tf_op_mapper_nhwc.py 48.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
import inspect
import numpy
import sys


# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
27 28
    if pad_size < 0:
        pad_size = 0
29 30 31 32 33 34 35 36 37 38 39 40 41 42
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


class TFOpMapperNHWC(OpMapper):
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Shape': ['shape'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
        'Rsqrt': ['rsqrt'],
J
jiangjiajun@baidu.com 已提交
43
        'Sqrt': ['sqrt'],
44
        'swish_f32': ['swish'],
45
        'Tanh': ['tanh'],
46 47 48 49 50 51
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
        }]
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
J
jiangjiajun@baidu.com 已提交
52
        'AddV2': 'elementwise_add',
53 54 55
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
J
jiangjiajun 已提交
56 57
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
58 59 60 61 62 63 64
    }

    def __init__(self, decoder):
        super(TFOpMapperNHWC, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
        self.weights = dict()
65
        self.batch_node = None
66 67 68 69 70 71 72 73 74 75 76 77
        self.omit_nodes = list()
        self.used_custom_layers = dict()

        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(name).layer_type != "Placeholder":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]

        unsupported_ops = set()
78 79
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
        for i, node_name in enumerate(self.graph.topo_sort):
M
mamingjie-China 已提交
80
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
81 82 83 84 85 86 87 88 89 90 91 92 93 94
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.directly_map(node)
            elif op in self.elementwise_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.elementwise_map(node)
            elif hasattr(self, op):
                if len(unsupported_ops) > 0:
                    continue
                func = getattr(self, op)
J
jiangjiajun@baidu.com 已提交
95 96 97 98
                try:
                    func(node)
                except:
                    unsupported_ops.add(op)
99 100 101 102 103 104 105 106
            else:
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
            print("========= {} OPs are not supported yet ===========".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print("========== {} ============".format(op))
            sys.exit(-1)
M
mamingjie-China 已提交
107
        sys.stderr.write("\nDone!\n")
108

J
jiangjiajun 已提交
109 110 111 112 113 114 115 116 117
    def add_omit_nodes(self, in_node_name, out_node_name):
        in_node = self.graph.get_node(in_node_name)
        out_node = self.graph.get_node(out_node_name)
        index = in_node.outputs.index(out_node_name)
        del in_node.outputs[index]
        index = out_node.inputs.index(in_node_name)
        del out_node.inputs[index]
        self.omit_nodes.append(in_node.layer_name)

118 119 120 121 122 123 124 125 126 127
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_node(node.layer.input[0], copy=True)
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
M
modify  
mamingjie-China 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        if len(input.out_shapes[0]) == 4 and op_info[0] != 'shape':
            attr1 = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer('transpose',
                                      inputs=input,
                                      output=node,
                                      param_attr=attr1)
            input = node
            node.fluid_code.add_layer(op_info[0],
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            input = node
            attr2 = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer('transpose',
                                      inputs=input,
                                      output=node,
                                      param_attr=attr2)
        else:
            node.fluid_code.add_layer(op_info[0],
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
151 152 153 154 155 156 157 158

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
159 160 161 162
        if len(x_shape) == 0:
            x_shape = [1]
        if len(y_shape) == 0:
            y_shape = [1]
163 164 165 166 167 168 169 170 171 172 173 174
        # incomplement broadcasting support for paddle
        x_input = x
        y_input = y
        if len(x_shape) < len(y_shape):
            unrevertable_ops = [
                "elementwise_sub", "elementwise_div", "elementwise_floordiv",
                "elementwise_mod", "elementwise_pow"
            ]
            if op_type not in unrevertable_ops:
                x_input = y
                y_input = x
                x_shape = y.out_shapes[0]
M
modify  
mamingjie-China 已提交
175 176
                if len(x_shape) == 0:
                    x_shape = [1]
177
                y_shape = x.out_shapes[0]
M
modify  
mamingjie-China 已提交
178 179
                if len(y_shape) == 0:
                    y_shape = [1]
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            else:
                raise Exception("Unexpected situation happend")

        if len(x_shape) == 4 and len(y_shape) == 1:
            inputs = {"x": x_input, "y": y_input}
            node.fluid_code.add_layer(op_type, inputs=inputs, output=node)
            return

