infer.py 10.0 KB
Newer Older
R
Renwb1991 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
#!/bin/env python

#function:
#   a demo to show how to use the converted model genereated by caffe2fluid
#   
#notes:
#   only support imagenet data

import os
import sys
import inspect
import numpy as np


def import_fluid():
    import paddle.fluid as fluid
    return fluid


def load_data(imgfile, shape):
    h, w = shape[1:]
    from PIL import Image
    im = Image.open(imgfile)

    # The storage order of the loaded image is W(widht),
    # H(height), C(channel). PaddlePaddle requires
    # the CHW order, so transpose them.
    im = im.resize((w, h), Image.ANTIALIAS)
    im = np.array(im).astype(np.float32)
    im = im.transpose((2, 0, 1))  # CHW
    im = im[(2, 1, 0), :, :]  # BGR

    # The mean to be subtracted from each image.
    # By default, the per-channel ImageNet mean.
    mean = np.array([104., 117., 124.], dtype=np.float32)
    mean = mean.reshape([3, 1, 1])
    im = im - mean
    return im.reshape([1] + shape)


def build_model(net_file, net_name):
    print('build model with net_file[%s] and net_name[%s]' %
          (net_file, net_name))

    net_path = os.path.dirname(net_file)
    module_name = os.path.splitext(os.path.basename(net_file))[0]
    if net_path not in sys.path:
        sys.path.insert(0, net_path)

    try:
        m = __import__(module_name, fromlist=[net_name])
        MyNet = getattr(m, net_name)
    except Exception as e:
        print('failed to load module[%s.%s]' % (module_name, net_name))
        print(e)
        return None

    fluid = import_fluid()
    inputs_dict = MyNet.input_shapes()
    input_name = inputs_dict.keys()[0]
    input_shape = inputs_dict[input_name]
    images = fluid.layers.data(
        name=input_name, shape=input_shape, dtype='float32')
    #label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    net = MyNet({input_name: images})
    return net, inputs_dict


def dump_results(results, names, root):
    if os.path.exists(root) is False:
        os.mkdir(root)

    for i in range(len(names)):
        n = names[i]
        res = results[i]
        filename = os.path.join(root, n)
        np.save(filename + '.npy', res)


def normalize_name(name_map):
    return {
        k.replace('/', '_'): v.replace('/', '_')
        for k, v in name_map.items()
    }


def rename_layer_name(names, net):
    """ because the names of output layers from caffe maybe changed for 'INPLACE' operation,
        and paddle's layers maybe fused, so we need to re-mapping their relationship for comparing
    """
    #build a mapping from paddle's name to caffe's name
    trace = getattr(net, 'name_trace', None)
    cf_trace = trace['caffe']
    real2cf = normalize_name(cf_trace['real2chg'])

    pd_trace = trace['paddle']
    pd2real = normalize_name(pd_trace['chg2real'])
    pd_deleted = normalize_name(pd_trace['deleted'])

    pd2cf_name = {}
    for pd_name, real_name in pd2real.items():
        if real_name in real2cf:
            pd2cf_name[pd_name] = '%s.%s.%s.both_changed' \
                    % (real2cf[real_name], real_name, pd_name)
        else:
            pd2cf_name[pd_name] = '%s.%s.pd_changed' % (real_name, pd_name)

    for pd_name, trace in pd_deleted.items():
        assert pd_name not in pd2cf_name, "this name[%s] has already exist" % (
            pd_name)
        pd2cf_name[pd_name] = '%s.pd_deleted' % (pd_name)

    for real_name, cf_name in real2cf.items():
        if cf_name not in pd2cf_name:
            pd2cf_name[cf_name] = '%s.cf_deleted' % (cf_name)

        if real_name not in pd2cf_name:
            pd2cf_name[real_name] = '%s.%s.cf_changed' % (cf_name, real_name)

    ret = []
    for name in names:
        new_name = pd2cf_name[name] if name in pd2cf_name else name
        print('remap paddle name[%s] to output name[%s]' % (name, new_name))
        ret.append(new_name)
    return ret


def load_model(exe, place, net_file, net_name, net_weight, debug):
    """ load model using xxxnet.py and xxxnet.npy
    """
    fluid = import_fluid()

    #1, build model
    net, input_map = build_model(net_file, net_name)
    feed_names = input_map.keys()
    feed_shapes = [v for k, v in input_map.items()]

    prediction = net.get_output()

    #2, load weights for this model
    startup_program = fluid.default_startup_program()
    exe.run(startup_program)

    #place = fluid.CPUPlace()
    if net_weight.find('.npy') > 0:
        net.load(data_path=net_weight, exe=exe, place=place)
    else:
        raise ValueError('not found weight file')

