tf_op_mapper.py 48.6 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15 16
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.util import *
J
jiangjiajun 已提交
18
import inspect
J
jiangjiajun 已提交
19
import numpy
J
jiangjiajun 已提交
20
import sys
21

J
jiangjiajun 已提交
22

J
jiangjiajun 已提交
23 24 25 26
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
27 28
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
29 30 31 32
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
33

J
jiangjiajun 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def nhwc_dim_to_nchw(node, dim):
    tf_data_format = list(node.tf_data_format)
    pd_data_format = list(node.pd_data_format)
    if isinstance(dim, list):
        for i in range(len(dim)):
            char = tf_data_format[dim[i]]
            dim[i] = pd_data_format.index(char)
    else:
        char = tf_data_format[dim]
        dim = pd_data_format.index(char)
    return dim

    if dim < 0:
        dim += 4
    if dim > 0:
        dim = (dim + 1) % 4 + int((dim + 1) / 4)
    return dim


J
jiangjiajun 已提交
53
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
54 55 56 57 58 59 60
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Shape': ['shape'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
J
jiangjiajun 已提交
61
        'Rsqrt': ['rsqrt'],
62
        'swish_f32': ['swish'],
J
jiangjiajun 已提交
63
        'Tanh': ['tanh'],
64 65 66
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
        }]
J
jiangjiajun 已提交
67 68 69 70 71 72
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
73 74
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
J
jiangjiajun 已提交
75 76
    }

J
jiangjiajun 已提交
77 78
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
79
        self.decoder = decoder
J
jiangjiajun 已提交
80
        self.graph = decoder.tf_graph
81
        self.batch_node = None
J
jiangjiajun 已提交
82
        self.weights = dict()
J
jiangjiajun 已提交
83
        self.omit_nodes = list()
J
jiangjiajun 已提交
84
        self.used_custom_layers = dict()
85

J
jiangjiajun 已提交
86 87 88 89 90 91 92
        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(name).layer_type != "Placeholder":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
93

94
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
J
jiangjiajun 已提交
95
        unsupported_ops = set()
96 97
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...    ".format(i + 1))
98 99
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
100
            if op in self.directly_map_ops:
J
jiangjiajun 已提交
101 102
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
103 104
                self.directly_map(node)
            elif op in self.elementwise_ops:
J
jiangjiajun 已提交
105 106
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
107 108
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
109 110
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
111 112
                func = getattr(self, op)
                func(node)
J
jiangjiajun 已提交
113
            else:
J
jiangjiajun 已提交
114 115
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
116 117 118
            sys.stderr.write(
                "=========={} Ops are not supported yet======\n".format(
                    len(unsupported_ops)))
J
jiangjiajun 已提交
119
            for op in unsupported_ops:
120
                sys.stderr.write("========== {} ==========\n".format(op))
J
jiangjiajun 已提交
121
            sys.exit(-1)
122
        sys.stderr.write('\nDone!\n')
123

J
jiangjiajun 已提交
124 125 126 127 128 129 130 131 132
    def add_omit_nodes(self, in_node_name, out_node_name):
        in_node = self.graph.get_node(in_node_name)
        out_node = self.graph.get_node(out_node_name)
        index = in_node.outputs.index(out_node_name)
        del in_node.outputs[index]
        index = out_node.inputs.index(in_node_name)
        del out_node.inputs[index]
        self.omit_nodes.append(in_node.layer_name)