        is_sub_seq = True
        for i in range(len(y_shape)):
            index = -1 * i - 1
            if y_shape[index] != x_shape[index]:
                is_sub_seq = False
        if not is_sub_seq:
            x_expand_times = [1] * len(x_shape)
            y_expand_times = [1] * len(y_shape)
            x_need_expand = False
            y_need_expand = False
            for i in range(len(y_shape)):
                index = -1 * i - 1
                if y_shape[index] != x_shape[index]:
                    if y_shape[index] == 1:
                        y_expand_times[index] = x_shape[index]
                        y_need_expand = True
                    elif x_shape[index] == 1:
                        x_expand_times[index] = y_shape[index]
                        x_need_expand = True
                    else:
                        raise Exception("Unexpected situation happend")
            if x_need_expand:
                attr = {"expand_times": x_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=x_input,
                                          output="x_tmp",
                                          param_attr=attr)
                x_input = "x_tmp"
            if y_need_expand:
                attr = {"expand_times": y_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=y_input,
                                          output="y_tmp",
                                          param_attr=attr)
                y_input = "y_tmp"
M
modify  
mamingjie-China 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        if len(x_shape) == 4 and len(y_shape) == 4:
            node.fluid_code.add_layer("transpose",
                                      inputs=x_input,
                                      output=x_input,
                                      param_attr={'perm': [0, 3, 1, 2]})
            node.fluid_code.add_layer("transpose",
                                      inputs=y_input,
                                      output=y_input,
                                      param_attr={'perm': [0, 3, 1, 2]})
            inputs = {"x": x_input, "y": y_input}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr={'perm': [0, 2, 3, 1]})
        else:
            inputs = {"x": x_input, "y": y_input}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=None)
247 248 249 250 251 252

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
J
jiangjiajun 已提交
253 254
        if shape[0] < 0:
            self.batch_node = node
255 256 257 258 259 260
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'append_batch_size': False
        }
J
jiangjiajun 已提交
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

        self.weights[node.layer_name] = node.value

        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': initializer
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        perm = self.graph.get_node(node.layer.input[1], copy=True)
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
        del self.weights[perm.layer_name.replace('/', '_')]
        perm.fluid_code.clear()
        perm = perm.value.tolist()

        attr = {'perm': perm}
        node.fluid_code.add_layer("transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)

        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input = node

        attr = {
            "pool_size": k_size[2:4],
            "pool_type": string("max"),
M
mamingjie-China 已提交
331 332
            "pool_stride": strides[2:4],
            "pool_padding": string(pad_mode)
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        }
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

    def Conv2D(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
349
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
350 351 352 353 354 355 356 357 358 359 360 361 362 363

        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

J
jiangjiajun@baidu.com 已提交
364 365 366 367
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
        else:
            kernel_value = self.decoder.infer_tensor(kernel)
368
        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
J
jiangjiajun@baidu.com 已提交
369
            kernel_value, (3, 2, 0, 1))
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            input = node

        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4],
M
mamingjie-China 已提交
389
            "padding": string(pad_mode)
390
        }
J
jiangjiajun@baidu.com 已提交
391 392 393 394 395

        if hasattr(node, 'dilation') and attr['dilation'] == [1, 1]:
            if len(node.dilation) == 1:
                attr['dilation'] = [1, node.dilation[0]]

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

    def BiasAdd(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        bias = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": input, "y": bias}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def FusedBatchNorm(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        gamma = self.graph.get_node(node.layer.input[1], copy=True)
        beta = self.graph.get_node(node.layer.input[2], copy=True)
        moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
        moving_var = self.graph.get_node(node.layer.input[4], copy=True)
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
429 430 431 432
        self.add_omit_nodes(gamma.layer_name, node.layer_name)
        self.add_omit_nodes(beta.layer_name, node.layer_name)
        self.add_omit_nodes(moving_mean.layer_name, node.layer_name)
        self.add_omit_nodes(moving_var.layer_name, node.layer_name)
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

        if not channel_first:
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            input = node

        attr = {
            "epsilon": node.get_attr("epsilon"),
            "param_attr": string(gamma.layer_name),
            "bias_attr": string(beta.layer_name),
            "moving_mean_name": string(moving_mean.layer_name),
            "moving_variance_name": string(moving_var.layer_name),
            "is_test": True
        }

        node.fluid_code.add_layer("batch_norm",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
467
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (2, 3, 0, 1))

