paddle_emitter.py 31.6 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from tensorflow.core.framework import attr_value_pb2
from tensorflow.python.framework import tensor_util
from six import string_types as _string_types
import framework_pb2 as framework
import math
import struct
import numpy
import logging
import sys


class PaddleEmitter(object):
    skip_op = set(['variablev2', 'identity'])
    skip_op = set()
    dtype_map = {1: "float32", 3: "int32", 9: "int64"}

    def __init__(self, parser, save_dir):
        self.graph = parser.tf_graph
        self.weights = parser.weights
        self.save_dir = save_dir
        self.body_code = ""
        self.tab = " " * 4

    @staticmethod
    def tensor_shape_to_list(shapes):
        if isinstance(shapes, attr_value_pb2.AttrValue):
            return [dim.size for dim in shapes.shape.dim]
        else:
            ret = []
            for shape in shapes:
                this_one = [dim.size for dim in shape.dim]
                ret.append(this_one)
            return ret

    @staticmethod
    def compute_padding_size(in_size, filter_size, stride):
        new_size = int(math.ceil(in_size * 1.0 / stride))
        pad_size = (new_size - 1) * stride + filter_size - in_size
        return pad_size

J
modify  
jiangjiajun 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    def check_op(self, node_name_list):
        uncovered_ops = set()
        for name in node_name_list:
            node = self.graph.get_node(name)
            if len(node.inputs) == 0 and len(node.outputs) == 0:
                continue
            if node.layer_type in self.skip_op:
                continue
            if not hasattr(self, "emit_" + node.layer_type):
                uncovered_ops.add(node.layer_type)
        if len(uncovered_ops) > 0:
            sys.stderr.write("Still {} tensorflow OP are not supported\n".format(len(uncovered_ops)))
            for op in uncovered_ops:
                sys.stderr.write("Unsupported OP: {}\n".format(op))
            sys.exit(0)

J
jiangjiajun 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84
    def get_axis(self, node1, node2):
        shape1 = self.tensor_shape_to_list(node1.get_attr('_output_shapes'))[0]
        shape2 = self.tensor_shape_to_list(node2.get_attr('_output_shapes'))[0]
        if len(shape1) == 4 and len(
                shape2) == 1 and node1.data_format == "NHWC":
            axis = 1
        elif len(shape2) == 4 and len(
                shape1) == 1 and node2.data_format == "NHWC":
            axis = 1
        else:
            axis = -1
        return axis

    def export_weights(self, weight, paddle_var_name, dir):
J
jiangjiajun 已提交
85
        self.save_var_set.add(paddle_var_name)
J
jiangjiajun 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        numpy_dtype_map = {
            "int16": framework.VarType.INT16,
            "int32": framework.VarType.INT32,
            "int64": framework.VarType.INT64,
            "float16": framework.VarType.FP16,
            "float32": framework.VarType.FP32,
            "float64": framework.VarType.FP64
        }
        struct_write_format = {
            "int16": "h",
            "int32": "i",
            "int64": "q",
            "float16": "e",
            "float32": "f",
            "float64": "d"
        }
        shape = weight.shape
        filew = open(dir + "/" + paddle_var_name, "wb")
        filew.write(struct.pack('i', 0))
        filew.write(struct.pack('L', 0))
        filew.write(struct.pack('i', 0))
        tensor_desc = framework.VarType.TensorDesc()
        if str(weight.dtype) in numpy_dtype_map:
            tensor_desc.data_type = numpy_dtype_map[str(weight.dtype)]
        else:
            raise Exception("Unexpected array dtype [{}]".format(weight.dtype))
        tensor_desc.dims.extend(shape)
        desc_size = tensor_desc.ByteSize()
        filew.write(struct.pack('i', desc_size))
        filew.write(tensor_desc.SerializeToString())
        tensor_size = reduce(lambda x, y: x * y, shape)
        weight = weight.flatten()
J
jiangjiajun 已提交
118
        tensor_stream = ""
J
jiangjiajun 已提交
119
        for i in range(0, tensor_size):
J
jiangjiajun 已提交
120 121
            tensor_stream += struct.pack(struct_write_format[str(weight.dtype)], weight[i])
        filew.write(tensor_stream)
J
jiangjiajun 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        filew.close()