J
jiangjiajun 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_node(node.layer.input[0], copy=True)
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
        node.fluid_code.add_layer(op_info[0],
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
151 152 153 154
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
155 156 157 158
        if len(x_shape) == 0:
            x_shape = [1]
        if len(y_shape) == 0:
            y_shape = [1]
J
jiangjiajun 已提交
159 160 161 162 163 164 165 166 167 168 169 170
        # incomplement broadcasting support for paddle
        x_input = x
        y_input = y
        if len(x_shape) < len(y_shape):
            unrevertable_ops = [
                "elementwise_sub", "elementwise_div", "elementwise_floordiv",
                "elementwise_mod", "elementwise_pow"
            ]
            if op_type not in unrevertable_ops:
                x_input = y
                y_input = x
                x_shape = y.out_shapes[0]
M
modify  
mamingjie-China 已提交
171 172
                if len(x_shape) == 0:
                    x_shape = [1]
J
jiangjiajun 已提交
173
                y_shape = x.out_shapes[0]
M
modify  
mamingjie-China 已提交
174 175
                if len(y_shape) == 0:
                    y_shape = [1]
J
jiangjiajun 已提交
176
            else:
J
jiangjiajun 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                if len(x_shape) == 1 and len(y_shape) == 4 and x_shape[
                        0] == y_shape[-1] and y_shape.count(-1) < 1:
                    shape = [1, x_shape[0], 1, 1]
                    attr = {"shape": shape}
                    node.fluid_code.add_layer("reshape",
                                              inputs=x_input,
                                              output="reshape_x",
                                              param_attr=attr)
                    if y_shape[0] != 1:
                        attr = {"expand_times": [y_shape[0], 1, 1, 1]}
                        node.fluid_code.add_layer("expand",
                                                  inputs="reshape_x",
                                                  output="reshape_x",
                                                  param_attr=attr)
                    inputs = {"x": "reshape_x", "y": y_input}
                    node.fluid_code.add_layer(op_type,
                                              inputs=inputs,
                                              output=node,
                                              param_attr=None)
                    return
                else:
                    raise Exception("Unexpected situation happend")
J
jiangjiajun 已提交
199

J
jiangjiajun 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212
        if len(x_shape) == 4 and len(y_shape) == 1:
            if x_input.tf_data_format == "NHWC":
                axis = 1
            else:
                axis = -1
            attr = {"axis": axis}
            inputs = {"x": x_input, "y": y_input}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
            return

J
jiangjiajun 已提交
213 214 215 216 217 218
        is_sub_seq = True
        for i in range(len(y_shape)):
            index = -1 * i - 1
            if y_shape[index] != x_shape[index]:
                is_sub_seq = False
        if not is_sub_seq:
J
jiangjiajun 已提交
219 220 221 222
            if x_shape.count(-1) > 2:
                x_shape = self.decoder.infer_tensor_shape(x_input)
            if y_shape.count(-1) > 2:
                y_shape = self.decoder.infer_tensor_shape(y_input)
J
jiangjiajun 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            x_expand_times = [1] * len(x_shape)
            y_expand_times = [1] * len(y_shape)
            x_need_expand = False
            y_need_expand = False
            for i in range(len(y_shape)):
                index = -1 * i - 1
                if y_shape[index] != x_shape[index]:
                    if y_shape[index] == 1:
                        y_expand_times[index] = x_shape[index]
                        y_need_expand = True
                    elif x_shape[index] == 1:
                        x_expand_times[index] = y_shape[index]
                        x_need_expand = True
                    else:
                        raise Exception("Unexpected situation happend")
            if x_need_expand:
J
jiangjiajun 已提交
239 240 241 242
                if len(x_expand_times) == 3 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [2, 0, 1]]
                if len(x_expand_times) == 4 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
243 244 245 246 247 248 249
                attr = {"expand_times": x_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=x_input,
                                          output="x_tmp",
                                          param_attr=attr)
                x_input = "x_tmp"
            if y_need_expand:
J
jiangjiajun 已提交
250 251 252 253
                if len(y_expand_times) == 3 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [2, 0, 1]]
                if len(y_expand_times) == 4 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
254 255 256 257 258 259 260 261 262 263 264 265
                attr = {"expand_times": y_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=y_input,
                                          output="y_tmp",
                                          param_attr=attr)
                y_input = "y_tmp"
        inputs = {"x": x_input, "y": y_input}
        node.fluid_code.add_layer(op_type,
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

