multiclass_nms.py 15.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import sys
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
import warnings
from onnx import helper, onnx_pb


def multiclass_nms(op, block):
    """
    Convert the paddle multiclass_nms to onnx op.
    This op is get the select boxes from origin boxes.
    """
    inputs = dict()
    outputs = dict()
    attrs = dict()
    for name in op.input_names:
        inputs[name] = op.input(name)
    for name in op.output_names:
        outputs[name] = op.output(name)
    for name in op.attr_names:
        attrs[name] = op.attr(name)

    result_name = outputs['Out'][0]
    background = attrs['background_label']
    normalized = attrs['normalized']
    if normalized == False:
        warnings.warn(
            'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX. \
                         Please set normalized=True in multiclass_nms of Paddle'
        )

    #convert the paddle attribute to onnx tensor
    name_score_threshold = [outputs['Out'][0] + "@score_threshold"]
    name_iou_threshold = [outputs['Out'][0] + "@iou_threshold"]
    name_keep_top_k = [outputs['Out'][0] + '@keep_top_k']
    name_keep_top_k_2D = [outputs['Out'][0] + '@keep_top_k_1D']

    node_score_threshold = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=name_score_threshold,
        value=onnx.helper.make_tensor(
            name=name_score_threshold[0] + "@const",
            data_type=onnx.TensorProto.FLOAT,
            dims=(),
            vals=[float(attrs['score_threshold'])]))

    node_iou_threshold = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=name_iou_threshold,
        value=onnx.helper.make_tensor(
            name=name_iou_threshold[0] + "@const",
            data_type=onnx.TensorProto.FLOAT,
            dims=(),
            vals=[float(attrs['nms_threshold'])]))

    node_keep_top_k = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=name_keep_top_k,
        value=onnx.helper.make_tensor(
            name=name_keep_top_k[0] + "@const",
            data_type=onnx.TensorProto.INT64,
            dims=(),
            vals=[np.int64(attrs['keep_top_k'])]))

    node_keep_top_k_2D = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=name_keep_top_k_2D,
        value=onnx.helper.make_tensor(
            name=name_keep_top_k_2D[0] + "@const",
            data_type=onnx.TensorProto.INT64,
            dims=[1, 1],
            vals=[np.int64(attrs['keep_top_k'])]))

    # the paddle data format is x1,y1,x2,y2
    kwargs = {'center_point_box': 0}

    name_select_nms = [outputs['Out'][0] + "@select_index"]
    node_select_nms= onnx.helper.make_node(
        'NonMaxSuppression',
        inputs=inputs['BBoxes'] + inputs['Scores'] + name_keep_top_k +\
            name_iou_threshold + name_score_threshold,
        outputs=name_select_nms)
    # step 1 nodes select the nms class
    node_list = [
        node_score_threshold, node_iou_threshold, node_keep_top_k,
        node_keep_top_k_2D, node_select_nms
    ]

    # create some const value to use
    name_const_value = [result_name+"@const_0",
        result_name+"@const_1",\
        result_name+"@const_2",\
        result_name+"@const_-1"]
    value_const_value = [0, 1, 2, -1]
    for name, value in zip(name_const_value, value_const_value):
        node = onnx.helper.make_node(
            'Constant',
            inputs=[],
            outputs=[name],
            value=onnx.helper.make_tensor(
                name=name + "@const",
                data_type=onnx.TensorProto.INT64,
                dims=[1],
                vals=[value]))
        node_list.append(node)