    @property
    def header_code(self):
        code = list()
        code.append("import paddle.fluid.layers as layers")
        code.append("import paddle.fluid as fluid")
        code.append("")
        code.append("def KitModel():")
        return code

    def add_codes(self, indent, codes):
        if isinstance(codes, _string_types):
            codes = codes.strip().split("\n")
        for code in codes:
            self.body_code += (self.tab * indent) + code + "\n"

    def run(self):
        node = self.graph.tf_graph.node[0]
        self.add_codes(0, self.header_code)

J
jiangjiajun 已提交
143 144
        self.save_var_set = set()

J
modify  
jiangjiajun 已提交
145
        self.check_op(self.graph.topological_sort)
J
jiangjiajun 已提交
146 147
        ref_name_recorder = open(self.save_dir + "/ref_name.txt", 'w')
        total_nodes_num = len(self.graph.topological_sort)
J
jiangjiajun 已提交
148
        translated_nodes_count = 1
J
jiangjiajun 已提交
149 150
        sys.stderr.write("\nModel Translating......\n")
        sys.stderr.write("Start to translate all the nodes(Total_num:{})\n".
J
jiangjiajun 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                         format(total_nodes_num))
        for node in self.graph.topological_sort:
            sys.stderr.write(
                "\rTranslated nodes num: {}, Current node: {}".format(
                    translated_nodes_count, node))
            sys.stderr.flush()
            translated_nodes_count += 1
            current_node = self.graph.get_node(node)
            ref_name_recorder.write("{}\t{}\n".format(
                current_node.layer_name, current_node.output_name))

            # skip isolated nodes
            if len(current_node.inputs) == 0 and len(
                    current_node.outputs) == 0:
                continue

            op = current_node.layer_type
            if op in self.skip_op:
                continue
            if hasattr(self, "emit_" + op):
                func = getattr(self, "emit_" + op)
                codes = func(current_node)
                if not isinstance(codes, list):
                    codes = [codes]
                self.graph.get_node(node).codes = codes
            else:
                raise Exception("Unknow node op: {}".format(op))
        ref_name_recorder.close()

        for node in self.graph.topological_sort:
            codes = self.graph.get_node(node).codes
            self.add_codes(1, codes)

        outs = []
        for node in self.graph.output_nodes:
            outs.append(self.graph.get_node(node).output_name)
        self.add_codes(1, "return {}".format(", ".join(outs)))

        filew = open(self.save_dir + "/mymodel.py", 'w')
        filew.write(self.body_code)
        filew.close()
J
jiangjiajun 已提交
192 193 194 195
        filew = open(self.save_dir + "/save_var.list", 'w')
        for var in self.save_var_set:
            filew.write(var + '\n')
        filew.close()
J
jiangjiajun 已提交
196

J
jiangjiajun 已提交
197 198 199
        sys.stderr.write("Model translated!\n\n")
        sys.stderr.flush()

J
jiangjiajun 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        return self.body_code

    def emit_placeholder(self, node):
        shape = self.tensor_shape_to_list(node.get_attr('_output_shapes'))[0]

        if node.data_format == "NHWC" and len(shape) == 4:
            shape = [shape[0], shape[3], shape[1], shape[2]]

        dtype = node.get_attr("dtype")
        if dtype in self.dtype_map:
            dtype = self.dtype_map[dtype]
        else:
            raise Exception("Unknow dtype: {}".format(dtype))

        code = list()
        code.append("# placehoder[{}]:\t{}".format(node.output_name,
                                                   node.layer_name))
        code.append(
            "{} = layers.data(name=\'{}\', shape={}, dtype=\'{}\')".format(
                node.output_name, node.ref_name, shape, dtype))
        return code