266 267
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
268 269
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
J
jiangjiajun 已提交
270 271 272 273
        if node.tf_data_format == "NHWC" and len(shape) == 4:
            shape = [shape[i] for i in [0, 3, 1, 2]]
        elif node.tf_data_format == "NCHW" and len(shape) == 4:
            self.graph.data_format_propagation(node)
274 275
        dtype = node.dtype
        attr = {
J
jiangjiajun 已提交
276
            'dtype': string(dtype),
277
            'shape': shape,
J
jiangjiajun 已提交
278 279
            'name': string(node.layer_name),
            'append_batch_size': False
280
        }
281 282 283
        if shape[0] < 0:
            self.batch_node = node

J
jiangjiajun 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311
        self.weights[node.layer_name] = node.value

        if node.tf_data_format == "NHWC":
            if len(shape) == 4:
                shape = [shape[i] for i in [0, 3, 1, 2]]
            if len(shape) == 3:
                shape = [shape[i] for i in [2, 0, 1]]
                self.weights[node.layer_name] = numpy.transpose(
                    node.value, (2, 0, 1))
        elif node.tf_data_format == "NCHW":
            if len(shape) == 4:
                self.graph.data_format_propagation(node)

J
jiangjiajun 已提交
312 313 314 315 316 317 318 319 320 321 322 323
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': initializer
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
J
jiangjiajun 已提交
324 325
        input = self.graph.get_node(node.layer.input[0], copy=True)
        perm = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
326
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
327
        del self.weights[perm.layer_name.replace('/', '_')]
J
jiangjiajun 已提交
328 329 330
        perm.fluid_code.clear()
        perm = perm.value.tolist()

J
jiangjiajun 已提交
331
        if perm == [0, 3, 1, 2] and input.data_format == "NHWC":
332 333 334 335 336
            input_name = input.layer_name
            if hasattr(input, "index"):
                input_name = input_name + "[{}]".format(input.index)
            node.fluid_code.add_layer("{} = {}").format(node.layer_name,
                                                        input_name)
J
jiangjiajun 已提交
337 338 339
            node.tf_data_format = "NCHW"
            self.graph.data_format_propagation(node)
        elif perm == [0, 2, 3, 1] and input.tf_data_format == "NCHW":
340 341 342 343 344
            input_name = input.layer_name
            if hasattr(input, "index"):
                input_name = input_name + "[{}]".format(input.index)
            node.fluid_code.add_layer("{} = {}").format(node.layer_name,
                                                        input_name)
J
jiangjiajun 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            node.tf_data_format = "NHWC"
            self.graph.data_format_propagation(node)
        elif len(input.out_shapes[0]) > 4:
            tf_data_format = list(input.tf_data_format)
            pd_data_format = list(input.pd_data_format)
            new_perm = [i for i in range(len(perm))]
            for i in range(len(perm)):
                char0 = tf_data_format[i]
                char1 = tf_data_format[perm[i]]
                index0 = pd_data_format.index(char0)
                index1 = pd_data_format.index(char1)
                new_perm[index0] = index1
            node.tf_data_format = [tf_data_format[i] for i in perm]
            node.pd_data_format = [pd_data_format[i] for i in perm]
            attr = {'perm': new_perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        elif len(node.out_shapes[0]) != 4:
            attr = {'perm': perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            raise Exception("Unexpected situation happend in Transpose OP")
J
jiangjiajun 已提交
372

J
jiangjiajun 已提交
373 374
    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
375

J
jiangjiajun 已提交
376
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
377 378 379
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
380 381 382 383
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
384
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
385

J
jiangjiajun 已提交
386
        if not channel_first:
J
jiangjiajun 已提交
387 388
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
389
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
390 391
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
392 393

        attr = {
J
jiangjiajun 已提交
394
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
395
            "pool_type": string("max"),
M
mamingjie-China 已提交
396 397
            "pool_stride": strides[2:4],
            "pool_padding": string(pad_mode)
J
jiangjiajun 已提交
398
        }
J
jiangjiajun 已提交
399 400 401 402
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
403 404 405 406 407

    def Conv2D(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of Conv2D should be Const"
J
jiangjiajun 已提交
408
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
J
jiangjiajun 已提交
409

