tf_decoder.py 20.0 KB
Newer Older
S
sunyanfang01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
from x2paddle.core.fluid_code import FluidCode
from tensorflow.python.framework import tensor_util
from tensorflow.core.framework import attr_value_pb2
import tensorflow as tf
import copy as cp
import numpy
import sys


class TFGraphNode(GraphNode):
    def __init__(self, layer, layer_name=None, data_format="NHWC"):
        if layer_name is None:
            super(TFGraphNode, self).__init__(
                layer,
                layer.name.replace('/', '_').replace('-', '_').replace('^', ''))
        else:
            super(TFGraphNode, self).__init__(
                layer,
                layer_name.replace('/', '_').replace('-', '_').replace('^', ''))

        self.layer_type = layer.op
        self.tf_data_format = data_format
        self.pd_data_format = "NCHW"
        self.fluid_code = FluidCode()

        self.dtype_map = {
            1: "float32",
            3: "int32",
            4: "uint8",
            9: "int64",
            10: "bool"
        }

    @property
    def out_shapes(self):
        if self.layer_type == "OneShotIterator" or self.layer_type == "IteratorV2":
            values = self.layer.attr["output_shapes"].list.shape
        else:
            values = self.layer.attr["_output_shapes"].list.shape
        out_shapes = list()
        for value in values:
            shape = [dim.size for dim in value.dim]
            out_shapes.append(shape)
        return out_shapes

    @property
    def dtype(self):
        keys = ['dtype', 'Tidx', 'T', 'DstT']
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
        if dtype == 0:
            dtype = self.layer.attr['output_types'].list.type[0]
        if dtype not in self.dtype_map:
            raise Exception("Dtype[{}] of node({}) not in dtype_map".format(
                dtype, self.layer.name))
        return self.dtype_map[dtype]

    @property
    def raw_dtype(self):
        keys = ['dtype', 'Tidx', 'T', 'DstT']
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
        return dtype

    @property
    def value(self):
        assert self.layer_type == "Const", "Only Const node has value."

        attr = self.layer.attr['value']
        field = getattr(attr, attr.WhichOneof('value'))
        return tensor_util.MakeNdarray(field)

    def get_attr(self, name):
        if name not in self.layer.attr:
            return None
        attr = self.layer.attr[name]
        field = attr.WhichOneof('value')
        value = getattr(attr, field) if field else None

        if isinstance(value, attr_value_pb2.AttrValue.ListValue):
            result = list(value.ListFields()[0][1])
            for i in range(len(result)):
                if isinstance(result[i], int):
                    result[i] = int(result[i])
                try:
                    if isinstance(result[i], long):
                        result[i] = int(result[i])
                except:
                    pass
            return result
        else:
            return value


class TFGraph(Graph):
    def __init__(self, model, data_format="NHWC"):
        super(TFGraph, self).__init__(model)
        self.identity_map = dict()
        self.multi_out_ops = ['Split', 'SplitV', 'IteratorV2']
        self.tf_data_format = data_format

    def build(self):
        for layer in self.model.node:
            if layer.op == 'Assert':
                continue
            self.node_map[layer.name.replace('/', '_').replace(
                '-', '_')] = TFGraphNode(
                    layer, data_format=self.tf_data_format)

        for layer_name, node in self.node_map.items():
            if node.layer_type == 'Const':
                continue
            for in_node in node.layer.input:
                in_node = in_node.replace('/', '_').replace('-', '_').replace(
                    '^', '')
                if in_node not in self.node_map:
                    if in_node.strip().split(':')[0] in self.node_map:
                        self.connect(in_node.strip().split(':')[0], layer_name)
                    else:
                        raise Exception(
                            'input[{}] of node[{}] does not exist in node_map'.
                            format(in_node, layer_name))
                else:
                    self.connect(in_node, layer_name)

        super(TFGraph, self).build()

        for layer in self.model.node:
            if layer.op == 'Assert':
                for ipt in layer.input:
                    ipt_name = ipt.replace('-', '_').replace('/', '_')
                    if ipt_name in self.output_nodes:
                        idx = self.output_nodes.index(ipt_name)
                        del self.output_nodes[idx]