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            input = node

        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": in_shape[1],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4],
            "groups": k_size[3] * in_shape[1],
            "use_cudnn": False,
M
mamingjie-China 已提交
505
            "padding": string(pad_mode)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        }
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        param = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
522
        is_variable = False
523 524
        if param.layer_type == "Const":
            attr = {"shape": param.value.tolist()}
J
jiangjiajun 已提交
525
            self.add_omit_nodes(param.layer_name, node.layer_name)
526 527 528 529 530
        else:
            # Here is a trick method to solove tensor parameter in tensorflow
            shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0])
            if shape.count(-1) <= 1:
                attr = {"shape": shape}
J
jiangjiajun 已提交
531
                self.add_omit_nodes(param.layer_name, node.layer_name)
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
            else:
                assert len(param.out_shapes[0]
                           ) == 1, "Unexpected situation of shape parameter"
                attr = {"shape": [-1]}
                node.fluid_code.add_layer("reshape",
                                          inputs=param,
                                          output="shape_param",
                                          param_attr=attr)
                attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0}
                node.fluid_code.add_layer("split",
                                          inputs="shape_param",
                                          output=node,
                                          param_attr=attr)
                new_param = "["
                for i in range(param.out_shapes[0][0]):
                    new_param += (node.layer_name + "[{}]".format(i) + ", ")
                new_param = new_param.strip(", ") + "]"
                attr = {"shape": new_param}
J
jiangjiajun 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
                is_variable = True
        # to change [192, -1]->[-1, 192], allways put -1 in the first dimension
        # optimization for Paddle-Lite
        in_shape = input.out_shapes[0]
        if not is_variable and in_shape.count(-1) < 1:
            total_size = 1
            for i in range(len(in_shape)):
                total_size *= in_shape[i]
            for i in range(len(attr["shape"])):
                if attr["shape"][i] == 0:
                    attr["shape"][i] = in_shape[i]
                if attr["shape"][i] != -1:
                    total_size /= attr["shape"][i]
            if attr["shape"].count(-1) > 0:
                index = attr["shape"].index(-1)
                attr["shape"][index] = int(total_size)
                attr["shape"][0] = -1

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def AvgPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)

        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            input = node

        attr = {
            "pool_size": k_size[2:4],
            "pool_type": string("avg"),
M
mamingjie-China 已提交
600 601
            "pool_stride": strides[2:4],
            "pool_padding": string(pad_mode)
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
        }
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

    def SplitV(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        num_sections = self.graph.get_node(node.layer.input[1], copy=True)
        dim = self.graph.get_node(node.layer.input[2], copy=True)
        assert num_sections.layer_type == "Const"
        assert dim.layer_type == "Const"
J
jiangjiajun 已提交
621 622
        self.add_omit_nodes(num_sections.layer_name, node.layer_name)
        self.add_omit_nodes(dim.layer_name, node.layer_name)
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        dim = dim.value
        attr = {
            "num_or_sections": num_sections.value.tolist(),
            "dim": dim.value
        }
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ConcatV2(self, node):
        inputs = [
            self.graph.get_node(name, copy=True)
            for name in node.layer.input[:-1]
        ]
        axis = self.graph.get_node(node.layer.input[-1], copy=True)
        assert axis.layer_type == "Const"
J
jiangjiajun 已提交
640
        self.add_omit_nodes(axis.layer_name, node.layer_name)
641 642 643 644 645 646 647 648 649 650 651 652 653
        axis = axis.value
        if axis < 0:
            axis += len(inputs[0].out_shapes[0])

        attr = {"axis": axis}
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        expand_times = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
654
        self.add_omit_nodes(expand_times.layer_name, node.layer_name)
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
        else:
            expand_times = self.decoder.infer_shape_tensor(expand_times)
        for i in range(len(expand_times)):
            if expand_times[i] < 0:
                expand_times[i] = 1
        attr = {"expand_times": expand_times}
        node.fluid_code.add_layer("expand",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Pack(self, node):
        inputs = [
            self.graph.get_node(name, copy=True) for name in node.layer.input
        ]
        axis = node.get_attr("axis")
        attr = {"axis": axis}
        node.fluid_code.add_layer("stack",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
        assert paddings.layer_type == "Const", "Padding should be Const"
J
jiangjiajun 已提交
683
        self.add_omit_nodes(paddings.layer_name, node.layer_name)
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
        paddings = paddings.value.flatten().tolist()
        data_format = input.tf_data_format

