opset7.py 4.9 KB
Newer Older
W
WJJ1995 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .opset_legacy import OpSet
W
wjj19950828 已提交
16 17 18
from x2paddle.core.util import *
import numpy as np
import math
W
WJJ1995 已提交
19 20


W
wjj19950828 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            raise Exception("convert failed node:{}, op_type is {}".format(
                node.name[9:], node.layer_type))
        else:
            return res

    return run_mapping


W
wjj19950828 已提交
35 36 37 38 39 40 41 42 43 44 45
def _get_same_padding(in_size, kernel_size, stride, autopad):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    if autopad == "SAME_UPPER":
        return [pad0, pad1]
    if autopad == "SAME_LOWER":
        return [pad1, pad0]


W
WJJ1995 已提交
46 47 48
class OpSet7(OpSet):
    def __init__(self, decoder, paddle_graph):
        super(OpSet7, self).__init__(decoder, paddle_graph)
W
wjj19950828 已提交
49

W
wjj19950828 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        count_include_pad = node.get_attr("count_include_pad", 0)
        exclusive = True
        if count_include_pad > 0:
            exclusive = False
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings = np.array(pads).reshape((2, -1)).transpose().astype("int32")
        paddings = paddings.flatten().tolist()

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            # Warning: SAME_UPPER and SAME_LOWER does not yet support dynamic shapes
            if input_shape[2] == -1 or input_shape[3] == -1:
                _logger.warning(
                    'SAME_UPPER and SAME_LOWER does not yet support dynamic shapes, the conversion result may have a diff!!!'
                )
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0], auto_pad)
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1], auto_pad)
            paddings = pad_h + pad_w

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "exclusive": exclusive,
        }
        self.paddle_graph.add_layer(
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
            **layer_attrs)

W
wjj19950828 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    @print_mapping_info
    def Or(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_or",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def Xor(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_xor",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

W
wjj19950828 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        # deal with scalar(0D) tensor
        if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[1])
        else:
            self.paddle_graph.add_layer(
                'paddle.unsqueeze',
                inputs={"x": val_x.name},
                axis=axes,
                outputs=[node.name])