        # tensorflow graph optimize
        self._remove_isolated_node()
        self._optimize_dialiation_conv()
        self._remove_identity_node()
        self._remove_cast_node()

    def get_node(self, node_name, copy=False):
        items = node_name.strip().split(':')
        items[0] = items[0].replace('/', '_').replace('-', '_')
        if items[0] in self.identity_map:
            items[0] = self.identity_map[items[0]]
        new_node_name = ":".join(items)
        node = super(TFGraph, self).get_node(new_node_name, copy)
        if node is None:
            return None
        if node.layer_type == "Switch":
            if hasattr(node, 'index'):
                del node.index
        if len(items) == 1 and node.layer_type in self.multi_out_ops:
            node.index = 0
        return node

    def remove_node(self, node_name):
        if node_name not in self.node_map:
            raise Exception("Node[{}] not in graph".format(node_name))
        inputs = self.node_map[node_name].inputs
        outputs = self.node_map[node_name].outputs
        #        assert len(inputs) == 1
        input_node = self.node_map[inputs[0]]
        idx = input_node.outputs.index(node_name)
        del input_node.outputs[idx]
        for output in outputs:
            node = self.node_map[output]
            idx = node.inputs.index(node_name)
            node.inputs[idx] = inputs[0]
            input_node.outputs.append(output)

        del self.node_map[node_name]

        idx = self.topo_sort.index(node_name)
        del self.topo_sort[idx]

    def _optimize_dialiation_conv(self):
        for name in list(self.node_map.keys()):
            node = self.node_map[name]
            if node.layer_type == "SpaceToBatchND":
                is_dilation = True
                out_node0 = self.node_map[node.outputs[0]]
                if out_node0.layer_type != 'ExpandDims':
                    is_dilation = False
                    continue
                out_node1 = self.node_map[out_node0.outputs[0]]
                if out_node1.layer_type != 'Conv2D':
                    is_dilation = False
                    continue
                out_node2 = self.node_map[out_node1.outputs[0]]
                if out_node2.layer_type != 'Squeeze':
                    is_dilation = False
                    continue
                out_node3 = self.node_map[out_node2.outputs[0]]
                if out_node3.layer_type != 'BatchToSpaceND':
                    is_dilation = False
                    continue

                if is_dilation:
                    node.skip = True
                    out_node3.skip = True
                    block_shape = self.node_map[node.inputs[1]]
                    out_node1.dilation = block_shape.value.tolist()

    def _remove_isolated_node(self):
        # delete isolated nodes
        isolated_nodes = list()
        for node_name in self.node_map.keys():
            if len(self.get_node(node_name).inputs) == 0 and len(
                    self.get_node(node_name).outputs) == 0:
                isolated_nodes.append(node_name)

        for node_name in isolated_nodes:
            del self.node_map[node_name]
            if node_name in self.input_nodes:
                idx = self.input_nodes.index(node_name)
                del self.input_nodes[idx]
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                del self.output_nodes[idx]
            idx = self.topo_sort.index(node_name)
            del self.topo_sort[idx]

    def _remove_identity_node(self):
        identity_ops = [
            'Identity', 'StopGradient', 'Switch', 'Merge',
            'PlaceholderWithDefault', 'IteratorGetNext'
        ]
        identity_node = list()
        for node_name, node in self.node_map.items():
            if node.layer_type in identity_ops:
                identity_node.append(node_name)

        for node_name in identity_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
            self.remove_node(node_name)

            self.identity_map[node_name] = input_node.layer_name

            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

    def _remove_cast_node(self):
        cast_node = list()
        for node_name, node in self.node_map.items():
            if node.layer_type == "Cast":
                input = self.get_node(node.inputs[0])
                if input.layer_type != "Placeholder" or len(input.outputs) != 1:
                    continue
                cast_node.append(node_name)

        for node_name in cast_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
            input_node.layer.attr["dtype"].type = node.raw_dtype
            self.remove_node(node_name)

            self.identity_map[node_name] = input_node.layer_name

            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

    def data_format_propagation(self, node):
        current_node = self.node_map[node.layer_name]
        outputs = current_node.outputs
        if len(outputs) == 0:
            return
        for out in outputs:
            next_node = self.node_map[out]
            next_node.tf_data_format = node.tf_data_format
            self.data_format_propagation(next_node)


class TFDecoder(object):
    def __init__(self, pb_model, data_format="NHWC", define_input_shape=False):
        try:
            self.sess = tf.compat.v1.Session()
        except:
            self.sess = tf.Session()
        self.input_info = dict()
        self.define_input_shape = define_input_shape
        with open(pb_model, 'rb') as f:
            try:
                graph_def = tf.compat.v1.GraphDef()
            except:
                graph_def = tf.GraphDef()
            graph_def.ParseFromString(f.read())
            input_map = self._check_input_shape(graph_def)
            self._fix_output_shape(graph_def)
            self.sess.graph.as_default()
            tf.import_graph_def(graph_def, name='', input_map=input_map)

        try:
            initializer = tf.compat.v1.global_variables_initializer()
        except:
            initializer = tf.global_variables_initializer()
        self.sess.run(initializer)

        self.tf_graph = TFGraph(
            self.sess.graph._as_graph_def(add_shapes=True)[0], data_format)
        self.tf_graph.build()