    def emit_const(self, node):
        try:
            float_val = node.layer.attr['value'].tensor.float_val
            if len(float_val) == 1:
                code = list()
                code.append("# {} {}".format(node.layer_name, node.ref_name))
                code.append(
                    "{} = layers.fill_constant(shape=[1], value={}, dtype=\'float32\')"
                    .format(node.output_name, float_val[0]))
                return code
            int_val = node.layer.attr['value'].tensor.int_val
            if len(int_val) == 1:
                code = list()
                code.append("# {} {}".format(node.layer_name, node.ref_name))
                code.append(
                    "{} = layers.fill_constant(shape=[1], value={}, dtype=\'int32\')"
                    .format(node.output_name, int_val[0]))
                return code

            node.layer.attr['value'].tensor.tensor_content
            weight = tensor_util.MakeNdarray(node.layer.attr['value'].tensor)
            if len(weight) == 0:
                return []

            shape = list(weight.shape)
            dtype = node.get_attr('dtype')

            if dtype in self.dtype_map:
                dtype = self.dtype_map[dtype]
            else:
                raise Exception("Unknow dtype[{}] of node[{}]".format(
                    dtype, node.layer_name))

            code = list()
            code.append("# {} {}".format(node.layer_name, node.ref_name))
            if dtype.startswith('int'):
                code.append(
                    "{} = layers.create_parameter({}, \'{}\', \'{}\', default_initializer=fluid.initializer.Constant(0))"
                    .format(node.output_name, shape, dtype, node.ref_name))
            else:
                code.append(
                    "{} = layers.create_parameter({}, \'{}\', \'{}\')".format(
                        node.output_name, shape, dtype, node.ref_name))

            self.export_weights(weight, node.ref_name, self.save_dir)

            return code
        except:
            return []

    def emit_conv2d(self, node):
        data = node.inputs[0]
        kernel = node.inputs[1]
        if len(kernel.outputs) == 1:
            kernel.codes = []

        padding_mode = node.get_attr("padding")
        strides = node.get_attr("strides")[1:3]
        k_shape = self.tensor_shape_to_list(
            kernel.get_attr("_output_shapes"))[0]
        input_shape = self.tensor_shape_to_list(
            data.get_attr("_output_shapes"))[0]
        input_h, input_w = input_shape[2:4]
        kernel_num, channel, k_h, k_w = k_shape
        if node.data_format == "NHWC":
            k_h, k_w, channel, kernel_num = k_shape
            input_h, input_w = input_shape[1:3]
        if k_h < strides[0] or k_w < strides[1]:
            raise Exception(
                "Unexpected situation with kernel's height/width less than the corresponding stride"
            )

        if kernel.layer_name in self.weights:
            if node.data_format == "NHWC":
                weight = self.weights[kernel.layer_name]
                self.weights[kernel.layer_name] = numpy.transpose(
                    weight, (3, 2, 0, 1))
            self.export_weights(self.weights[kernel.layer_name],
                                kernel.ref_name, self.save_dir)

        code = list()
        padding = [0, 0]
        if padding_mode == "SAME":
            total_pad_h = self.compute_padding_size(input_h, k_h, strides[0])
            total_pad_w = self.compute_padding_size(input_w, k_w, strides[1])
            if total_pad_h % 2 == 0 and total_pad_w % 2 == 0:
                padding = map(int, [total_pad_h / 2, total_pad_w / 2])
                code.append(
                    "{} = layers.conv2d({}, {}, {}, padding={}, stride={}, param_attr=\'{}\', bias_attr=False)"
                    .format(node.output_name, data.ref_name, kernel_num,
                            [k_h, k_w], padding, strides, kernel.ref_name))
            else:
                padding = [0] * 4
                padding[0] = total_pad_h / 2
                padding[1] = total_pad_h - padding[0]
                padding[2] = total_pad_w / 2
                padding[3] = total_pad_w - padding[2]
                code.append("{} = layers.pad2d({}, {})".format(
                    node.output_name, data.ref_name, padding))
                code.append(
                    "{} = layers.conv2d({}, {}, {}, stride={}, param_attr=\'{}\', bias_attr=False)"
                    .format(node.output_name, node.ref_name, kernel_num,
                            [k_h, k_w], strides, kernel.ref_name))
        else:
            code.append(
                "{} = layers.conv2d({}, {}, {}, stride={}, param_attr=\'{}\', bias_attr=False)"
                .format(node.output_name, data.ref_name, kernel_num,
                        [k_h, k_w], strides, kernel.ref_name))
        return code

