__init__.py 3.1 KB
Newer Older
S
SunAhong1993 已提交
1 2 3
from .register import get_registered_layers

#custom layer import begins
S
SunAhong1993 已提交
4 5 6 7 8 9 10
from . import roipooling
from . import priorbox
from . import permute
from . import detectionoutput
from . import normalize
from . import select
from . import shufflechannel
S
SunAhong1993 已提交
11
from . import convolutiondepthwise
S
SunAhong1993 已提交
12
from . import axpy
13 14
from . import upsample
from . import relu6
S
SunAhong1993 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#custom layer import ends

custom_layers = get_registered_layers()


def set_args(f, params):
    """ set args for function 'f' using the parameters in node.layer.param
    Args:
        f (function): a python function object
        params (object): a object contains attributes needed by f's arguments
    Returns:
        arg_names (list): a list of argument names
        kwargs (dict): a dict contains needed arguments
    """
    argc = f.__code__.co_argcount
    arg_list = f.__code__.co_varnames[0:argc]
    kwargs = {}
    for arg_name in arg_list:
        if hasattr(params, arg_name) and params is not None:
            kwargs[arg_name] = getattr(params, arg_name)
    return arg_list, kwargs


def has_layer(layer_type):
    """ test whether this layer exists in custom layer
    """
    return layer_type in custom_layers


def get_params(layer, layer_type):
S
SunAhong1993 已提交
45
    import re
S
SunAhong1993 已提交
46 47 48 49 50
    if layer_type.lower() == "deconvolution" or layer_type.lower(
    ) == "convolutiondepthwise":
        param_name = '_'.join(('convolution', 'param'))
    elif layer_type.lower() == "normalize":
        param_name = '_'.join(('norm', 'param'))
S
SunAhong1993 已提交
51 52 53 54 55 56 57 58 59 60
    elif len(layer_type) - len(re.sub("[A-Z]", "", layer_type)) >= 2:
        s = ''
        tmp_name = ''
        for i, ch in enumerate(layer_type):
            if i == 0:
                s += ch.lower()
                continue
            elif ch.isupper() and layer_type[i - 1].islower():
                tmp_name += (s + '_')
                s = ''
S
SunAhong1993 已提交
61
            s += ch.lower()
S
SunAhong1993 已提交
62 63
        tmp_name += s
        param_name = '_'.join((tmp_name, 'param'))
S
SunAhong1993 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    else:
        param_name = '_'.join((layer_type.lower(), 'param'))
    return getattr(layer, param_name, None)


def compute_output_shape(node):
    """ compute the output shape of custom layer
    """
    layer_type = node.layer_type
    assert layer_type in custom_layers, "layer[%s] not exist in custom layers" % (
        layer_type)
    shape_func = custom_layers[layer_type]['shape']
    layer = node.layer
    params = get_params(layer, layer_type)
    arg_names, kwargs = set_args(shape_func, params)
    input_shape = node.input_shape
    return shape_func(input_shape, **kwargs)


def make_custom_layer(node):
    """ get the code which implement the custom layer function
    """
    layer_type = node.layer_type
    assert layer_type in custom_layers, "layer[%s] not exist in custom layers" % (
        layer_type)
    layer_func = custom_layers[layer_type]['layer']
    import inspect
    return inspect.getsource(layer_func), layer_func


def deal_weights(node, data=None):
    """ deal the weights of the custom layer
    """
    layer_type = node.layer_type
    weights_func = custom_layers[layer_type]['weights']
    name = node.layer_name
    return weights_func(name, data)