J
jiangjiajun 已提交
410
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
411 412
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
413
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
414 415 416
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
417 418 419 420 421
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
422 423 424 425
        padding = 0

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
J
jiangjiajun 已提交
426 427 428 429 430

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
431 432
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
433 434 435 436 437 438
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
439
            "dilation": dilations[2:4],
M
mamingjie-China 已提交
440
            "padding": string(pad_mode)
J
jiangjiajun 已提交
441
        }
J
jiangjiajun 已提交
442 443 444 445
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
446

J
jiangjiajun 已提交
447 448 449 450 451 452 453 454 455 456 457 458
    def BiasAdd(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        bias = self.graph.get_node(node.layer.input[1], copy=True)
        axis = -1
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = 1
        inputs = {"x": input, "y": bias}
        attr = {"axis": axis}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
459 460 461 462 463 464 465

    def FusedBatchNorm(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        gamma = self.graph.get_node(node.layer.input[1], copy=True)
        beta = self.graph.get_node(node.layer.input[2], copy=True)
        moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
        moving_var = self.graph.get_node(node.layer.input[4], copy=True)
J
jiangjiajun 已提交
466 467
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
468 469 470 471 472

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
473 474 475 476
        self.add_omit_nodes(gamma.layer_name, node.layer_name)
        self.add_omit_nodes(beta.layer_name, node.layer_name)
        self.add_omit_nodes(moving_mean.layer_name, node.layer_name)
        self.add_omit_nodes(moving_var.layer_name, node.layer_name)
J
jiangjiajun 已提交
477 478
        if channel_first:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
479

J
jiangjiajun 已提交
480 481 482 483 484 485 486 487 488 489
        attr = {
            "epsilon": node.get_attr("epsilon"),
            "param_attr": string(gamma.layer_name),
            "bias_attr": string(beta.layer_name),
            "moving_mean_name": string(moving_mean.layer_name),
            "moving_variance_name": string(moving_var.layer_name),
            "is_test": True
        }

        node.fluid_code.add_layer("batch_norm",
J
jiangjiajun 已提交
490
                                  inputs=input,
J
jiangjiajun 已提交
491 492 493 494 495 496 497
                                  output=node,
                                  param_attr=attr)

    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
498
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
J
jiangjiajun 已提交
499

J
jiangjiajun 已提交
500
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
501 502
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
503
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
504 505 506
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
507 508 509 510 511
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
512 513 514 515
        padding = 0

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (2, 3, 0, 1))
J
jiangjiajun 已提交
516 517 518 519 520

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
521 522
        else:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
523 524 525 526 527 528 529 530

        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": in_shape[1],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4],
J
jiangjiajun 已提交
531
            "groups": k_size[3] * in_shape[1],
J
jiangjiajun 已提交
532
            "use_cudnn": False,
M
mamingjie-China 已提交
533
            "padding": string(pad_mode)
J
jiangjiajun 已提交
534
        }
J
jiangjiajun 已提交
535
        node.fluid_code.add_layer("conv2d",
J
jiangjiajun 已提交
536
                                  inputs=input,
J
jiangjiajun 已提交
537 538
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
539

J
jiangjiajun 已提交
540 541 542
    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        param = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
543
        is_variable = False
J
jiangjiajun 已提交
544 545
        if param.layer_type == "Const":
            attr = {"shape": param.value.tolist()}
J
jiangjiajun 已提交
546
            self.add_omit_nodes(param.layer_name, node.layer_name)
J
jiangjiajun 已提交
547 548
        else:
            # Here is a trick method to solove tensor parameter in tensorflow
J
jiangjiajun 已提交
549 550 551
            shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0])
            if shape.count(-1) <= 1:
                attr = {"shape": shape}
J
jiangjiajun 已提交
552 553 554 555 556
                self.add_omit_nodes(param.layer_name, node.layer_name)
            elif shape.count(-1) == 2 and shape[0] == -1:
                shape[0] = 0
                attr = {"shape": shape}
                self.add_omit_nodes(param.layer_name, node.layer_name)
J
jiangjiajun 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
            else:
                assert len(param.out_shapes[0]
                           ) == 1, "Unexpected situation of shape parameter"
                attr = {"shape": [-1]}
                node.fluid_code.add_layer("reshape",
                                          inputs=param,
                                          output="shape_param",
                                          param_attr=attr)
                attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0}
                node.fluid_code.add_layer("split",
                                          inputs="shape_param",
                                          output=node,
                                          param_attr=attr)
                new_param = "["
                for i in range(param.out_shapes[0][0]):
                    new_param += (node.layer_name + "[{}]".format(i) + ", ")
                new_param = new_param.strip(", ") + "]"
                attr = {"shape": new_param}
J
jiangjiajun 已提交
575 576 577 578 579
                is_variable = True

