caffe_decoder.py 9.7 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
S
SunAhong1993 已提交
14 15 16 17 18 19

import os
import sys
from google.protobuf import text_format
import numpy as np
from x2paddle.core.graph import GraphNode, Graph
S
SunAhong1993 已提交
20
from x2paddle.core.fluid_code import FluidCode
S
SunAhong1993 已提交
21
from x2paddle.op_mapper import caffe_shape
S
SunAhong1993 已提交
22 23 24


class CaffeResolver(object):
S
SunAhong1993 已提交
25
    def __init__(self, caffe_proto):
S
SunAhong1993 已提交
26
        self.caffe_proto = caffe_proto
S
SunAhong1993 已提交
27 28 29
        self.import_caffe()

    def import_caffepb(self):
S
SunAhong1993 已提交
30 31 32 33 34 35 36 37 38 39 40 41
        if self.caffe_proto is None:
            from x2paddle.decoder import caffe_pb2
            out = caffe_pb2
        else:
            if not os.path.isfile(self.caffe_proto):
                raise Exception(
                    "The .py file compiled by caffe.proto is not exist.")
            (filepath,
             tempfilename) = os.path.split(os.path.abspath(self.caffe_proto))
            (filename, extension) = os.path.splitext(tempfilename)
            sys.path.append(filepath)
            out = __import__(filename)
S
SunAhong1993 已提交
42
        return out
S
SunAhong1993 已提交
43 44

    def import_caffe(self):
S
SunAhong1993 已提交
45
        self.caffepb = self.import_caffepb()
S
SunAhong1993 已提交
46 47 48 49 50 51
        self.NetParameter = self.caffepb.NetParameter


class CaffeGraphNode(GraphNode):
    def __init__(self, layer, layer_name=None):
        if layer_name is None:
S
SunAhong1993 已提交
52 53 54
            super(CaffeGraphNode,
                  self).__init__(layer,
                                 layer.name.replace('/', '_').replace('-', '_'))
S
SunAhong1993 已提交
55
        else:
S
SunAhong1993 已提交
56 57 58
            super(CaffeGraphNode,
                  self).__init__(layer,
                                 layer_name.replace('/', '_').replace('-', '_'))
S
SunAhong1993 已提交
59
        self.layer_type = layer.type
S
SunAhong1993 已提交
60
        self.fluid_code = FluidCode()
S
SunAhong1993 已提交
61
        self.data = None
S
SunAhong1993 已提交
62 63 64 65

    def set_params(self, params):
        self.data = params

S
SunAhong1993 已提交
66
    def set_output_shape(self, input_shape, is_input=True):
S
SunAhong1993 已提交
67
        func_name = 'shape_' + self.layer_type.lower()
S
SunAhong1993 已提交
68 69 70 71 72
        if is_input:
            self.output_shape = getattr(caffe_shape, func_name)(self.layer,
                                                                input_shape)
        else:
            self.output_shape = input_shape
S
SunAhong1993 已提交
73 74 75 76

    def set_input_shape(self, input_shape):
        self.input_shape = input_shape

S
SunAhong1993 已提交
77 78

class CaffeGraph(Graph):
S
SunAhong1993 已提交
79
    def __init__(self, model, params):
S
SunAhong1993 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        self.params = params
        super(CaffeGraph, self).__init__(model)

    def filter_layers(self, layers):
        '''Filter out layers based on the current phase.'''
        phase_map = {0: 'train', 1: 'test'}
        filtered_layer_names = set()
        filtered_layers = []
        for layer in layers:
            phase = 'test'
            if len(layer.include):
                phase = phase_map[layer.include[0].phase]
            if len(layer.exclude):
                phase = phase_map[1 - layer.include[0].phase]
            exclude = (phase != 'test')
            # Dropout layers appear in a fair number of Caffe
            # test-time networks. These are just ignored. We'll
            # filter them out here.
            if (not exclude) and (phase == 'test'):
                exclude = (layer.type == 'Dropout')
            if not exclude:
                filtered_layers.append(layer)
                # Guard against dupes.
                assert layer.name not in filtered_layer_names
                filtered_layer_names.add(layer.name)
            else:
S
SunAhong1993 已提交
106
                print('The filter layer:' + layer.name)
S
SunAhong1993 已提交
107 108 109 110 111 112
        return filtered_layers

    def build(self):
        layers = self.model.layers or self.model.layer
        layers = self.filter_layers(layers)

S
SunAhong1993 已提交
113
        top_layer = {}
S
SunAhong1993 已提交
114 115
        for layer in layers:
            self.node_map[layer.name] = CaffeGraphNode(layer)
S
SunAhong1993 已提交
116 117 118
            for in_name in layer.bottom:
                if in_name in top_layer:
                    self.connect(top_layer[in_name][-1], layer.name)
S
SunAhong1993 已提交
119 120 121
                else:
                    raise Exception(
                        'input[{}] of node[{}] does not exist in node_map'.
S
SunAhong1993 已提交
122 123 124 125 126 127
                        format(in_name, layer.name))
            for out_name in layer.top:
                if out_name not in top_layer:
                    top_layer[out_name] = [layer.name]
                else:
                    top_layer[out_name].append(layer.name)
S
SunAhong1993 已提交
128 129 130 131

        for layer_name, data in self.params:
            if layer_name in self.node_map:
                node = self.node_map[layer_name]
S
SunAhong1993 已提交
132
                node.set_params(data)
S
SunAhong1993 已提交
133
            else:
S
SunAhong1993 已提交
134
                print('Ignoring parameters for non-existent layer: %s' % \
S
SunAhong1993 已提交
135
                       layer_name)
S
SunAhong1993 已提交
136