    # Ine this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
    # and the same time, decode the select indices to 1 * D, gather the select_indices
    outputs_gather_1 = [result_name + "@gather_1"]
    node_gather_1 = onnx.helper.make_node(
        'Gather',
        inputs=name_select_nms + [result_name + "@const_1"],
        outputs=outputs_gather_1,
        axis=1)
    node_list.append(node_gather_1)

    outputs_squeeze_gather_1 = [result_name + "@sequeeze_gather_1"]
    node_squeeze_gather_1 = onnx.helper.make_node(
        'Squeeze',
        inputs=outputs_gather_1,
        outputs=outputs_squeeze_gather_1,
        axes=[1])
    node_list.append(node_squeeze_gather_1)

    outputs_gather_2 = [result_name + "@gather_2"]
    node_gather_2 = onnx.helper.make_node(
        'Gather',
        inputs=name_select_nms + [result_name + "@const_2"],
        outputs=outputs_gather_2,
        axis=1)
    node_list.append(node_gather_2)

    #slice the class is not 0
    if background == 0:
        outputs_nonzero = [result_name + "@nonzero"]
        node_nonzero = onnx.helper.make_node(
            'NonZero', inputs=outputs_squeeze_gather_1, outputs=outputs_nonzero)
        node_list.append(node_nonzero)
    else:
        name_thresh = [result_name + "@thresh"]
        node_thresh = onnx.helper.make_node(
            'Constant',
            inputs=[],
            outputs=name_thresh,
            value=onnx.helper.make_tensor(
                name=name_thresh[0] + "@const",
                data_type=onnx.TensorProto.INT32,
                dims=[1],
                vals=[-1]))
        node_list.append(node_thresh)

        outputs_cast = [result_name + "@cast"]
        node_cast = onnx.helper.make_node(
            'Cast', inputs=outputs_squeeze_gather_1, outputs=outputs_cast, to=6)
        node_list.append(node_cast)

        outputs_greater = [result_name + "@greater"]
        node_greater = onnx.helper.make_node(
            'Greater',
            inputs=outputs_cast + name_thresh,
            outputs=outputs_greater)
        node_list.append(node_greater)

        outputs_nonzero = [result_name + "@nonzero"]
        node_nonzero = onnx.helper.make_node(
            'NonZero', inputs=outputs_greater, outputs=outputs_nonzero)
        node_list.append(node_nonzero)

    outputs_gather_1_nonzero = [result_name + "@gather_1_nonzero"]
    node_gather_1_nonzero = onnx.helper.make_node(
        'Gather',
        inputs=outputs_gather_1 + outputs_nonzero,
        outputs=outputs_gather_1_nonzero,
        axis=0)
    node_list.append(node_gather_1_nonzero)

    outputs_gather_2_nonzero = [result_name + "@gather_2_nonzero"]
    node_gather_2_nonzero = onnx.helper.make_node(
        'Gather',
        inputs=outputs_gather_2 + outputs_nonzero,
        outputs=outputs_gather_2_nonzero,
        axis=0)
    node_list.append(node_gather_2_nonzero)

    # reshape scores N * C * M to (N*C*M) * 1
    outputs_reshape_scores_rank1 = [result_name + "@reshape_scores_rank1"]
    node_reshape_scores_rank1 = onnx.helper.make_node(
        "Reshape",
        inputs=inputs['Scores'] + [result_name + "@const_-1"],
        outputs=outputs_reshape_scores_rank1)
    node_list.append(node_reshape_scores_rank1)

    # get the shape of scores
    outputs_shape_scores = [result_name + "@shape_scores"]
    node_shape_scores = onnx.helper.make_node(
        'Shape', inputs=inputs['Scores'], outputs=outputs_shape_scores)
    node_list.append(node_shape_scores)

    # gather the index: 2 shape of scores
    outputs_gather_scores_dim1 = [result_name + "@gather_scores_dim1"]
    node_gather_scores_dim1 = onnx.helper.make_node(
        'Gather',
        inputs=outputs_shape_scores + [result_name + "@const_2"],
        outputs=outputs_gather_scores_dim1,
        axis=0)
    node_list.append(node_gather_scores_dim1)

    # mul class * M
    outputs_mul_classnum_boxnum = [result_name + "@mul_classnum_boxnum"]
    node_mul_classnum_boxnum = onnx.helper.make_node(
        'Mul',
        inputs=outputs_gather_1_nonzero + outputs_gather_scores_dim1,
        outputs=outputs_mul_classnum_boxnum)
    node_list.append(node_mul_classnum_boxnum)

