resnet.py 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
import paddle
import paddle.nn as nn
from paddle import Tensor
from paddle.utils.download import get_weights_path_from_url
from typing import Type, Any, Callable, Union, List, Optional
from x2paddle import torch2paddle

__all__ = [
    'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152',
    'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
]

model_urls = {
    'resnet18':
    'https://x2paddle.bj.bcebos.com/vision/models/resnet18-pt.pdparams',
    'resnet34':
    'https://x2paddle.bj.bcebos.com/vision/models/resnet34-pt.pdparams',
    'resnet50':
    'https://x2paddle.bj.bcebos.com/vision/models/resnet50-pt.pdparams',
    'resnet101':
    'https://x2paddle.bj.bcebos.com/vision/models/resnet101-pt.pdparams',
    'resnet152':
    'https://x2paddle.bj.bcebos.com/vision/models/resnet152-pt.pdparams',
    'resnext50_32x4d':
    'https://x2paddle.bj.bcebos.com/vision/models/resnext50_32x4d-pt.pdparams',
    'resnext101_32x8d':
    'https://x2paddle.bj.bcebos.com/vision/models/resnext101_32x8d-pt.pdparams',
    'wide_resnet50_2':
    'https://x2paddle.bj.bcebos.com/vision/models/wide_resnet50_2-pt.pdparams',
    'wide_resnet101_2':
    'https://x2paddle.bj.bcebos.com/vision/models/wide_resnet101_2-pt.pdparams',
}


def conv3x3(in_planes: int,
            out_planes: int,
            stride: int=1,
            groups: int=1,
            dilation: int=1) -> nn.Conv2D:
    """3x3 convolution with padding"""
    return nn.Conv2D(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias_attr=False,
        dilation=dilation)


def conv1x1(in_planes: int, out_planes: int, stride: int=1) -> nn.Conv2D:
    """1x1 convolution"""
    return nn.Conv2D(
        in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)


class BasicBlock(nn.Layer):
    expansion: int = 1

    def __init__(self,
                 inplanes: int,
                 planes: int,
                 stride: int=1,
                 downsample: Optional[nn.Layer]=None,
                 groups: int=1,
                 base_width: int=64,
                 dilation: int=1,
                 norm_layer: Optional[Callable[..., nn.Layer]]=None) -> None:
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError(
                'BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            raise NotImplementedError(
                "Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
82
        self.relu = torch2paddle.ReLU(True)
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Layer):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

    expansion: int = 4

    def __init__(self,
                 inplanes: int,
                 planes: int,
                 stride: int=1,
                 downsample: Optional[nn.Layer]=None,
                 groups: int=1,
                 base_width: int=64,
                 dilation: int=1,
                 norm_layer: Optional[Callable[..., nn.Layer]]=None) -> None:
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2D
        width = int(planes * (base_width / 64.)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
136
        self.relu = torch2paddle.ReLU(True)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Layer):
    def __init__(self,
                 block: Type[Union[BasicBlock, Bottleneck]],
                 layers: List[int],
                 num_classes: int=1000,
                 zero_init_residual: bool=False,
                 groups: int=1,
                 width_per_group: int=64,
                 replace_stride_with_dilation: Optional[List[bool]]=None,
                 norm_layer: Optional[Callable[..., nn.Layer]]=None) -> None:
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2D
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(
                                 replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2D(
            3,
            self.inplanes,
            kernel_size=7,
            stride=2,
            padding=3,
            bias_attr=False)
        self.bn1 = norm_layer(self.inplanes)
198
        self.relu = torch2paddle.ReLU(True)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(
            block,
            128,
            layers[1],
            stride=2,
            dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(
            block,
            256,
            layers[2],
            stride=2,
            dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(
            block,
            512,
            layers[3],
            stride=2,
            dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2D((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.sublayers():
            if isinstance(m, nn.Conv2D):
                torch2paddle.kaiming_normal_(
                    m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2D, nn.GroupNorm)):
                torch2paddle.constant_init_(m.weight, 1)
                torch2paddle.constant_init_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.sublayers():
                if isinstance(m, Bottleneck):
                    torch2paddle.constant_init_(m.bn3.weight,
                                                0)  # type: ignore[arg-type]
                elif isinstance(m, BasicBlock):
                    torch2paddle.constant_init_(m.bn2.weight,
                                                0)  # type: ignore[arg-type]

    def _make_layer(self,
                    block: Type[Union[BasicBlock, Bottleneck]],
                    planes: int,
                    blocks: int,
                    stride: int=1,
                    dilate: bool=False) -> nn.Sequential:
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion), )

        layers = []
        layers.append(
            block(self.inplanes, planes, stride, downsample, self.groups,
                  self.base_width, previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer))

        return nn.Sequential(*layers)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = paddle.flatten(x, 1)
        x = self.fc(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def _resnet(arch: str,
            block: Type[Union[BasicBlock, Bottleneck]],
            layers: List[int],
            pretrained: bool,
            **kwargs: Any) -> ResNet:
    model = ResNet(block, layers, **kwargs)
    if pretrained:
W
WJJ1995 已提交
305
        state_dict = paddle.load(get_weights_path_from_url(model_urls[arch]))
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        model.load_dict(state_dict)
    return model


def resnet18(pretrained: bool=False, progress: bool=True,
             **kwargs: Any) -> ResNet:
    r"""ResNet-18 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, **kwargs)


def resnet34(pretrained: bool=False, progress: bool=True,
             **kwargs: Any) -> ResNet:
    r"""ResNet-34 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, **kwargs)


def resnet50(pretrained: bool=False, progress: bool=True,
             **kwargs: Any) -> ResNet:
    r"""ResNet-50 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, **kwargs)


def resnet101(pretrained: bool=False, progress: bool=True,
              **kwargs: Any) -> ResNet:
    r"""ResNet-101 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, **kwargs)


def resnet152(pretrained: bool=False, progress: bool=True,
              **kwargs: Any) -> ResNet:
    r"""ResNet-152 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, **kwargs)


def resnext50_32x4d(pretrained: bool=False, progress: bool=True,
                    **kwargs: Any) -> ResNet:
    r"""ResNeXt-50 32x4d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 4
    return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], pretrained,
                   **kwargs)


def resnext101_32x8d(pretrained: bool=False, progress: bool=True,
                     **kwargs: Any) -> ResNet:
    r"""ResNeXt-101 32x8d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 8
    return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], pretrained,
                   **kwargs)


def wide_resnet50_2(pretrained: bool=False, progress: bool=True,
                    **kwargs: Any) -> ResNet:
    r"""Wide ResNet-50-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['width_per_group'] = 64 * 2
    return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], pretrained,
                   **kwargs)


def wide_resnet101_2(pretrained: bool=False, progress: bool=True,
                     **kwargs: Any) -> ResNet:
    r"""Wide ResNet-101-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['width_per_group'] = 64 * 2
    return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], pretrained,
                   **kwargs)