        if len(input.out_shapes[0]) == 4:
            new_padding = None
            if input.tf_data_format == "NHWC":
                if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                    new_padding = paddings[2:6]
            else:
                if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
                    new_padding = paddings[4:]
            if new_padding is not None:
                if input.tf_data_format == "NHWC":
                    attr = {"perm": [0, 3, 1, 2]}
                    node.fluid_code.add_layer("transpose",
                                              inputs=input,
                                              output=node,
                                              param_attr=attr)
                    input = node
                attr = {"paddings": new_padding}
                node.fluid_code.add_layer("pad2d",
                                          inputs=input,
                                          output=node,
                                          param_attr=attr)
                if input.tf_data_format == "NHWC":
                    attr = {"perm": [0, 2, 3, 1]}
                    node.fluid_code.add_layer("transpose",
                                              inputs=node,
                                              output=node,
                                              param_attr=attr)

                return

        attr = {"paddings": paddings}
        node.fluid_code.add_layer("pad",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0], copy=True)
        limit = self.graph.get_node(node.layer.input[1], copy=True)
        delta = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
727 728 729
        self.add_omit_nodes(start.layer_name, node.layer_name)
        self.add_omit_nodes(limit.layer_name, node.layer_name)
        self.add_omit_nodes(delta.layer_name, node.layer_name)
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
        if start.layer_type == "Const":
            start = start.value
        else:
            start = self.decoder.infer_tensor(start)
        if limit.layer_type == "Const":
            limit = limit.value
        else:
            limit = self.decoder.infer_tensor(limit)
        if delta.layer_type == "Const":
            delta = delta.value
        else:
            delta = self.decoder.infer_tensor(delta)
        dtype = node.dtype
        inputs = {
            "start": start,
            "end": limit,
            "step": delta,
            "dtype": string(dtype)
        }
        attr = {"dtype": string(node.dtype)}
        node.fluid_code.add_layer("range",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

        attr = {"dim": dims, "keep_dim": keep_dims}
        node.fluid_code.add_layer("reduce_mean",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        inputs = {"x": x, "y": y}
        # fix paddle shape infer problem
        # should be removed after paddle 1.6
        if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0:
            shape = x.out_shapes[0]
            shape[-1] = y.out_shapes[0][0]
            attr = {"shape": shape}
            node.fluid_code.add_layer("reshape",
                                      inputs=x,
                                      output=x,
                                      param_attr=attr)
        attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = self.graph.get_node(node.layer.input[1], copy=True)
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
J
jiangjiajun 已提交
794
        self.add_omit_nodes(axis.layer_name, node.layer_name)
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        axis = axis.value
        attr = {"axis": axis}
        node.fluid_code.add_layer("argmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        end = self.graph.get_node(node.layer.input[2], copy=True)
        strides = self.graph.get_node(node.layer.input[3], copy=True)
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
J
jiangjiajun 已提交
810 811 812
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(end.layer_name, node.layer_name)
        self.add_omit_nodes(strides.layer_name, node.layer_name)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        begin = begin.value.tolist()
        end = end.value.tolist()

        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])

        attr = {
            "axes": [i for i in range(len(new_begin))],
            "starts": new_begin,
            "ends": new_end
        }
        node.fluid_code.add_layer("slice",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
        if len(new_axes) > 0:
            attr = {"axes": new_axes}
            node.fluid_code.add_layer("unsqueeze",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
                attr = {"axes": shrink_axes}
                node.fluid_code.add_layer("squeeze",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)

    def Slice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        size = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
890 891
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(size.layer_name, node.layer_name)
892 893 894 895 896 897 898 899 900
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
            begin = self.decoder.infer_tensor(begin).tolist()
        if size.layer_type == "const":
            size = size.value.tolist()
        else:
            size = self.decoder.infer_tensor(size).tolist()

901 902 903 904 905 906 907 908 909 910 911 912 913
        for i in range(len(size)):
            if size[i] < 0:
                size[i] = 99999999
            else:
                size[i] = size[i] + begin[i]

        attr = {
            "axes": [i for i in range(len(size))],
            "starts": begin,
            "ends": size
        }

        node.fluid_code.add_layer("slice",
914 915 916 917 918
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Conv2DBackpropInput(self, node):
919
        out_shape = self.graph.get_node(node.layer.input[0], copy=True)
920
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
921 922
        input = self.graph.get_node(node.layer.input[2], copy=True)

