batch_norm.py 7.2 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10
import copy
from collections import OrderedDict
from x2paddle.core.program import PaddleLayer


class BatchNormOpt:
    def __init__(self):
        pass

    def run(self, graph):
J
jiangjiajun 已提交
11
        print("Optimize: BatchNormOpt...")
J
jiangjiajun 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        layers = copy.deepcopy(graph.layers)
        for layer_id, layer in layers.items():
            if layer.kernel != "fluid.layers.elementwise_add":
                continue
            axis = layer.attrs.get('axis', -1)
            if axis != -1 and axis != 3:
                continue

            input_ids0 = graph.edges_in[layer_id]
            mul_layer0 = graph.layers[input_ids0[0]]
            sub_layer0 = graph.layers[input_ids0[1]]
            if mul_layer0.kernel != "fluid.layers.elementwise_mul":
                continue
            if sub_layer0.kernel != "fluid.layers.elementwise_sub":
                continue
            axis = mul_layer0.attrs.get('axis', -1)
            if axis != -1 and axis != 3:
                continue
            axis = sub_layer0.attrs.get('axis', -1)
            if axis != -1 and axis != 0:
                continue
            if len(graph.edges_out.get(input_ids0[0], [])) != 1:
                continue
            if len(graph.edges_out.get(input_ids0[1], [])) != 1:
                continue

            input_ids1 = graph.edges_in[input_ids0[0]]
            nhwc_input = graph.layers[input_ids1[0]]
            mul_layer1 = graph.layers[input_ids1[1]]
            if mul_layer1.kernel != "fluid.layers.elementwise_mul":
                continue
            axis = mul_layer1.attrs.get('axis', -1)
            if axis != -1 and axis != 0:
                continue
            if len(graph.edges_out.get(input_ids1[1], [])) != 2:
                continue

            input_ids2 = graph.edges_in[input_ids0[1]]
            beta = graph.layers[input_ids2[0]]
            mul_layer2 = graph.layers[input_ids2[1]]
            if beta.kernel != "fluid.layers.create_parameter":
                continue
            axis = mul_layer2.attrs.get('axis', -1)
            if axis != -1 and axis != 0:
                continue
            if len(graph.edges_out.get(input_ids2[0], [])) != 1:
                continue
            if len(graph.edges_out.get(input_ids2[1], [])) != 1:
                continue
            if beta.outputs[0] not in graph.parameters:
                continue
            beta_shape = graph.parameters[beta.outputs[0]].shape
            if len(beta_shape) != 1:
                continue

            input_ids3 = graph.edges_in[input_ids2[1]]
            mean = graph.layers[input_ids3[0]]
            mul_layer3 = graph.layers[input_ids3[1]]
            if mean.kernel != "fluid.layers.create_parameter":
                continue
            axis = mul_layer3.attrs.get('axis', -1)
            if axis != -1 and axis != 0:
                continue
            if len(graph.edges_out.get(input_ids3[0], [])) != 1:
                continue
            if len(graph.edges_out.get(input_ids3[1], [])) != 2:
                continue
            if mul_layer3.id != mul_layer1.id:
                continue
            if mean.outputs[0] not in graph.parameters:
                continue
            mean_shape = graph.parameters[mean.outputs[0]].shape
            if mean_shape != beta_shape:
                continue

            input_ids4 = graph.edges_in[input_ids3[1]]
            rsqrt_layer = graph.layers[input_ids4[0]]
            gamma = graph.layers[input_ids4[1]]
            if rsqrt_layer.kernel != "fluid.layers.rsqrt":
                continue
            if gamma.kernel != "fluid.layers.create_parameter":
                continue
            if len(graph.edges_out.get(input_ids4[0], [])) != 1:
                continue
            if len(graph.edges_out.get(input_ids4[1], [])) != 1:
                continue
            if gamma.outputs[0] not in graph.parameters:
                continue
            gamma_shape = graph.parameters[gamma.outputs[0]].shape
            if gamma_shape != beta_shape:
                continue

            input_ids5 = graph.edges_in[input_ids4[0]]
            add_layer = graph.layers[input_ids5[0]]
            if add_layer.kernel != "fluid.layers.elementwise_add":
                continue
            axis = add_layer.attrs.get('axis', -1)
            if axis != -1 and axis != 0:
                continue
            if len(graph.edges_out.get(input_ids5[0], [])) != 1:
                continue

            input_ids6 = graph.edges_in[input_ids5[0]]
            variance = graph.layers[input_ids6[0]]
            other = graph.layers[input_ids6[1]]
            if variance.kernel != "fluid.layers.create_parameter":
                continue
            if other.kernel != "fluid.layers.create_parameter":
                continue
            if len(graph.edges_out.get(input_ids6[0], [])) != 1:
                continue
            if len(graph.edges_out.get(input_ids6[1], [])) != 1:
                continue
            if variance.outputs[0] not in graph.parameters:
                continue
            variance_shape = graph.parameters[variance.outputs[0]].shape
            if variance_shape != beta_shape:
                continue
            if other.outputs[0] not in graph.parameters:
                continue
            if graph.parameters[other.outputs[0]].size != 1:
                continue

            ids = set([
                layer_id, mul_layer0.id, sub_layer0.id, mul_layer1.id, beta.id,
                mul_layer2.id, mean.id, mul_layer2.id, rsqrt_layer.id, gamma.id,
                add_layer.id, variance.id, other.id
            ])

            for id in ids:
                del graph.layers[id]
                if id in graph.edges_in:
                    del graph.edges_in[id]
                if id in graph.edges_out:
                    del graph.edges_out[id]

            copy_layers = copy.deepcopy(graph.layers)
            graph.layers = OrderedDict()
            for k, v in copy_layers.items():
                if k != nhwc_input.id:
                    graph.layers[k] = v
                    continue
                graph.layers[k] = v
                transpose0 = PaddleLayer(
                    id='{}_1'.format(k),
                    kernel="fluid.layers.transpose",
                    inputs={"x": v.outputs[0]},
                    outputs=["transpose_for_bn"],
                    perm=[0, 3, 1, 2])
                bn = PaddleLayer(
                    id='{}_2'.format(k),
                    kernel="fluid.layers.batch_norm",
                    inputs={"input": "transpose_for_bn"},
                    outputs=layer.outputs,
                    epsilon=graph.parameters[other.outputs[0]],
                    param_attr="'{}'".format(gamma.outputs[0]),
                    bias_attr="'{}'".format(beta.outputs[0]),
                    moving_mean_name="'{}'".format(mean.outputs[0]),
                    moving_variance_name="'{}'".format(variance.outputs[0]))
                transpose1 = PaddleLayer(
                    id=layer_id,
                    kernel="fluid.layers.transpose",
                    inputs={"x": layer.outputs[0]},
                    outputs=layer.outputs,
                    perm=[0, 2, 3, 1])
                graph.layers[transpose0.id] = transpose0
                graph.layers[bn.id] = bn
                graph.layers[transpose1.id] = transpose1
        graph.build()