onnx_decoder.py 19.3 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
from x2paddle.core.fluid_code import FluidCode
from onnx.checker import ValidationError
from onnx.checker import check_model
from onnx.utils import polish_model
from onnx import helper
from onnx.helper import get_attribute_value, make_attribute
from onnx.shape_inference import infer_shapes
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
from onnx.numpy_helper import to_array
C
channingss 已提交
25
from onnx import AttributeProto, TensorProto, GraphProto
C
update  
channingss 已提交
26 27
from collections import OrderedDict as Dict
import onnx
C
channingss 已提交
28
from onnx.helper import ValueInfoProto
C
update  
channingss 已提交
29 30
import numpy as np
from copy import deepcopy
C
channingss 已提交
31
import logging as _logging
C
channingss 已提交
32
import os
C
update  
channingss 已提交
33 34

default_op_domain = 'ai.onnx'
C
channingss 已提交
35
_logger = _logging.getLogger(__name__)
C
update  
channingss 已提交
36 37 38 39 40 41 42 43 44 45 46


class ONNXGraphNode(GraphNode):
    def __init__(self, layer, layer_name=None):
        if layer_name is None:
            super(ONNXGraphNode, self).__init__(layer, layer.name)
        else:
            super(ONNXGraphNode, self).__init__(layer, layer_name)
        self.layer_type = layer.op_type
        self.fluid_code = FluidCode()
        self.attr_map = self.get_attr_map()
C
channingss 已提交
47
        self.out_shapes = list()
C
update  
channingss 已提交
48
        self.dtype = None
C
channingss 已提交
49
        self.which_child = {}
C
update  
channingss 已提交
50 51 52 53 54 55 56 57 58 59 60 61

    def get_attr_map(self):
        """
        convert ONNX node attributes to dict
        """
        return {
            attr.name: self.get_attribute_value2(attr)
            for attr in self.layer.attribute
        }

    @property
    def value(self):
C
channingss 已提交
62 63 64
        assert 'Constant' in self.layer_type, "Only Constant | ConstantOfShape node has value."
        if 'value' not in self.attr_map:
            return None
C
channingss 已提交
65
        return self.attr_map['value']
C
update  
channingss 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

    def get_attribute_value2(self, attr):
        """
        get_attribute_value enhanced
        """
        if attr.type == onnx.AttributeProto.TENSOR:
            dtype = np.dtype(TENSOR_TYPE_TO_NP_TYPE[attr.t.data_type])
            data = attr.t.raw_data
            value = np.frombuffer(data,
                                  dtype=dtype,
                                  count=(len(data) // dtype.itemsize))
        elif attr.type == onnx.AttributeProto.STRING:
            value = attr.s
            value = value.decode() if isinstance(value, bytes) else value
        else:
            value = get_attribute_value(attr)
        return value

    def get_attr(self, name, default=None):
        """
        get_attribute_value from attr_map
        """
        if name not in self.attr_map:
            return default
        return self.attr_map[name]


class ONNXGraphDataNode(GraphNode):
    def __init__(self, layer, layer_name=None, is_global_input=False):
        if layer_name is None:
            super(ONNXGraphDataNode, self).__init__(layer, layer.name)
        else:
            super(ONNXGraphDataNode, self).__init__(layer, layer_name)
        if is_global_input:
            self.layer_type = 'place_holder'
        else:
            self.layer_type = 'create_parameter'
        self.layer_name = layer_name
        self.fluid_code = FluidCode()
        self.weight = None
        self.embeded_as = None
C
channingss 已提交
107
        self.which_child = {}
C
update  
channingss 已提交
108 109 110

    @property
    def out_shapes(self):
C
channingss 已提交
111 112 113 114 115 116 117 118 119 120
        if isinstance(self.layer, ValueInfoProto):
            values = self.layer.type.tensor_type.shape.dim
            out_shapes = list()
            out_shapes.append([dim.dim_value for dim in values])
            return out_shapes
        else:
            values = self.layer.dims
            out_shapes = list()
            out_shapes.append(values)
            return out_shapes
C
update  
channingss 已提交
121 122 123