    def emit_variablev2(self, node):
        shape = self.tensor_shape_to_list(node.get_attr("_output_shapes"))[0]
        dtype = node.get_attr("dtype")
        if dtype in self.dtype_map:
            dtype = self.dtype_map[dtype]
        else:
            raise Exception("Unknow dtype[{}] of node[{}]".format(
                dtype, node.layer_name))

        code = list()
        code.append("# variable[{}]:\t{}".format(node.output_name,
                                                 node.layer_name))
        if dtype.startswith('int'):
            code.append(
                "{} = layers.create_parameter(name=\'{}\', shape={}, dtype=\'{}\', default_initializer=fluid.initializer.Constant(0))"
                .format(node.output_name, node.ref_name, shape, dtype))
        else:
            code.append(
                "{} = layers.create_parameter(name=\'{}\', shape={}, dtype=\'{}\')"
                .format(node.output_name, node.ref_name, shape, dtype))
        return code

    def emit_biasadd(self, node):
        data = node.inputs[0]
        bias = node.inputs[1]
        axis = self.get_axis(data, bias)

        if bias.layer_name in self.weights:
            self.export_weights(self.weights[bias.layer_name], bias.ref_name,
                                self.save_dir)

        code = list()
        code = code + self.emit_variablev2(bias)
        code.append("{} = layers.elementwise_add({}, {}, axis={})".format(
            node.output_name, data.ref_name, bias.ref_name, axis))
        return code

    def emit_relu(self, node):
        data = node.inputs[0]
        code = "{} = layers.relu({})".format(node.output_name, data.ref_name)
        return code

    def emit_maxpool(self, node):
        data = node.inputs[0]
        padding_mode = node.get_attr("padding")
        strides = node.get_attr("strides")[1:3]
        pool_size = node.get_attr("ksize")[1:3]
        if padding_mode == "SAME":
            pad_right = (pool_size[0] - 1) / 2
            pad_bottom = (pool_size[1] - 1) / 2
            padding = [0, pad_right * 2, 0, pad_bottom * 2]
            code = [
                "pad_net = layers.pad2d({}, paddings={})".format(
                    data.ref_name, padding)
            ]
            code.append("{} = layers.pool2d(pad_net, {}, \'max\', {})".format(
                node.output_name, pool_size, strides))
            return code
        else:
            code = "{} = layers.pool2d({}, {}, \'max\', {})".format(
                node.output_name, data.ref_name, pool_size, strides)
            return code

    def emit_squeeze(self, node):
        data = node.inputs[0]
        axis = node.get_attr("squeeze_dims")
        input_shape = self.tensor_shape_to_list(
            data.get_attr("_output_shapes"))[0]
        if node.data_format == "NHWC" and len(input_shape) == 4:
            for i in range(0, len(axis)):
                if axis[i] == 1:
                    axis[i] = 2
                elif axis[i] == 2:
                    axis[i] = 3
                elif axis[i] == 3:
                    axis[i] = 1
        code = "{} = layers.squeeze({}, {})".format(node.output_name,
                                                    data.ref_name, axis)
        return code