923
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
924

J
jiangjiajun 已提交
925
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
926
        self.add_omit_nodes(out_shape.layer_name, node.layer_name)
927

928 929 930 931 932 933
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])

934 935 936 937 938 939 940
        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

941
        pad_mode = node.get_attr("padding").decode()
942 943 944 945
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
946

947 948 949 950 951 952 953 954 955 956 957 958
        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            input = node
959 960 961
        else:
            self.data_format_propagation(node)

962 963 964
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
M
mamingjie-China 已提交
965
            "num_filters": k_size[2],
966 967 968
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4],
M
mamingjie-China 已提交
969 970
            "padding": string(pad_mode),
            "output_size": out_shape[1:3]
971 972 973 974 975
        }
        node.fluid_code.add_layer("conv2d_transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
976

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        attr = {"dim": dim, "keep_dim": keep_dims}
        node.fluid_code.add_layer("reduce_max",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        attr = {"dim": dim, "keep_dim": keep_dims}
        node.fluid_code.add_layer("reduce_sum",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        dtype = node.dtype_map[node.get_attr('DstT')]
        attr = {"dtype": string(dtype)}
        node.fluid_code.add_layer("cast",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0], copy=True)
        input = self.graph.get_node(node.layer.input[1], copy=True)
        assert dim.layer_type == "Const"
J
jiangjiajun 已提交
1023
        self.add_omit_nodes(dim.layer_name, node.layer_name)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
        num_split = node.get_attr('num_split')
        dim = dim.value

        attr = {"num_or_sections": num_split, "dim": dim}
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        attr = {"axes": squeeze_dims}
        node.fluid_code.add_layer("squeeze",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = node.get_attr("axis")
        attr = {"axis": axis}
        node.fluid_code.add_layer("softmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1054
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {"perm": [0, 3, 1, 2]}
        node.fluid_code.add_layer("transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
        attr = {"align_corners": align_corners, "out_shape": resize_shape}
        node.fluid_code.add_layer("resize_nearest",
                                  inputs=node,
                                  output=node,
                                  param_attr=attr)
        attr = {"perm": [0, 2, 3, 1]}
        node.fluid_code.add_layer("transpose",
                                  inputs=node,
                                  output=node,
                                  param_attr=attr)

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1080
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {"perm": [0, 3, 1, 2]}
        node.fluid_code.add_layer("transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
        attr = {
            "align_corners": align_corners,
            "out_shape": resize_shape,
            "align_mode": 1
        }
        node.fluid_code.add_layer("resize_bilinear",
                                  inputs=node,
                                  output=node,
                                  param_attr=attr)
        attr = {"perm": [0, 2, 3, 1]}
        node.fluid_code.add_layer("transpose",
                                  inputs=node,
                                  output=node,
                                  param_attr=attr)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

    def GreaterEqual(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("greater_equal",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0], copy=True)
        self.add_omit_nodes(shape.layer_name, node.layer_name)
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
        else:
            shape = self.decoder.infer_shape_tensor(shape)
        attr = {"shape": shape, "min": 0.0, "max": 0.9999}
M
mamingjie-China 已提交
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
        if shape[0] < 0:
            input = self.batch_node
            node.fluid_code.add_layer("uniform_random_batch_size_like",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            node.fluid_code.add_layer("uniform_random",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

    def SquaredDifference(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("elementwise_sub",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
        inputs = {"x": node, "y": node}
        node.fluid_code.add_layer("elementwise_mul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
J
jiangjiajun@baidu.com 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

    def ExpandDims(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        if y.layer_type == 'Const':
            dim = y.value.tolist()
        else:
            dim = self.decoder.infer_tensor(y)
        self.add_omit_nodes(y.layer_name, node.layer_name)
        attr = {'axes': [dim]}
        node.fluid_code.add_layer("unsqueeze",
                                  inputs=x,
                                  output=node,
                                  param_attr=attr)

    def BatchToSpaceND(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        if hasattr(node, 'skip') and node.skip:
            node.fluid_code.add_layer("=",
                                      inputs=x,
                                      output=node,
                                      param_attr=None)
        else:
            raise Exception("BatchToSpaceND is not supported")

    def SpaceToBatchND(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        if hasattr(node, 'skip') and node.skip:
            node.fluid_code.add_layer("=",
                                      inputs=x,
                                      output=node,
                                      param_attr=None)
        else:
            raise Exception("SpaceToBatchND is not supported")