    @property
    def dtype(self):
C
channingss 已提交
124 125 126 127 128 129
        if isinstance(self.layer, ValueInfoProto):
            dtype = self.layer.type.tensor_type.elem_type
            return TENSOR_TYPE_TO_NP_TYPE[dtype]
        else:
            dtype = self.layer.data_type
            return TENSOR_TYPE_TO_NP_TYPE[dtype]
C
update  
channingss 已提交
130 131 132


class ONNXGraph(Graph):
C
channingss 已提交
133
    def __init__(self, onnx_model):
C
channingss 已提交
134
        super(ONNXGraph, self).__init__(onnx_model.graph)
C
channingss 已提交
135
        self.onnx_model = onnx_model
C
update  
channingss 已提交
136 137 138
        self.initializer = {}
        self.place_holder_nodes = list()
        self.get_place_holder_nodes()
C
channingss 已提交
139
        self.value_infos = self.inferred_model_value_info(self.model)
C
channingss 已提交
140
        self.results_of_inference = dict()
C
update  
channingss 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

    def get_inner_nodes(self):
        """
        generate inner node of ONNX model
        """
        inner_nodes = []
        if not isinstance(self.model, onnx.GraphProto):
            logger.error('graph is not a GraphProto instance')
            return
        for initializer in self.model.initializer:
            name = initializer.name
            inner_nodes.append(name)
        return inner_nodes

    def get_place_holder_nodes(self):
        """
        generate place_holder node of ONNX model
        """
        inner_nodes = self.get_inner_nodes()
        input_nodes = [value.name for value in self.model.input]
        for ipt_data in input_nodes:
            if ipt_data not in inner_nodes:
                self.place_holder_nodes.append(ipt_data)

C
channingss 已提交
165 166 167 168 169 170 171 172 173 174
    def get_output_nodes(self):
        """
        generate output_nodes node of ONNX model
        """
        inner_nodes = self.get_inner_nodes()
        output_nodes = [value.name for value in self.model.output]
        for opt_data in output_nodes:
            if opt_data not in inner_nodes:
                self.output_nodes.append(opt_data)

C
update  
channingss 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
    def is_place_holder_nodes(self, layer):
        """
        return layer is or not place_holder node
        """
        if layer in self.place_holder_nodes:
            return True
        return False

    def build(self):
        """
        build topo_sort of ONNX model
        """
        for layer in self.model.node:
C
channingss 已提交
188 189
            node = ONNXGraphNode(layer)
            self.node_map[layer.name] = node
C
update  
channingss 已提交
190 191 192 193 194 195 196 197

        for layer in self.model.input:
            if layer.name not in self.node_map:
                is_place_holder = self.is_place_holder_nodes(layer.name)
                self.node_map[layer.name] = ONNXGraphDataNode(
                    layer,
                    layer_name=layer.name,
                    is_global_input=is_place_holder)
C
channingss 已提交
198

C
update  
channingss 已提交
199
        #set data node's weight
C
channingss 已提交
200 201 202
        for initializer in self.model.initializer:
            name = initializer.name
            weight = to_array(initializer)
C
update  
channingss 已提交
203 204 205 206
            if name in self.node_map:
                if isinstance(self.node_map[name], ONNXGraphDataNode):
                    self.node_map[name].weight = weight
                    self.node_map[name].embeded_as = []
C
channingss 已提交
207 208 209 210 211 212
            else:
                self.node_map[name] = ONNXGraphDataNode(initializer,
                                                        layer_name=name,
                                                        is_global_input=False)
                self.node_map[name].weight = weight
                self.node_map[name].embeded_as = []
C
update  
channingss 已提交
213 214 215 216

        #generate connection between nodes for topo
        for layer_name, node in self.node_map.items():
            if isinstance(node, ONNXGraphNode):
217 218
                self.build_connection(layer_name, node)

C
channingss 已提交
219
        #generate topo
C
update  
channingss 已提交
220 221 222 223
        super(ONNXGraph, self).build()

        self.input_nodes = self.place_holder_nodes

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    def build_connection(self, layer_name, node):
        """
        find connection for nodes
        """
        for idx, in_node in enumerate(node.layer.input):
            if in_node == '':
                continue
            if in_node not in self.node_map:
                flag = 0
                for nd in self.model.node:
                    for idx, opt in enumerate(nd.output):
                        if opt == in_node:
                            self.connect(nd.name, layer_name)
                            flag = 1
                            node.which_child[nd.name] = idx
                            self.node_map[nd.name].index = 0
                            break
                    if flag == 1:
                        break
                if flag == 0:
                    raise Exception(
                        'input[{}] of node[{}] does not exist in node_map'.
                        format(in_node, layer_name))
            else:
                self.connect(in_node, layer_name)

C
channingss 已提交
250 251
    def get_input_node(self, node, idx=0, copy=False):
        if len(node.which_child) == 0:
C
channingss 已提交
252 253 254
            ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
            return ipt_node

C
channingss 已提交
255 256 257 258 259
        else:
            ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
            if ipt_node.layer_name in node.which_child:
                ipt_node.index = node.which_child[ipt_node.layer_name]
            return ipt_node
C
update  
channingss 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

    def graph_weights(self, graph):
        """
        generator for weights
        """

        if not isinstance(graph, onnx.GraphProto):
            logger.error('graph is not a GraphProto instance')
            return

        for initializer in graph.initializer:
            name = initializer.name
            weight = to_array(initializer)
            yield name, weight