    # add class * M * index
    outputs_add_class_M_index = [result_name + "@add_class_M_index"]
    node_add_class_M_index = onnx.helper.make_node(
        'Add',
        inputs=outputs_mul_classnum_boxnum + outputs_gather_2_nonzero,
        outputs=outputs_add_class_M_index)
    node_list.append(node_add_class_M_index)

    # Squeeze the indices to 1 dim
    outputs_squeeze_select_index = [result_name + "@squeeze_select_index"]
    node_squeeze_select_index = onnx.helper.make_node(
        'Squeeze',
        inputs=outputs_add_class_M_index,
        outputs=outputs_squeeze_select_index,
        axes=[0, 2])
    node_list.append(node_squeeze_select_index)

    # gather the data from flatten scores
    outputs_gather_select_scores = [result_name + "@gather_select_scores"]
    node_gather_select_scores = onnx.helper.make_node('Gather',
        inputs=outputs_reshape_scores_rank1 + \
            outputs_squeeze_select_index,
        outputs=outputs_gather_select_scores,
        axis=0)
    node_list.append(node_gather_select_scores)

    # get nums to input TopK
    outputs_shape_select_num = [result_name + "@shape_select_num"]
    node_shape_select_num = onnx.helper.make_node(
        'Shape',
        inputs=outputs_gather_select_scores,
        outputs=outputs_shape_select_num)
    node_list.append(node_shape_select_num)

    outputs_gather_select_num = [result_name + "@gather_select_num"]
    node_gather_select_num = onnx.helper.make_node(
        'Gather',
        inputs=outputs_shape_select_num + [result_name + "@const_0"],
        outputs=outputs_gather_select_num,
        axis=0)
    node_list.append(node_gather_select_num)

    outputs_unsqueeze_select_num = [result_name + "@unsqueeze_select_num"]
    node_unsqueeze_select_num = onnx.helper.make_node(
        'Unsqueeze',
        inputs=outputs_gather_select_num,
        outputs=outputs_unsqueeze_select_num,
        axes=[0])
    node_list.append(node_unsqueeze_select_num)

    outputs_concat_topK_select_num = [result_name + "@conat_topK_select_num"]
    node_conat_topK_select_num = onnx.helper.make_node(
        'Concat',
        inputs=outputs_unsqueeze_select_num + name_keep_top_k_2D,
        outputs=outputs_concat_topK_select_num,
        axis=0)
    node_list.append(node_conat_topK_select_num)

    outputs_cast_concat_topK_select_num = [
        result_name + "@concat_topK_select_num"
    ]
    node_outputs_cast_concat_topK_select_num = onnx.helper.make_node(
        'Cast',
        inputs=outputs_concat_topK_select_num,
        outputs=outputs_cast_concat_topK_select_num,
        to=6)
    node_list.append(node_outputs_cast_concat_topK_select_num)
    # get min(topK, num_select)
    outputs_compare_topk_num_select = [result_name + "@compare_topk_num_select"]
    node_compare_topk_num_select = onnx.helper.make_node(
        'ReduceMin',
        inputs=outputs_cast_concat_topK_select_num,
        outputs=outputs_compare_topk_num_select,
        keepdims=0)
    node_list.append(node_compare_topk_num_select)

    # unsqueeze the indices to 1D tensor
    outputs_unsqueeze_topk_select_indices = [
        result_name + "@unsqueeze_topk_select_indices"
    ]
    node_unsqueeze_topk_select_indices = onnx.helper.make_node(
        'Unsqueeze',
        inputs=outputs_compare_topk_num_select,
        outputs=outputs_unsqueeze_topk_select_indices,
        axes=[0])
    node_list.append(node_unsqueeze_topk_select_indices)