S
SunAhong1993 已提交
137 138
        super(CaffeGraph, self).build()

S
SunAhong1993 已提交
139 140 141 142 143 144
    def get_bottom_node(self, node, idx=0, copy=False):
        input_node_name = node.inputs[idx]
        assert input_node_name in self.node_map, 'The {} isn\'t a valid node'.format(
            name)
        input_node = self.node_map[input_node_name]
        if len(input_node.layer.top) > 1:
S
SunAhong1993 已提交
145 146
            need_idx = list(input_node.layer.top).index(node.layer.bottom[idx])
            name = input_node_name + ':' + str(need_idx)
S
SunAhong1993 已提交
147 148 149 150
        else:
            name = input_node_name
        return self.get_node(name, copy=copy)

S
SunAhong1993 已提交
151

J
jiangjiajun 已提交
152
class CaffeDecoder(object):
S
SunAhong1993 已提交
153
    def __init__(self, proto_path, model_path, caffe_proto):
S
SunAhong1993 已提交
154 155 156
        self.proto_path = proto_path
        self.model_path = model_path

S
SunAhong1993 已提交
157
        self.resolver = CaffeResolver(caffe_proto=caffe_proto)
S
SunAhong1993 已提交
158 159
        self.net = self.resolver.NetParameter()
        with open(proto_path, 'rb') as proto_file:
S
SunAhong1993 已提交
160
            proto_str = self.old2new(proto_file)
S
SunAhong1993 已提交
161 162
            text_format.Merge(proto_str, self.net)

S
SunAhong1993 已提交
163
        self.load_using_pb()
S
SunAhong1993 已提交
164
        self.caffe_graph = CaffeGraph(self.net, self.params)
S
SunAhong1993 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        self.caffe_graph.build()

    def load_using_pb(self):
        data = self.resolver.NetParameter()
        data.MergeFromString(open(self.model_path, 'rb').read())
        pair = lambda layer: (layer.name, self.normalize_pb_data(layer))
        layers = data.layers or data.layer
        self.params = [pair(layer) for layer in layers if layer.blobs]

    def normalize_pb_data(self, layer):
        transformed = []
        for blob in layer.blobs:
            if len(blob.shape.dim):
                dims = blob.shape.dim
                c_o, c_i, h, w = map(int, [1] * (4 - len(dims)) + list(dims))
            else:
                c_o = blob.num
                c_i = blob.channels
                h = blob.height
                w = blob.width
            data = np.array(blob.data, dtype=np.float32).reshape(c_o, c_i, h, w)
            transformed.append(data)
        return transformed
S
SunAhong1993 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    def old2new(self, proto_file):
        part1_str = ''
        part2_str = ''
        part3_str = ''
        is_input = False
        dims = []
        line = proto_file.readline()
        print('Check if it is a new style of caffe...')
        while line:
            l_str = bytes.decode(line)
            if l_str.replace(' ', '').startswith('input:'):
                part2_str += 'layer {\n'
                part2_str += (
                    '  name: ' +
                    l_str.strip().replace(' ', '').split('input:')[-1] + '\n')
                part2_str += '  type: \"Input\"\n'
                part2_str += (
                    '  top: ' +
                    l_str.strip().replace(' ', '').split('input:')[-1] + '\n')
                is_input = True
                line = proto_file.readline()
                continue
            elif l_str.replace(' ', '').startswith('input_dim:'):
                dims.append(
                    int(l_str.strip().replace(' ', '').split('input_dim:')[-1]))
                if len(dims) == 4:
                    part2_str += '  input_param { shape: { dim: ' + str(dims[0]) + \
                                               ' dim: ' + str(dims[1]) + \
                                               ' dim: ' + str(dims[2]) + \
                                               ' dim: ' + str(dims[3]) + ' } }\n'
                    dims = []
                    part2_str += '}\n'
                line = proto_file.readline()
                if bytes.decode(line).replace(' ', '').startswith('}'):
                    line = proto_file.readline()
                continue
            elif l_str.replace(' ', '').startswith('input_shape'):
                part2_str += l_str.replace('input_shape',
                                           'input_param { shape: ')
                l_str = bytes.decode(proto_file.readline())
                while l_str:
                    if '}' in l_str:
                        part2_str += l_str + '\n}\n}'
                        break
                    else:
                        part2_str += l_str
                    l_str = bytes.decode(proto_file.readline())
                line = proto_file.readline()
                continue
            if not is_input:
                part1_str += bytes.decode(line)
            else:
                part3_str += bytes.decode(line)
            line = proto_file.readline()
        out = part1_str + part2_str + part3_str
        layer_str = 'layer{'
        part = out.split(layer_str)
        if len(part) == 1:
            layer_str = 'layer {'
            part = out.split(layer_str)
        for i in range(len(part)):
            if part[i].strip().replace(' ', '') == '' or part[i].count(':') > 1:
                continue
            out = out.replace(layer_str + part[i], part[i].replace(' ', ''))
        return str.encode(out)