this node wherever the overwritten node is referenced.
                #
                # Case 2: output_name violates the convention layer.name == output_name.
                # Since we are working in the single-output regime, we will can rename it to
                # match the layer name.
                #
                # For both cases, future references to this top re-routes to this node.
                node_outputs[output_name] = node
                if output_name in output_trace:
                    output_trace[output_name].append(node.name)
                else:
                    output_trace[output_name] = [output_name, node.name]

        #build a mapping from real-name to changed-name(for caffe's INPLACE inference)
        real2chg = {}
        deleted = {}
        for k, v in output_trace.items():
            real2chg[v[-1]] = k
            for n in v:
                if n in real2chg:
                    continue
                if n not in deleted:
                    deleted[n] = '%s.%s' % (k, v[-1])

        graph.add_name_trace({
            'real2chg': real2chg,
            'deleted': deleted
        }, 'caffe')
        graph.compute_output_shapes()
        return graph


class NodeMapper(NodeDispatch):
    def __init__(self, graph):
        self.graph = graph

    def map(self):
        nodes = self.graph.topologically_sorted()
        # Remove input nodes - we'll handle them separately.
        input_nodes = self.graph.get_input_nodes()
        nodes = [t for t in nodes if t not in input_nodes]
        # Decompose DAG into chains.
        chains = []
        for node in nodes:
            attach_to_chain = None
            if len(node.parents) == 1:
                parent = node.get_only_parent()
                for chain in chains:
                    if chain[-1] == parent:
                        # Node is part of an existing chain.
                        attach_to_chain = chain
                        break
            if attach_to_chain is None:
                # Start a new chain for this node.
                attach_to_chain = []
                chains.append(attach_to_chain)
            attach_to_chain.append(node)
        # Map each chain.
        mapped_chains = []
        for chain in chains:
            mapped_chains.append(self.map_chain(chain))
        return self.commit(mapped_chains)

    def map_chain(self, chain):
        return [self.map_node(node) for node in chain]

    def map_node(self, node):
        map_func = self.get_handler(node.kind, 'map')
        mapped_node = map_func(node)
        assert mapped_node is not None
        mapped_node.node = node
        return mapped_node

    def commit(self, mapped_chains):
371
        raise NotImplementedError('Must be implemented by subclass.')