nn.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
# Copyright (c) 2021  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from .utils import *


class AvgPool1D(paddle.nn.AvgPool1D):
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 ceil_mode=False,
                 count_include_pad=True,
                 divisor_override=None):
        super().__init__(
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            ceil_mode=padding,
            exclusive=count_include_pad,
            divisor_override=divisor_override)


class AvgPool2D(paddle.nn.AvgPool2D):
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 ceil_mode=False,
                 count_include_pad=True,
                 divisor_override=None):
        super().__init__(
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            ceil_mode=padding,
            exclusive=count_include_pad,
            divisor_override=divisor_override)


class AvgPool3D(paddle.nn.AvgPool3D):
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 ceil_mode=False,
                 count_include_pad=True,
                 divisor_override=None):
        super().__init__(
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            ceil_mode=padding,
            exclusive=count_include_pad,
            divisor_override=divisor_override)


class BatchNorm1D(paddle.nn.BatchNorm1D):
    def __init__(self,
                 num_features,
                 eps=1e-05,
                 momentum=0.1,
                 affine=True,
                 track_running_stats=True):
        momentum = 1 - momentum
        weight_attr = None
        bias_attr = None
        if not affine:
            weight_attr = paddle.ParamAttr(learning_rate=0.0)
            bias_attr = paddle.ParamAttr(learning_rate=0.0)
        super().__init__(
            num_features,
            momentum=momentum,
            epsilon=eps,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            use_global_stats=track_running_stats)


class BatchNorm2D(paddle.nn.BatchNorm2D):
    def __init__(self,
                 num_features,
                 eps=1e-05,
                 momentum=0.1,
                 affine=True,
                 track_running_stats=True):
        momentum = 1 - momentum
        weight_attr = None
        bias_attr = None
        if not affine:
            weight_attr = paddle.ParamAttr(learning_rate=0.0)
            bias_attr = paddle.ParamAttr(learning_rate=0.0)
        super().__init__(
            num_features,
            momentum=momentum,
            epsilon=eps,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            use_global_stats=track_running_stats)


class BatchNorm3D(paddle.nn.BatchNorm3D):
    def __init__(self,
                 num_features,
                 eps=1e-05,
                 momentum=0.1,
                 affine=True,
                 track_running_stats=True):
        momentum = 1 - momentum
        weight_attr = None
        bias_attr = None
        if not affine:
            weight_attr = paddle.ParamAttr(learning_rate=0.0)
            bias_attr = paddle.ParamAttr(learning_rate=0.0)
        super().__init__(
            num_features,
            momentum=momentum,
            epsilon=eps,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            use_global_stats=track_running_stats)


class BCEWithLogitsLoss(paddle.nn.BCEWithLogitsLoss):
    def __init__(self,
                 weight=None,
                 size_average=None,
                 reduce=None,
                 reduction='mean',
                 pos_weight=None):
        super().__init__(weight, reduction=reduction, pos_weight=pos_weight)


@property
def in_channels(self):
    return self._in_channels


setattr(paddle.nn.layer.conv._ConvNd, "in_channels", in_channels)


@property
def out_channels(self):
    return self._out_channels


setattr(paddle.nn.layer.conv._ConvNd, "out_channels", out_channels)


@property
def kernel_size(self):
    return self._kernel_size


setattr(paddle.nn.layer.conv._ConvNd, "kernel_size", kernel_size)


@property
def stride(self):
    return self._stride


setattr(paddle.nn.layer.conv._ConvNd, "stride", stride)


@property
def padding(self):
    return self._padding


setattr(paddle.nn.layer.conv._ConvNd, "padding", padding)


@property
def dilation(self):
    return self._dilation


setattr(paddle.nn.layer.conv._ConvNd, "dilation", dilation)


@property
def groups(self):
    return self._groups


setattr(paddle.nn.layer.conv._ConvNd, "groups", groups)


class ConstantPad2D(paddle.nn.Pad2D):
    def __init__(self, padding, value):
        super().__init__(padding, value=value)


class Conv1D(paddle.nn.Conv1D):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=True,
                 padding_mode='zeros'):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            padding_mode=padding_mode,
            bias_attr=bias if not bias else None)


class Conv2D(paddle.nn.Conv2D):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=True,
                 padding_mode='zeros'):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            padding_mode=padding_mode,
            bias_attr=bias if not bias else None)


class Conv3D(paddle.nn.Conv3D):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=True,
                 padding_mode='zeros'):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            padding_mode=padding_mode,
            bias_attr=bias if not bias else None)


class Conv2DTranspose(paddle.nn.Conv2DTranspose):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 bias=True,
                 dilation=1,
                 padding_mode='zeros'):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
            groups=groups,
            dilation=dilation,
            bias_attr=bias if not bias else None)
        assert padding_mode == 'zeros', "The padding_mode must be zero in Conv2DTranspose."