    def emit_add(self, node):
        data1 = node.inputs[0]
        data2 = node.inputs[1]
        axis = self.get_axis(data1, data2)
J
jiangjiajun 已提交
416
        code = "{} = layers.elementwise_add({}, {}, axis={})".format(node.output_name, data1.ref_name, data2.ref_name, axis)
J
jiangjiajun 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
        return code

    def emit_mean(self, node):
        data = node.inputs[0]
        reduce_idx = node.inputs[1]
        reduce_idx.codes = []
        idxs = tensor_util.MakeNdarray(reduce_idx.layer.attr['value'].tensor)
        shape = idxs.shape
        assert len(shape) == 1
        data_shape = self.tensor_shape_to_list(
            data.get_attr('_output_shapes'))[0]
        keep_dims = node.layer.attr['keep_dims'].b
        if node.data_format == "NHWC" and len(data_shape) == 4:
            for i in range(0, shape[0]):
                if idxs[i] == 1:
                    idxs[i] = 2
                elif idxs[i] == 2:
                    idxs[i] = 3
                elif idxs[i] == 3:
                    idxs[i] = 1

        code = "{} = layers.reduce_mean({}, {}, keep_dim={})".format(
            node.output_name, data.ref_name, list(idxs), keep_dims)
        return code

    def emit_fusedbatchnorm(self, node):
        data = node.inputs[0]
        gamma = node.inputs[1]
        beta = node.inputs[2]
        moving_mean = node.inputs[3]
        moving_variance = node.inputs[4]
        if len(gamma.outputs) == 1:
            gamma.codes = []
        if len(beta.outputs) == 1:
            beta.codes = []
        if len(moving_mean.outputs) == 1:
            moving_mean.codes = []
        if len(moving_variance.outputs) == 1:
            moving_variance.codes = []

        epsilon = round(node.get_attr('epsilon'), 6)
        is_training = node.get_attr('is_training')

        if gamma.layer_name in self.weights:
            self.export_weights(self.weights[gamma.layer_name], gamma.ref_name,
                                self.save_dir)
        if beta.layer_name in self.weights:
            self.export_weights(self.weights[beta.layer_name], beta.ref_name,
                                self.save_dir)
        if moving_mean.layer_name in self.weights:
            self.export_weights(self.weights[moving_mean.layer_name],
                                moving_mean.ref_name, self.save_dir)
        if moving_variance.layer_name in self.weights:
            self.export_weights(self.weights[moving_variance.layer_name],
                                moving_variance.ref_name, self.save_dir)

        code = "{} = layers.batch_norm({}, epsilon={}, param_attr=\'{}\', bias_attr=\'{}\', moving_mean_name=\'{}\', moving_variance_name=\'{}\', is_test={})".format(
            node.output_name, data.ref_name, epsilon, gamma.ref_name,
            beta.ref_name, moving_mean.ref_name, moving_variance.ref_name,
            not is_training)
        return code

    def emit_concatv2(self, node):
        input_shape = self.tensor_shape_to_list(
            node.inputs[0].get_attr('_output_shapes'))[0]
        axis = node.inputs[-1]
        axis.codes = []
        axis = axis.layer.attr['value'].tensor.int_val[0]
        if node.data_format == "NHWC" and len(input_shape) == 4:
            if axis == 1:
                axis = 2
            elif axis == 2:
                axis = 3
            elif axis == 3:
                axis = 1

        num_tensor = len(node.inputs) - 1
        code = "{} = layers.concat([{}], {})".format(
            node.output_name, ", ".join(
                [input.ref_name for input in node.inputs[:num_tensor]]), axis)
        return code

    def emit_avgpool(self, node):
        data = node.inputs[0]
        padding_mode = node.get_attr("padding")
        strides = node.get_attr("strides")[1:3]
        pool_size = node.get_attr("ksize")[1:3]
        padding = [0, 0]
        if padding_mode == "SAME":
            pad_h = (pool_size[0] - 1) / 2
            pad_w = (pool_size[1] - 1) / 2
            padding = [pad_h, pad_w]
        code = "{} = layers.pool2d({}, {}, \'avg\', {}, {})".format(
            node.output_name, data.ref_name, pool_size, strides, padding)
        return code

