InstanceNormalization.py 2.4 KB
Newer Older
C
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
channingss 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
from .register import register


def InstanceNormalization_shape(input_shape):
    return input_shape


def InstanceNormalization_layer(inputs, name=None):
    # TODO(lvmengsi@baidu.com): Check the accuracy when using fluid.layers.layer_norm.
    epsilon = 1e-5
    mean = fluid.layers.reduce_mean(inputs, dim=[2, 3], keep_dim=True)
    var = fluid.layers.reduce_mean(fluid.layers.square(inputs - mean),
                                   dim=[2, 3],
                                   keep_dim=True)
    if name is not None:
        scale_name = name + "_scale"
        offset_name = name + "_offset"
    scale_param = fluid.ParamAttr(name=scale_name,
                                  initializer=fluid.initializer.Constant(1.0),
                                  trainable=True)
    offset_param = fluid.ParamAttr(name=offset_name,
                                   initializer=fluid.initializer.Constant(0.0),
                                   trainable=True)
    scale = fluid.layers.create_parameter(attr=scale_param,
                                          shape=inputs.shape[1:2],
                                          dtype="float32")
    offset = fluid.layers.create_parameter(attr=offset_param,
                                           shape=inputs.shape[1:2],
                                           dtype="float32")

    tmp = fluid.layers.elementwise_mul(x=(inputs - mean), y=scale, axis=1)
    tmp = tmp / fluid.layers.sqrt(var + epsilon)
    tmp = fluid.layers.elementwise_add(tmp, offset, axis=1)
    return tmp


def InstanceNormalization_weights(name, data=None):
    weights_name = [name + '_scale']
    return weights_name


register(kind='InstanceNormalization',
         shape=InstanceNormalization_shape,
         layer=InstanceNormalization_layer,
         weights=InstanceNormalization_weights)