    # cast the indices to INT64
    outputs_cast_topk_indices = [result_name + "@cast_topk_indices"]
    node_cast_topk_indices = onnx.helper.make_node(
        'Cast',
        inputs=outputs_unsqueeze_topk_select_indices,
        outputs=outputs_cast_topk_indices,
        to=7)
    node_list.append(node_cast_topk_indices)

    # select topk scores  indices
    outputs_topk_select_topk_indices = [result_name + "@topk_select_topk_values",\
        result_name + "@topk_select_topk_indices"]
    node_topk_select_topk_indices = onnx.helper.make_node(
        'TopK',
        inputs=outputs_gather_select_scores + outputs_cast_topk_indices,
        outputs=outputs_topk_select_topk_indices)
    node_list.append(node_topk_select_topk_indices)

    # gather topk label, scores, boxes
    outputs_gather_topk_scores = [result_name + "@gather_topk_scores"]
    node_gather_topk_scores = onnx.helper.make_node(
        'Gather',
        inputs=outputs_gather_select_scores +
        [outputs_topk_select_topk_indices[1]],
        outputs=outputs_gather_topk_scores,
        axis=0)
    node_list.append(node_gather_topk_scores)

    outputs_gather_topk_class = [result_name + "@gather_topk_class"]
    node_gather_topk_class = onnx.helper.make_node(
        'Gather',
        inputs=outputs_gather_1_nonzero + [outputs_topk_select_topk_indices[1]],
        outputs=outputs_gather_topk_class,
        axis=1)
    node_list.append(node_gather_topk_class)

    # gather the boxes need to gather the boxes id, then get boxes
    outputs_gather_topk_boxes_id = [result_name + "@gather_topk_boxes_id"]
    node_gather_topk_boxes_id = onnx.helper.make_node(
        'Gather',
        inputs=outputs_gather_2_nonzero + [outputs_topk_select_topk_indices[1]],
        outputs=outputs_gather_topk_boxes_id,
        axis=1)
    node_list.append(node_gather_topk_boxes_id)

    # squeeze the gather_topk_boxes_id to 1 dim
    outputs_squeeze_topk_boxes_id = [result_name + "@squeeze_topk_boxes_id"]
    node_squeeze_topk_boxes_id = onnx.helper.make_node(
        'Squeeze',
        inputs=outputs_gather_topk_boxes_id,
        outputs=outputs_squeeze_topk_boxes_id,
        axes=[0, 2])
    node_list.append(node_squeeze_topk_boxes_id)

    outputs_gather_select_boxes = [result_name + "@gather_select_boxes"]
    node_gather_select_boxes = onnx.helper.make_node(
        'Gather',
        inputs=inputs['BBoxes'] + outputs_squeeze_topk_boxes_id,
        outputs=outputs_gather_select_boxes,
        axis=1)
    node_list.append(node_gather_select_boxes)

    # concat the final result
    # before concat need to cast the class to float
    outputs_cast_topk_class = [result_name + "@cast_topk_class"]
    node_cast_topk_class = onnx.helper.make_node(
        'Cast',
        inputs=outputs_gather_topk_class,
        outputs=outputs_cast_topk_class,
        to=1)
    node_list.append(node_cast_topk_class)

    outputs_unsqueeze_topk_scores = [result_name + "@unsqueeze_topk_scores"]
    node_unsqueeze_topk_scores = onnx.helper.make_node(
        'Unsqueeze',
        inputs=outputs_gather_topk_scores,
        outputs=outputs_unsqueeze_topk_scores,
        axes=[0, 2])
    node_list.append(node_unsqueeze_topk_scores)

    inputs_concat_final_results = outputs_cast_topk_class + outputs_unsqueeze_topk_scores +\
        outputs_gather_select_boxes
    outputs_concat_final_results = outputs['Out']
    node_concat_final_results = onnx.helper.make_node(
        'Concat',
        inputs=inputs_concat_final_results,
        outputs=outputs_concat_final_results,
        axis=2)
    node_list.append(node_concat_final_results)

    return node_list