    def emit_rsqrt(self, node):
        data = node.inputs[0]
        code = list()
        code.append("sqrt_res = layers.sqrt({})".format(data.ref_name))
        code.append("{} = layers.pow(sqrt_res, -1.0)".format(node.output_name))
        return code

    def emit_mul(self, node):
        data1 = node.inputs[0]
        data2 = node.inputs[1]
        axis = self.get_axis(data1, data2)
        code = "{} = layers.elementwise_mul({}, {}, axis={})".format(
            node.output_name, data1.ref_name, data2.ref_name, axis)
        shape1 = self.tensor_shape_to_list(data1.get_attr('_output_shapes'))[0]
        shape2 = self.tensor_shape_to_list(data2.get_attr('_output_shapes'))[0]
        if len(shape2) > len(shape1):
            code = "{} = layers.elementwise_mul({}, {}, axis={})".format(
                node.output_name, data2.ref_name, data1.ref_name, axis)
        return code

    def emit_sub(self, node):
        data1 = node.inputs[0]
        data2 = node.inputs[1]
        axis = self.get_axis(data1, data2)
        code = "{} = layers.elementwise_sub({}, {}, axis={})".format(
            node.output_name, data1.ref_name, data2.ref_name, axis)
        return code

    def emit_shape(self, node):
        data = node.inputs[0]
        code = "{} = layers.shape({})".format(node.output_name, data.ref_name)
        return code

    def emit_pad(self, node):
        data = node.inputs[0]
        padding = node.inputs[1]
        padding.codes = []
        padding = padding.layer.attr['value'].tensor
        padding = tensor_util.MakeNdarray(padding)
        if node.data_format == "NHWC" and padding.shape[0] == 4:
            padding = padding[[0, 3, 1, 2]]
        code = "{} = layers.pad({}, {})".format(node.output_name,
                                                data.ref_name,
                                                list(padding.flatten()))
        return code

    def emit_stridedslice(self, node):
        data = node.inputs[0]
        begin = node.inputs[1]
        end = node.inputs[2]
        strides = node.inputs[3]
        begin.codes = []
        end.codes = []
        strides.codes = []
        begin = list(tensor_util.MakeNdarray(begin.layer.attr['value'].tensor))
        end = list(tensor_util.MakeNdarray(end.layer.attr['value'].tensor))
        strides = list(
            tensor_util.MakeNdarray(strides.layer.attr['value'].tensor))

        for i in range(len(strides)):
            assert strides[i] == 1

        code = "{} = layers.slice({}, axes={}, starts={}, ends={})".format(
            node.output_name, data.ref_name, [i for i in range(len(begin))],
            begin, end)
        return code

    def emit_resizenearestneighbor(self, node):
        data = node.inputs[0]
        output_shape = node.inputs[1]
        align_corners = node.get_attr('align_corners')

        if output_shape.layer_type == "const":
            output_shape.codes = []
            output_shape = tensor_util.MakeNdarray(
                output_shape.layer.attr['value'].tensor)
            code = "{} = layers.resize_nearest({}, {}, align_corners={}, align_mode=1)".format(
                node.output_name, data.ref_name, list(output_shape),
                align_corners)
        else:
            code = "{} = layers.resize_nearest({}, {}, align_corners={}, align_mode=1)".format(
                node.output_name, data.ref_name, output_shape.ref_name,
                align_corners)
            logging.warn(
                "\tNotice there's RESIZE_NEAREST in translated code, and the code list below:"
            )
            logging.warn("\t\t{}".format(code))
            logging.warn(
                "\tPaddle doesn't support tensor type for output_shape now")
            logging.warn(
                "\tYou need to change \'{}\'(in tf model: \'{}\') to a list with constant value, e.g. [28, 28]. IMPORTANT!!!\n"
                .format(output_shape.ref_name, output_shape.layer_name))
        return code