C
channingss 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    def inferred_model_value_info(self, graph):
        """
        collect value/type info for an ONNX model
        """
        assert isinstance(graph,
                          onnx.GraphProto), 'model is not a ModelProto instance'

        value_info = Dict()
        for item in graph.value_info:
            value_info[item.name] = {
                'dtype':
                TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
                'shape':
                [dim.dim_value for dim in item.type.tensor_type.shape.dim],
                'external': False
            }
        for item in graph.input:
            assert item.name not in value_info
            value_info[item.name] = {
                'dtype':
                TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
                'shape':
                [dim.dim_value for dim in item.type.tensor_type.shape.dim],
                'external': True
            }
        for item in graph.output:
C
channingss 已提交
301
            assert item.name not in value_info
C
channingss 已提交
302 303 304 305 306 307 308 309 310
            value_info[item.name] = {
                'dtype':
                TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
                'shape':
                [dim.dim_value for dim in item.type.tensor_type.shape.dim],
                'external': True
            }
        return value_info

C
update  
channingss 已提交
311 312

class ONNXDecoder(object):
C
channingss 已提交
313
    def __init__(self, onnx_model):
C
update  
channingss 已提交
314 315
        model = onnx.load(onnx_model)
        print('model ir_version: {}, op version: {}'.format(
C
channingss 已提交
316 317 318
            model.ir_version, model.opset_import[0].version))
        if model.opset_import[0].version < 9:
            _logger.warning(
319
                'Now, onnx2paddle support convert onnx model opset_verison == 9,'
C
channingss 已提交
320
                'opset_verison of your onnx model is %d < 9,'
321
                'some operator maybe unsuccessful in convertion.',
C
channingss 已提交
322
                model.opset_import[0].version)
C
update  
channingss 已提交
323

C
channingss 已提交
324
        check_model(model)
325 326
        self.check_model_running_state(onnx_model)

C
channingss 已提交
327
        model = onnx.shape_inference.infer_shapes(model)
C
update  
channingss 已提交
328 329 330 331 332
        model = self.optimize_model_skip_op_for_inference(model)
        model = self.optimize_model_strip_initializer(model)
        self.standardize_variable_name(model.graph)

        self.model = model
C
channingss 已提交
333
        graph = model.graph
C
channingss 已提交
334
        self.onnx_graph = ONNXGraph(model)
C
update  
channingss 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        self.onnx_graph.build()

    def build_value_refs(self, nodes):
        """
        build op reference of inputs and outputs
        """
        input_refs = Dict()
        output_refs = Dict()
        for idx, node in enumerate(nodes):
            for val_name in node.input:
                input_refs.setdefault(val_name, set()).add(idx)
            for val_name in node.output:
                output_refs.setdefault(val_name, set()).add(idx)
        return input_refs, output_refs

    def skip_node_forward(self, nodes, src_output_name, dst_input_name,
                          input_refs):
        """
        skip nodes between src_output_name -> dst_input_name and connect this pair
        """
        processed = 0
        for next_idx in input_refs[src_output_name]:
            next_node = nodes[next_idx]
            for val_idx, next_input_name in enumerate(next_node.input):
                if next_input_name == src_output_name:
                    next_node.input[val_idx] = dst_input_name
                    processed += 1
        return processed

    def skip_node_backward(self, nodes, src_input_name, dst_output_name,
                           output_refs):
        """
        skip nodes between dst_output_name -> src_input_name and connect this pair
        """
        processed = 0
        for prev_idx in output_refs[src_input_name]:
            prev_node = nodes[prev_idx]
            for val_idx, prev_output_name in enumerate(prev_node.output):
                if prev_output_name == src_input_name:
                    prev_node.output[val_idx] = dst_output_name
                    processed += 1
        return processed

    def optimize_model_skip_op_for_inference(self, model, op_list=None):
        """
        skip ops can be bypassed for inference
        """
        if op_list is None:
            op_list = ['Dropout']

        nodes = model.graph.node
        input_refs, output_refs = self.build_value_refs(nodes)
        ret = type(model)()
        ret.CopyFrom(model)
        ret_nodes = ret.graph.node
        nodes_to_remove = []
        for node_idx, node in enumerate(nodes):
            if not (node.domain == default_op_domain or node.domain == ''):
                continue
            op_type = node.op_type
            if not (op_type in op_list):
                continue
            if op_type in ['Dropout']:
                input_name = node.input[0]
                output_name = node.output[0]
            elif not (len(node.input) == 1 and len(node.output) == 1):
                print(
                    'currently only 1-input-1-output op supported, skip required %d: %s',
                    node_idx, node.op_type)
                continue
            else:
                input_name = node.input[0]
                output_name = node.output[0]