class CrossEntropyLoss(paddle.nn.CrossEntropyLoss):
    def __init__(self,
                 weight=None,
                 size_average=None,
                 ignore_index=-100,
                 reduce=None,
                 reduction='mean'):
        super().__init__(weight, reduction=reduction, ignore_index=ignore_index)


class Dropout(paddle.nn.Dropout):
    def __init__(self, p=0.5, inplace=False):
        super().__init__(p)


class Embedding(paddle.nn.Embedding):
    def __init__(self,
                 num_embeddings,
                 embedding_dim,
                 padding_idx=None,
                 max_norm=None,
                 norm_type=2.0,
                 scale_grad_by_freq=False,
                 sparse=False,
                 _weight=None):
        super().__init__(
            num_embeddings,
            embedding_dim,
            padding_idx=padding_idx,
            sparse=sparse)
        assert max_norm is None, "The max_norm must be None in Embedding!"
        assert not scale_grad_by_freq, "The scale_grad_by_freq must False None in Embedding!"


class Identity(paddle.nn.Layer):
    def __init__(self, *args, **kwargs):
        super().__init__()

    def forward(self, input):
        return input


class GroupNorm(paddle.nn.GroupNorm):
    def __init__(num_groups, num_channels, eps=1e-05, affine=True):
        if not affine:
            weight_attr = False
            bias_attr = False
        else:
            weight_attr = None
            bias_attr = None
        super().__init__(num_groups, num_channels, eps, weight_attr, bias_attr)


class InstanceNorm2D(paddle.nn.InstanceNorm2D):
    def __init__(self,
                 num_features,
                 eps=1e-05,
                 momentum=0.1,
                 affine=False,
                 track_running_stats=False):
        momentum = 1 - momentum
        weight_attr = None
        bias_attr = None
        if not affine:
            weight_attr = paddle.ParamAttr(learning_rate=0.0)
            bias_attr = paddle.ParamAttr(learning_rate=0.0)
        super().__init__(
            num_features,
            momentum=momentum,
            epsilon=eps,
            weight_attr=weight_attr,
            bias_attr=bias_attr)


class KLDivLoss(paddle.nn.Layer):
    def __init__(self,
                 size_average=None,
                 reduce=None,
                 reduction='mean',
                 log_target=False):
        super().__init__()
        self.reduction = reduction
        self.log_target = log_target

    def forward(self, input, target):
        if self.log_target:
            out = paddle.exp(target) * (target - input)
        else:
            out_pos = target * (paddle.log(target) - input)
            zeros = paddle.zeros_like(out_pos)
            out = paddle.where(target > 0, out_pos, zeros)
        out_sum = paddle.sum(out)
        if self.reduction == "sum":
            return out_sum
        elif self.reduction == "batchmean":
            n = input.shape[0]
            return out_sum / n
        elif self.reduction == "mean":
            return paddle.mean(out)
        else:
            return out


class LayerNorm(paddle.nn.LayerNorm):
    def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True):
        if not elementwise_affine:
            weight_attr = False
            bias_attr = False
        else:
            weight_attr = None
            bias_attr = None
        super().__init__(normalized_shape, eps, weight_attr, bias_attr)


class Linear(paddle.nn.Linear):
    def __init__(self, in_features, out_features, bias=True):
        super().__init__(
            in_features, out_features, bias_attr=bias if not bias else None)


class L1Loss(paddle.nn.L1Loss):
    def __init__(self, size_average=None, reduce=None, reduction='mean'):
        super().__init__(reduction=reduction)


class MaxPool1D(paddle.nn.MaxPool1D):
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 dilation=1,
                 return_indices=False,
                 ceil_mode=False):
        super().__init__(
            kernel_size,
            stride=stride,
            padding=padding,
            ceil_mode=ceil_mode,
            return_mask=return_indices)
        assert dilation == 1, "The dilation must be 1 in MaxPool1D."