    def emit_maximum(self, node):
        data1 = node.inputs[0]
        data2 = node.inputs[1]
        axis = self.get_axis(data1, data2)
        code = "{} = layers.elementwise_max({}, {}, axis={})".format(
            node.output_name, data1.ref_name, data2.ref_name, axis)
        return code

    def emit_minimum(self, node):
        data1 = node.inputs[0]
        data2 = node.inputs[1]
        axis = self.get_axis(data1, data2)
        code = "{} = layers.elementwise_min({}, {}, axis={})".format(
            node.output_name, data1.ref_name, data2.ref_name, axis)
        return code

    def emit_sigmoid(self, node):
        data = node.inputs[0]
        code = "{} = layers.sigmoid({})".format(node.output_name,
                                                data.ref_name)
        return code

    def emit_pack(self, node):
        ref_name = [input.ref_name for input in node.inputs]
        code = "{} = layers.stack([{}])".format(node.output_name,
                                                ", ".join(ref_name))
        return code

    def emit_reshape(self, node):
        data = node.inputs[0]
        shape = node.inputs[1]
        if shape.layer_type == "const":
            shape = shape.layer.attr['value'].tensor
            shape = list(tensor_util.MakeNdarray(shape))
            code = "{} = layers.reshape({}, {})".format(
                node.output_name, data.ref_name, shape)
        else:
            code = "{} = layers.reshape({}, {})".format(
                node.output_name, data.ref_name, shape.ref_name)
J
modify  
jiangjiajun 已提交
646 647 648 649 650 651 652 653 654 655
            logging.warn(
                "\tNotice there's RESHAPE in translated code, and the code list below:"
            )
            logging.warn("\t\t{}".format(code))
            logging.warn(
                "\tPaddle doesn't support tensor type for output_shape now")
            logging.warn(
                "\tYou need to change \'{}\'(in tf model: \'{}\') to a list with constant value, e.g. [28, 28]. IMPORTANT!!!\n"
                .format(shape.ref_name, shape.layer_name))

J
jiangjiajun 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
        return code

    def emit_conv2dbackpropinput(self, node):
        output_shape = node.inputs[0]
        kernel = node.inputs[1]
        data = node.inputs[2]
        if len(kernel.outputs) == 1:
            kernel.codes = []
        padding_mode = node.get_attr("padding")
        strides = node.get_attr("strides")[1:3]
        k_shape = self.tensor_shape_to_list(
            kernel.get_attr("_output_shapes"))[0]

        k_num, channel, k_h, k_w = k_shape
        if node.data_format == "NHWC":
            k_h, k_w, channel, k_num = k_shape

        if strides[0] > k_h or strides[1] > k_w:
            raise Exception(
                "Paddle cannot process the situation now[kernel's height/width less than the corresponding stride]"
            )

        padding = [0, 0]
        if padding_mode == "SAME":
            padding = map(int, [(k_h - strides[0]) / 2,
                                (k_w - strides[1]) / 2])

        if kernel.layer_name in self.weights:
            if node.data_format == "NHWC":
                weight = self.weights[kernel.layer_name]
                self.weights[kernel.layer_name] = numpy.transpose(
                    weight, (3, 2, 0, 1))
                self.export_weights(self.weights[kernel.layer_name],
                                    kernel.ref_name, self.save_dir)