    #3, test this model
    test_program = fluid.default_main_program().clone()

    fetch_list_var = []
    fetch_list_name = []
    if debug is False:
        fetch_list_var.append(prediction)
    else:
        for k, v in net.layers.items():
            fetch_list_var.append(v)
            fetch_list_name.append(k)

    return {
        'program': test_program,
        'feed_names': feed_names,
        'fetch_vars': fetch_list_var,
        'fetch_names': fetch_list_name,
        'feed_shapes': feed_shapes,
        'net': net
    }


def get_shape(fluid, program, name):
    for var in program.list_vars():
        if var.name == 'data':
            return list(var.shape[1:])

    raise ValueError('not found shape for input layer[%s], '
                     'you can specify by yourself' % (name))


def load_inference_model(dirname, exe):
    """ load fluid's inference model
    """
    fluid = import_fluid()
    model_fn = 'model'
    params_fn = 'params'
    if os.path.exists(os.path.join(dirname, model_fn)) \
            and os.path.exists(os.path.join(dirname, params_fn)):
        program, feed_names, fetch_targets = fluid.io.load_inference_model(\
                dirname, exe, model_fn, params_fn)
    else:
        raise ValueError('not found model files in direcotry[%s]' % (dirname))

    #print fluid.global_scope().find_var(feed_names[0])
    input_shape = get_shape(fluid, program, feed_names[0])
    feed_shapes = [input_shape]

    return program, feed_names, fetch_targets, feed_shapes


def infer(model_path, imgfile, net_file=None, net_name=None, debug=True):
    """ do inference using a model which consist 'xxx.py' and 'xxx.npy'
    """
    fluid = import_fluid()

    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    try:
        ret = load_inference_model(model_path, exe)
        program, feed_names, fetch_targets, feed_shapes = ret
        debug = False
        print('found a inference model for fluid')
    except ValueError as e:
        print('try to load model using net file and weight file')
        net_weight = model_path
        ret = load_model(exe, place, net_file, net_name, net_weight, debug)
        program = ret['program']
        feed_names = ret['feed_names']
        fetch_targets = ret['fetch_vars']
        fetch_list_name = ret['fetch_names']
        feed_shapes = ret['feed_shapes']
        net = ret['net']

    input_name = feed_names[0]
    input_shape = feed_shapes[0]

    np_images = load_data(imgfile, input_shape)
    results = exe.run(program=program,
                      feed={input_name: np_images},
                      fetch_list=fetch_targets)

    if debug is True:
        dump_path = 'results.paddle'
        dump_names = rename_layer_name(fetch_list_name, net)
        dump_results(results, dump_names, dump_path)
        print('all result of layers dumped to [%s]' % (dump_path))
    else:
        result = results[0]
        print('succeed infer with results[class:%d]' % (np.argmax(result)))

    return 0


def caffe_infer(prototxt, caffemodel, datafile):
    """ do inference using pycaffe for debug,
        all intermediate results will be dumpped to 'results.caffe'
    """
    import caffe

    net = caffe.Net(prototxt, caffemodel, caffe.TEST)
    input_layer = net.blobs.keys()[0]
    print('got name of input layer is:%s' % (input_layer))
    input_shape = list(net.blobs[input_layer].data.shape[1:])

    if '.npy' in datafile:
        np_images = np.load(datafile)
    else:
        np_images = load_data(datafile, input_shape)

    inputs = {input_layer: np_images}
    net.forward_all(**inputs)

    results = []
    names = []
    for k, v in net.blobs.items():
        k = k.replace('/', '_')
        names.append(k)
        results.append(v.data.copy())

    dump_path = 'results.caffe'
    dump_results(results, names, dump_path)
    print('all result of layers dumped to [%s]' % (dump_path))
    return 0


if __name__ == "__main__":
    """ maybe more convenient to use 'run.sh' to call this tool
    """
    net_file = 'models/resnet50/resnet50.py'
    weight_file = 'models/resnet50/resnet50.npy'
    datafile = 'data/65.jpeg'
    net_name = 'ResNet50'
    model_file = 'models/resnet50/fluid'

    ret = None
    if len(sys.argv) <= 2:
        pass
    elif sys.argv[1] == 'caffe':
        if len(sys.argv) != 5:
            print('usage:')
            print('\tpython %s caffe [prototxt] [caffemodel] [datafile]' %
                  (sys.argv[0]))
            sys.exit(1)
        prototxt = sys.argv[2]
        caffemodel = sys.argv[3]
        datafile = sys.argv[4]
        ret = caffe_infer(prototxt, caffemodel, datafile)
    elif sys.argv[1] == 'infer':
        if len(sys.argv) != 4:
            print('usage:')
            print('\tpython %s infer [fluid_model] [datafile]' % (sys.argv[0]))
            sys.exit(1)
        model_path = sys.argv[2]
        datafile = sys.argv[3]
        ret = infer(model_path, datafile)
    elif sys.argv[1] == 'dump':
        if len(sys.argv) != 6:
            print('usage:')
            print('\tpython %s dump [net_file] [weight_file] [datafile] [net_name]' \
                    % (sys.argv[0]))
            print('\teg:python %s dump %s %s %s %s' % (sys.argv[0],\
                net_file, weight_file, datafile, net_name))
            sys.exit(1)

        net_file = sys.argv[2]
        weight_file = sys.argv[3]
        datafile = sys.argv[4]
        net_name = sys.argv[5]
        ret = infer(weight_file, datafile, net_file, net_name)

    if ret is None:
        print('usage:')
        print(' python %s [infer] [fluid_model] [imgfile]' % (sys.argv[0]))
        print(' eg:python %s infer %s %s' % (sys.argv[0], model_file, datafile))
        sys.exit(1)

    sys.exit(ret)