            if output_name in input_refs:
                processed = self.skip_node_forward(ret_nodes, output_name,
                                                   input_name, input_refs)
            elif input_name in output_refs:
                processed = self.skip_node_backward(ret_nodes, input_name,
                                                    output_name, output_refs)
            else:
                processed = -1
            if processed > 0:
                nodes_to_remove.append(node_idx)
C
channingss 已提交
419 420 421 422 423
                for value_info in ret.graph.value_info:
                    for output in node.output:
                        if value_info.name == output:
                            ret.graph.value_info.remove(value_info)

C
update  
channingss 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
                print('skip op {}: {} -> {} -> {}'.format(
                    node_idx, input_name, node.op_type, output_name))
            elif processed == 0:
                print('weird, no node processed')
            else:
                print('standalone op {}: {} -> {} -> {} not skipped'.format(
                    node_idx, input_name, node.op_type, output_name))

        nodes_to_remove.sort(reverse=True)
        for node_idx in nodes_to_remove:
            ret_nodes.pop(node_idx)
        return ret

    def optimize_model_strip_initializer(self, model, keep_input_only=True):
        """
        strip weights for inference
        """
        nodes = model.graph.node
        input_refs, output_refs = self.build_value_refs(nodes)
        out_names = [val.name for val in model.graph.output]

        ret = type(model)()
        ret.CopyFrom(model)
        # strip initializers
        ret.graph.ClearField('initializer')
        ret_initializers = ret.graph.initializer
        for initializer in model.graph.initializer:
            name = initializer.name
            if name in input_refs:
                ret_initializers.add().CopyFrom(initializer)
            elif not keep_input_only and name in output_refs:
                ret_initializers.add().CopyFrom(initializer)
            else:
                dtype = TENSOR_TYPE_TO_NP_TYPE[initializer.data_type]

        # strip inputs
        ret.graph.ClearField('input')
        ret_inputs = ret.graph.input
        for item in model.graph.input:
            name = item.name
            if name in input_refs or name in out_names:
                ret_inputs.add().CopyFrom(item)
        return ret

    def make_variable_name(self, name):
        """
        make a valid code name for ParamAttr
        """
        if name == '':
            raise ValueError('name should not be empty')
C
channingss 已提交
474
        for s in ' .*?\\/-:':
C
update  
channingss 已提交
475
            name = name.replace(s, '_')
476 477 478
        return 'x2paddle_' + name

    def check_model_running_state(self, model_path):
R
root 已提交
479
        import onnxruntime as rt
480 481 482
        model = onnx.load(model_path)
        model = onnx.shape_inference.infer_shapes(model)
        if len(model.graph.value_info) < len(model.graph.node) - 1:
R
root 已提交
483
            _logger.warning(
C
channingss 已提交
484
                'During conversion of your  model, some operators will be assignd node.out_shape==None, '
R
root 已提交
485
                'refer to https://github.com/onnx/onnx/blob/master/docs/ShapeInference.md'
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
            )
        try:
            datatype_map = {
                'tensor(int64)': 'int',
                'tensor(float)': 'float32',
                'tensor(int32)': 'int32'
            }
            input_dict = {}
            sess = rt.InferenceSession(model_path)
            for ipt in sess.get_inputs():
                datatype = datatype_map[ipt.type]
                input_dict[ipt.name] = np.random.random(
                    ipt.shape).astype(datatype)

            res = sess.run(None, input_feed=input_dict)
        except:
            raise Exception(
                "onnxruntime inference onnx model failed, Please confirm the correctness of onnx model by onnxruntime, if onnx model is correct, please submit issue in github."
            )
C
update  
channingss 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518

    def standardize_variable_name(self, graph):
        """
        standardize variable name for paddle's code
        """
        for initializer in graph.initializer:
            initializer.name = self.make_variable_name(initializer.name)
        for ipt in graph.input:
            ipt.name = self.make_variable_name(ipt.name)
        for output in graph.output:
            output.name = self.make_variable_name(output.name)
        for item in graph.value_info:
            item.name = self.make_variable_name(item.name)
        for node in graph.node:
C
channingss 已提交
519
            node.name = node.output[0]
C
update  
channingss 已提交
520 521
            node.name = self.make_variable_name(node.name)
            for i in range(len(node.input)):
522 523 524 525
                if node.input[i] == '':
                    continue
                else:
                    node.input[i] = self.make_variable_name(node.input[i])
C
update  
channingss 已提交
526 527
            for i in range(len(node.output)):
                node.output[i] = self.make_variable_name(node.output[i])