        code = []
        if output_shape.layer_type == "const":
            output_shape.codes = []
            output_shape = tensor_util.MakeNdarray(
                output_shape.layer.attr['value'].tensor)
            if node.data_format == "NHWC" and output_shape[0] == 4:
                output_shape = output_shape[[0, 3, 1, 2]]
            code.append(
                "{} = layers.conv2d_transpose({}, {}, None, {}, {}, {}, param_attr=\'{}\', bias_attr=False)"
                .format(node.output_name, data.ref_name, k_num, [k_h, k_w],
                        padding, strides, kernel.ref_name))
            if padding_mode == "SAME":
                code.append("{} = layers.crop({}, shape={})".format(
                    node.output_name, node.output_name, list(output_shape)))
        else:
            code.append(
                "{} = layers.conv2d_transpose({}, {}, None, {}, 0, {}, param_attr=\'{}\', bias_attr=False)"
                .format(node.output_name, data.ref_name, k_num, [k_h, k_w],
                        strides, kernel.ref_name))
            if padding_mode == "SAME":
                code.append("{} = layers.crop({}, shape={})".format(
                    node.output_name, node.output_name, output_shape.ref_name))

        return code

    def emit_depthwiseconv2dnative(self, node):
        data = node.inputs[0]
        kernel = node.inputs[1]
        if len(kernel.outputs) == 1:
            kernel.codes = []

        padding_mode = node.get_attr("padding")
        strides = node.get_attr("strides")[1:3]
        k_shape = self.tensor_shape_to_list(
            kernel.get_attr("_output_shapes"))[0]
        input_shape = self.tensor_shape_to_list(
            data.get_attr("_output_shapes"))[0]
        input_h, input_w = input_shape[2:4]
        in_channels, channel_multiplier, k_h, k_w = k_shape
        if node.data_format == "NHWC":
            k_h, k_w, in_channels, channel_multiplier = k_shape
            input_h, input_w = input_shape[1:3]
        if k_h < strides[0] or k_w < strides[1]:
            raise Exception(
                "Unexpected situation with kernel's height/width less than the corresponding stride"
            )

        groups = channel_multiplier * in_channels

        if kernel.layer_name in self.weights:
            if node.data_format == "NHWC":
                weight = self.weights[kernel.layer_name]
                self.weights[kernel.layer_name] = numpy.transpose(
                    weight, (2, 3, 0, 1))
            self.export_weights(self.weights[kernel.layer_name],
                                kernel.ref_name, self.save_dir)

        code = list()
        padding = [0, 0]
        if padding_mode == "SAME":
            total_pad_h = self.compute_padding_size(input_h, k_h, strides[0])
            total_pad_w = self.compute_padding_size(input_w, k_w, strides[1])
            if total_pad_h % 2 == 0 and total_pad_w % 2 == 0:
                padding = map(int, [total_pad_h / 2, total_pad_w / 2])
                code.append(
                    "{} = layers.conv2d({}, {}, {}, padding={}, stride={}, param_attr=\'{}\', bias_attr=False, groups={})"
                    .format(node.output_name, data.ref_name, in_channels,
                            [k_h, k_w], padding, strides, kernel.ref_name,
                            groups))
            else:
                padding = [0] * 4
                padding[0] = total_pad_h / 2
                padding[1] = total_pad_h - padding[0]
                padding[2] = total_pad_w / 2
                padding[3] = total_pad_w - padding[2]
                code.append("{} = layers.pad2d({}, {})".format(
                    node.output_name, data.ref_name, padding))
                code.append(
                    "{} = layers.conv2d({}, {}, {}, stride={}, param_attr=\'{}\', bias_attr=False, groups={})"
                    .format(node.output_name, node.ref_name, in_channels,
                            [k_h, k_w], strides, kernel.ref_name, groups))
        else:
            code.append(
                "{} = layers.conv2d({}, {}, {}, stride={}, param_attr=\'{}\', bias_attr=False, groups={})"
                .format(node.output_name, data.ref_name, in_channels,
                        [k_h, k_w], strides, kernel.ref_name, groups))
        return code
J
modify  
jiangjiajun 已提交
778 779 780 781 782 783 784

    def emit_softmax(self, node):
        data = node.inputs[0]
        code = "{} = layers.softmax({})".format(node.output_name,
                                                data.ref_name)
        return code