        # to change [192, -1]->[-1, 192], allways put -1 in the first dimension
        # optimization for Paddle-Lite
        in_shape = input.out_shapes[0]
J
fix bug  
jiangjiajun 已提交
580
        if not is_variable and in_shape.count(-1) < 1:
J
jiangjiajun 已提交
581 582 583 584 585 586 587 588 589 590 591 592
            total_size = 1
            for i in range(len(in_shape)):
                total_size *= in_shape[i]
            for i in range(len(attr["shape"])):
                if attr["shape"][i] == 0:
                    attr["shape"][i] = in_shape[i]
                if attr["shape"][i] != -1:
                    total_size /= attr["shape"][i]
            if attr["shape"].count(-1) > 0:
                index = attr["shape"].index(-1)
                attr["shape"][index] = int(total_size)
                attr["shape"][0] = -1
593 594 595 596 597 598 599 600 601 602 603 604 605 606

        if len(input.out_shapes[0]) == 4 and node.tf_data_format == "NHWC":
            if len(attr["shape"]) < 3:
                perm = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs=input,
                                          output=node,
                                          param_attr=perm)
                node.fluid_code.add_layer("reshape",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)
                return

J
jiangjiajun 已提交
607
        if len(attr["shape"]) == 4 and node.tf_data_format == "NHWC":
J
jiangjiajun 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
            input_shape = self.decoder.infer_tensor(input).shape
            if input_shape[1] == attr["shape"][1]:
                attr["shape"] = [attr["shape"][i] for i in [0, 3, 1, 2]]
            else:
                perm = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs=input,
                                          output=node,
                                          param_attr=perm)
                node.fluid_code.add_layer("reshape",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)
                perm = {"perm": [0, 3, 1, 2]}
                node.fluid_code.add_layer("transpose",
                                          inputs=node,
                                          output=node,
                                          param_attr=perm)
                return
J
jiangjiajun 已提交
627 628 629 630 631 632 633
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def AvgPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
634

J
jiangjiajun 已提交
635
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
636 637 638
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
639 640 641 642 643 644 645 646 647
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
648
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
649 650
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
651 652

        attr = {
J
jiangjiajun 已提交
653
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
654
            "pool_type": string("avg"),
M
mamingjie-China 已提交
655 656
            "pool_stride": strides[2:4],
            "pool_padding": string(pad_mode)
J
jiangjiajun 已提交
657 658
        }
        node.fluid_code.add_layer("pool2d",
J
jiangjiajun 已提交
659
                                  inputs=input,
J
jiangjiajun 已提交
660 661 662
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
663 664 665 666 667 668
    def SplitV(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        num_sections = self.graph.get_node(node.layer.input[1], copy=True)
        dim = self.graph.get_node(node.layer.input[2], copy=True)
        assert num_sections.layer_type == "Const"
        assert dim.layer_type == "Const"
J
jiangjiajun 已提交
669 670
        self.add_omit_nodes(num_sections.layer_name, node.layer_name)
        self.add_omit_nodes(dim.layer_name, node.layer_name)
J
jiangjiajun 已提交
671 672 673
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)
J
jiangjiajun 已提交
674 675 676 677 678 679 680 681
        attr = {
            "num_or_sections": num_sections.value.tolist(),
            "dim": dim.value
        }
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
682 683