class MaxPool2D(paddle.nn.MaxPool2D):
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 dilation=1,
                 return_indices=False,
                 ceil_mode=False):
        super().__init__(
            kernel_size,
            stride=stride,
            padding=padding,
            ceil_mode=ceil_mode,
            return_mask=return_indices)
        assert dilation == 1, "The dilation must be 1 in MaxPool2D."


class MaxPool3D(paddle.nn.MaxPool3D):
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 dilation=1,
                 return_indices=False,
                 ceil_mode=False):
        super().__init__(
            kernel_size,
            stride=stride,
            padding=padding,
            ceil_mode=ceil_mode,
            return_mask=return_indices)
        assert dilation == 1, "The dilation must be 1 in MaxPool3D."


import paddle
import paddle.nn as nn
TYPE_MAPPER = {"fp16": "float16", "fp32": "float32", "fp64": "float64"}


class MaxUnpool2D(paddle.nn.Layer):
    def __init__(self, kernel_size, stride=None, padding=0):
        super().__init__()
        if isinstance(stride, int):
            self.kernel_size = (kernel_size, kernel_size)
        else:
            self.kernel_size = kernel_size
        if stride is None:
            self.stride = self.kernel_size
        else:
            if isinstance(stride, int):
                self.stride = (stride, stride)
            else:
                self.stride = stride
        if isinstance(padding, int):
            self.padding = (padding, padding)
        else:
            self.padding = padding

    def forward(self, input, indices, output_size=None):
        if output_size is None:
            n, c, h, w = input.shape
            out_h = (
                h - 1
            ) * self.stride[0] - 2 * self.padding[0] + self.kernel_size[0]
            out_w = (
                w - 1
            ) * self.stride[1] - 2 * self.padding[1] + self.kernel_size[1]
            output_size = (n, c, out_h, out_w)
        else:
            if len(output_size) == len(self.kernel_size) + 2:
                output_size = output_size[2:]
        t = str(input.dtype).lower().strip().split(".")[-1]
        t = TYPE_MAPPER[t]
        out = paddle.zeros(output_size, dtype=t)
        flatten_out = paddle.flatten(out)
        for i in range(indices.shape[0]):
            for j in range(indices.shape[1]):
                for k in range(indices.shape[2]):
                    for m in range(indices.shape[3]):
                        indices[i, j, k, m] = (out.shape[1] * out.shape[2] * out.shape[3]) * i + \
                                              (out.shape[2] * out.shape[3]) * j + indices[i, j, k, m]
        flatten_indices = paddle.flatten(indices)
        flatten_input = paddle.flatten(input)
        for i in range(flatten_indices.shape[0]):
            flatten_out[flatten_indices[i].tolist()] = flatten_input[i].tolist()
        out = paddle.reshape(flatten_out, out.shape)
        return out


532 533 534 535 536 537 538 539 540 541 542 543 544
class ReLU(paddle.nn.ReLU):
    def __init__(self, inplace=False):
        super().__init__()
        self.inplace = inplace

    def forward(self, x):
        if self.inplace:
            out = paddle.nn.functional.relu_(x)
        else:
            out = super().forward(x)
        return out


545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
class ReflectionPad2D(paddle.nn.Pad2D):
    def __init__(self, padding):
        super().__init__(padding, mode="reflect")


class ReplicationPad2D(paddle.nn.Pad2D):
    def __init__(self, padding):
        super().__init__(padding, mode="replicate")


class Softmax(paddle.nn.Softmax):
    def __init__(self, dim=None):
        super().__init__(axis=dim)


class SyncBatchNorm(paddle.nn.SyncBatchNorm):
    def __init__(self,
                 num_features,
                 eps=1e-05,
                 momentum=0.1,
                 affine=True,
                 track_running_stats=True,
                 process_group=None):
        momentum = 1 - momentum
        weight_attr = None
        bias_attr = None
        if not affine:
            weight_attr = paddle.ParamAttr(learning_rate=0.0)
            bias_attr = paddle.ParamAttr(learning_rate=0.0)
        super().__init__(
            num_features,
            momentum=momentum,
            epsilon=eps,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            use_global_stats=track_running_stats)


class ZeroPad2D(paddle.nn.Pad2D):
    def __init__(self, padding):
        super().__init__(padding)