    def _fix_output_shape(self, graph):
        for i in range(len(graph.node)):
            node = graph.node[i]
            if node.op == "swish_f32":
                graph.node[i].attr['_disable_call_shape_inference'].b = False

    def _check_input_shape(self, graph_def):
        numpy.random.seed(13)
        graph_def = cp.deepcopy(graph_def)
        input_map = dict()
        for layer in graph_def.node:
            if layer.op != "Placeholder" and layer.op != "OneShotIterator" and layer.op != "IteratorV2":
                continue
            graph_node = TFGraphNode(layer)
            dtype = graph_node.layer.attr['dtype'].type

            need_define_shape = 0
            if self.define_input_shape:
                need_define_shape = 3
            elif graph_node.layer.attr[
                    'shape'].shape.unknown_rank or not graph_node.get_attr(
                        "shape"):
                need_define_shape = 1
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                if shape.count(-1) > 1:
                    need_define_shape = 2

            if need_define_shape == 1:
                try:
                    shape = graph_node.out_shapes[0]
                    if len(shape) > 0 and shape.count(-1) < 2:
                        need_define_shape = 0
                except:
                    pass

            if need_define_shape > 0:
                shape = None
                if graph_node.get_attr("shape"):
                    value = value = graph_node.layer.attr["shape"].shape
                    shape = [dim.size for dim in value.dim]
                if need_define_shape == 1:
                    print("Unknown shape for input tensor[tensor name: \"{}\"]".
                          format(layer.name))
                elif need_define_shape == 2:
                    print(
                        "\nShape[now is {}] for input tensor[tensor name: \"{}\"] not support yet"
                        .format(shape, layer.name))
                else:
                    print(
                        "Define shape[now is {}] for input tensor[tensor name: \"{}\']"
                        .format(shape, layer.name))
                print(
                    "Use your keyboard type the shape of input tensor below :)")

                right_shape_been_input = False
                while not right_shape_been_input:
                    try:
                        shape = raw_input(
                            "Shape of Input(e.g. None,224,224,3): ")
                    except:
                        shape = input("Shape of Input(e.g. None,224,224,3): ")
                    if shape.count("None") > 1:
                        print("Only 1 dimension can be None, type again:)")
                    else:
                        right_shape_been_input = True

                shape = [
                    None if dim == "None" else int(dim)
                    for dim in shape.strip().split(',')
                ]
                assert shape.count(None) <= 1, "Only one dimension can be None"
                try:
                    x2paddle_input = tf.compat.v1.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
                except:
                    x2paddle_input = tf.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))

                input_map["{}:0".format(layer.name)] = x2paddle_input
                if shape.count(None) > 0:
                    shape[shape.index(None)] = -1
                self.input_info["x2paddle_{}".format(layer.name)] = (shape,
                                                                     dtype)
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                self.input_info[layer.name] = (shape, dtype)

        return input_map

    # trick method
    # should be removed after PaddlePaddle V1.6 been released
    def infer_tensor(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        for input_name, info in self.input_info.items():
            (shape, dtype) = cp.deepcopy(info)
            input_tensor = self.sess.graph.get_tensor_by_name(input_name + ":0")
            if shape.count(-1) > 0:
                shape[shape.index(-1)] = 2
            feed[input_tensor] = numpy.random.random_sample(shape)
        output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
        return self.sess.run([output_tensor], feed)[0]

    def infer_shape_tensor(self, graph_node, out_shape=None):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        results = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            results.append(self.sess.run([output_tensor], feed)[0].flatten())

        compare01 = (results[0] == results[1])
        compare12 = (results[1] == results[2])

        if compare01.all() and compare12.all():
            return results[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            results[0][index[0]] = -1

            index = numpy.argwhere(results[0] < 0).flatten()
            if index.shape[0] > 2:
                print("Warning: More than two dimension less than zero")
            if index.shape[0] == 2 and out_shape is not None:
                if out_shape[index[1]] > 0:
                    results[0][index[1]] = out_shape[index[1]]
                else:
                    results[0][index[0]] = out_shape[index[0]]
            return results[0].tolist()
        else:
            raise Exception("Couldn't infer a stable shape shape tensor value")

    def infer_tensor_shape(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        shapes = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            shape = self.sess.run([output_tensor], feed)[0].shape
            shapes.append(numpy.array(shape))

        compare01 = (shapes[0] == shapes[1])
        compare12 = (shapes[1] == shapes[2])

        if compare01.all() and compare12.all():
            return shape[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            if index[0] != 0:
                raise Exception("Batch size not in the first dimension")
            shapes[0][0] = -1
            return shapes[0].tolist()