    def ConcatV2(self, node):
J
jiangjiajun 已提交
684 685 686 687
        inputs = [
            self.graph.get_node(name, copy=True)
            for name in node.layer.input[:-1]
        ]
J
jiangjiajun 已提交
688 689
        axis = self.graph.get_node(node.layer.input[-1], copy=True)
        assert axis.layer_type == "Const"
J
jiangjiajun 已提交
690
        self.add_omit_nodes(axis.layer_name, node.layer_name)
J
jiangjiajun 已提交
691 692 693 694 695
        axis = axis.value
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(inputs[0], axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
696 697 698 699
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
700 701 702 703

    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        expand_times = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
704
        self.add_omit_nodes(expand_times.layer_name, node.layer_name)
705 706 707 708
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
        else:
            expand_times = self.decoder.infer_shape_tensor(expand_times)
J
jiangjiajun 已提交
709 710 711 712 713
        if input.tf_data_format == "NHWC":
            if len(input.out_shapes[0]) == 4:
                expand_times = [expand_times[i] for i in [0, 3, 1, 2]]
            elif len(input.out_shape[0]) == 3:
                expand_times = [expand_times[i] for i in [2, 0, 1]]
714 715 716 717
        for i in range(len(expand_times)):
            if expand_times[i] < 0:
                expand_times[i] = 1

J
jiangjiajun 已提交
718
        attr = {"expand_times": expand_times}
J
jiangjiajun 已提交
719 720 721 722
        node.fluid_code.add_layer("expand",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
723 724

    def Pack(self, node):
J
jiangjiajun 已提交
725 726 727
        inputs = [
            self.graph.get_node(name, copy=True) for name in node.layer.input
        ]
J
jiangjiajun 已提交
728 729 730 731 732 733 734 735 736 737 738 739
        axis = node.get_attr("axis")
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            tf_data_format = list(inputs[0].tf_data_format)
            tf_data_format.insert(axis, str(len(tf_data_format)))
            axis = nhwc_dim_to_nchw(inputs[0], axis)
            pd_data_format = list(inputs[0].pd_data_format)
            pd_data_format.insert(axis, str(len(pd_data_format)))
            node.tf_data_format = "".join(tf_data_format)
            node.pd_data_format = "".join(pd_data_format)

        attr = {"axis": axis}
J
jiangjiajun 已提交
740 741 742
        node.fluid_code.add_layer("stack",
                                  inputs=inputs,
                                  output=node,
J
jiangjiajun 已提交
743
                                  param_attr=attr)
J
jiangjiajun 已提交
744 745 746

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
747
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
748
        assert paddings.layer_type == "Const", "Padding should be Const"
J
jiangjiajun 已提交
749
        self.add_omit_nodes(paddings.layer_name, node.layer_name)
J
jiangjiajun 已提交
750 751 752
        paddings = paddings.value.flatten().tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]]
J
jiangjiajun 已提交
753 754 755 756 757 758

        pad_op = "pad"
        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
                paddings = paddings[4:]
                pad_op = "pad2d"
J
jiangjiajun 已提交
759
        attr = {"paddings": paddings}
J
jiangjiajun 已提交
760
        node.fluid_code.add_layer(pad_op,
J
jiangjiajun 已提交
761 762 763
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
764 765 766 767 768

    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0], copy=True)
        limit = self.graph.get_node(node.layer.input[1], copy=True)
        delta = self.graph.get_node(node.layer.input[2], copy=True)
M
mamingjie-China 已提交
769 770 771
        self.add_omit_nodes(start.layer_name, node.layer_name)
        self.add_omit_nodes(limit.layer_name, node.layer_name)
        self.add_omit_nodes(delta.layer_name, node.layer_name)
J
jiangjiajun 已提交
772 773
        if start.layer_type == "Const":
            start = start.value
774 775
        else:
            start = self.decoder.infer_tensor(start)
J
jiangjiajun 已提交
776 777
        if limit.layer_type == "Const":
            limit = limit.value
778 779
        else:
            limit = self.decoder.infer_tensor(limit)
J
jiangjiajun 已提交
780 781
        if delta.layer_type == "Const":
            delta = delta.value
782 783 784
        else:
            delta = self.decoder.infer_tensor(delta)

J
jiangjiajun 已提交
785
        inputs = {"start": start, "end": limit, "step": delta}
J
jiangjiajun 已提交
786
        attr = {"dtype": string(node.dtype)}
787 788 789 790
        node.fluid_code.add_layer("range",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
J
jiangjiajun 已提交
791 792 793 794 795

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
J
jiangjiajun 已提交
796
        dims = reduce_idx.value.tolist()
J
jiangjiajun 已提交
797
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
798 799 800 801 802 803

        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(dims)):
                dims[i] = nhwc_dim_to_nchw(input, dims[i])

        attr = {"dim": dims, "keep_dim": keep_dims}
J
jiangjiajun 已提交
804 805 806 807 808 809 810 811 812 813 814
        node.fluid_code.add_layer("reduce_mean",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        inputs = {"x": x, "y": y}
J
jiangjiajun 已提交
815 816 817 818 819 820 821 822 823 824
        # fix paddle shape infer problem
        # should be removed after paddle 1.6
        if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0:
            shape = x.out_shapes[0]
            shape[-1] = y.out_shapes[0][0]
            attr = {"shape": shape}
            node.fluid_code.add_layer("reshape",
                                      inputs=x,
                                      output=x,
                                      param_attr=attr)
J
jiangjiajun 已提交
825 826 827 828 829 830 831 832 833 834
        attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = self.graph.get_node(node.layer.input[1], copy=True)
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
J
jiangjiajun 已提交
835
        self.add_omit_nodes(axis.layer_name, node.layer_name)
J
jiangjiajun 已提交
836 837 838 839
        axis = axis.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852
        node.fluid_code.add_layer("argmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        end = self.graph.get_node(node.layer.input[2], copy=True)
        strides = self.graph.get_node(node.layer.input[3], copy=True)
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
J
jiangjiajun 已提交
853 854 855
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(end.layer_name, node.layer_name)
        self.add_omit_nodes(strides.layer_name, node.layer_name)
J
jiangjiajun 已提交
856 857 858
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[0] == 1

J
jiangjiajun 已提交
859 860 861 862 863 864
        begin = begin.value.tolist()
        end = end.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            begin = [begin[i] for i in [0, 3, 1, 2]]
            end = [end[i] for i in [0, 3, 1, 2]]

J
jiangjiajun 已提交
865 866 867 868 869 870 871 872 873
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        attr = {
            "axes": [i for i in range(len(strides))],
            "starts": begin,
            "ends": end
        }
J
jiangjiajun 已提交
874 875 876 877
        node.fluid_code.add_layer("slice",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
878 879 880 881 882

    def Slice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        size = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
883 884
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(size.layer_name, node.layer_name)
J
jiangjiajun 已提交
885 886 887 888 889 890 891 892
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
            begin = self.decoder.infer_tensor(begin).tolist()
        if size.layer_type == "const":
            size = size.value.tolist()
        else:
            size = self.decoder.infer_tensor(size).tolist()
893

J
jiangjiajun 已提交
894 895 896 897
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            size = [size[i] for i in [0, 3, 1, 2]]
            begin = [begin[i] for i in [0, 3, 1, 2]]

898 899 900 901 902 903 904 905 906 907 908 909
        for i in range(len(size)):
            if size[i] < 0:
                size[i] = 99999999
            else:
                size[i] = size[i] + begin[i]

        attr = {
            "axes": [i for i in range(len(size))],
            "starts": begin,
            "ends": size
        }
        node.fluid_code.add_layer("slice",
J
jiangjiajun 已提交
910 911 912
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
913 914

    def Conv2DBackpropInput(self, node):
915
        out_shape = self.graph.get_node(node.layer.input[0], copy=True)
916
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
917 918
        input = self.graph.get_node(node.layer.input[2], copy=True)

919
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
920

J
jiangjiajun 已提交
921
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
922 923
        self.add_omit_nodes(out_shape.layer_name, node.layer_name)

J
jiangjiajun 已提交
924 925 926 927 928 929
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])

930
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
931 932
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
933
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
934 935 936
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
937
        pad_mode = node.get_attr("padding").decode()
938 939 940 941
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
942

J
jiangjiajun 已提交
943 944
        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
945 946 947 948
        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
949 950
        else:
            self.data_format_propagation(node)
951 952 953 954

        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
M
mamingjie-China 已提交
955
            "num_filters": k_size[2],
956 957
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
958
            "dilation": dilations[2:4],
M
mamingjie-China 已提交
959 960
            "padding": string(pad_mode),
            "output_size": out_shape[1:3]
961
        }
962 963 964 965
        node.fluid_code.add_layer("conv2d_transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
966 967 968 969 970 971

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
972 973 974 975 976
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
977 978 979 980 981 982 983 984 985 986
        node.fluid_code.add_layer("reduce_max",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
987 988 989 990 991
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
992 993 994 995 996
        node.fluid_code.add_layer("reduce_sum",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
997 998 999 1000 1001 1002 1003 1004
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        dtype = node.dtype_map[node.get_attr('DstT')]
        attr = {"dtype": string(dtype)}
        node.fluid_code.add_layer("cast",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1005

J
jiangjiajun 已提交
1006 1007 1008
    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0], copy=True)
        input = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1009
        self.add_omit_nodes(dim.layer_name, node.layer_name)
J
jiangjiajun 已提交
1010
        num_split = node.get_attr('num_split')
J
jiangjiajun 已提交
1011 1012 1013 1014 1015
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"num_or_sections": num_split, "dim": dim}
J
jiangjiajun 已提交
1016 1017 1018 1019
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(squeeze_dims)):
                squeeze_dims[i] = nhwc_dim_to_nchw(input, squeeze_dims[i])
        attr = {"axes": squeeze_dims}
        node.fluid_code.add_layer("squeeze",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = node.get_attr("axis")
J
jiangjiajun 已提交
1036 1037
        if axis is None:
            axis = -1 + len(input.out_shapes[0])
J
jiangjiajun 已提交
1038 1039 1040 1041 1042 1043 1044
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
        node.fluid_code.add_layer("softmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
1045 1046 1047 1048

    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1049
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
J
jiangjiajun 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(resize_shape)
        align_corners = node.get_attr("align_corners")
        attr = {"align_corners": align_corners, "out_shape": resize_shape}
        node.fluid_code.add_layer("resize_nearest",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1064
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
J
jiangjiajun 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(resize_shape)
        align_corners = node.get_attr("align_corners")
        attr = {
            "align_corners": align_corners,
            "out_shape": resize_shape,
            "align_mode": 1
        }
        node.fluid_code.add_layer("resize_bilinear",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1079 1080 1081 1082

    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1083
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {"align_corners": align_corners, "out_shape": resize_shape}
        node.fluid_code.add_layer("resize_nearest",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1099
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {
            "align_corners": align_corners,
            "out_shape": resize_shape,
            "align_mode": 1
        }
        node.fluid_code.add_layer("resize_bilinear",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1115 1116

    def GreaterEqual(self, node):
J
jiangjiajun 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("greater_equal",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0], copy=True)
        self.add_omit_nodes(shape.layer_name, node.layer_name)
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
        else:
            shape = self.decoder.infer_shape_tensor(shape)
        if len(shape) == 4 and node.tf_data_format == "NHWC":
            shape = [shape[i] for i in [0, 3, 1, 2]]
        attr = {"shape": shape, "min": 0.0, "max": 0.9999}
        if shape[0] < 0:
            input = self.batch_node
            node.fluid_code.add_layer("uniform_random_batch_size_like",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            node.fluid_code.add_layer("uniform_random",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
J
jiangjiajun 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

    def SquaredDifference(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("elementwise_sub",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
        inputs = {"x": node, "y": node}
        node.fluid_code.add_layer("elementwise_mul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)