onnx_layernorm_fuser.py 5.7 KB
Newer Older
W
wjj19950828 已提交
1
#   Copyright (c) 2022  PaddlePaddle Authors. All Rights Reserved.
W
wjj19950828 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import numpy as np
from collections import OrderedDict
from x2paddle.optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *


class LayerNormFuser(FuseBase):
    def __init__(self):
        super(LayerNormFuser, self).__init__()

    def build_pattern(self):
        """
        code describe:
            x2paddle_ln_pre_weight = self.x2paddle_ln_pre_weight
            x2paddle_ln_pre_bias = self.x2paddle_ln_pre_bias
            x2paddle_166 = paddle.full(dtype='float32', shape=[1], fill_value=2.0)
            x2paddle_169 = paddle.full(dtype='float32', shape=[1], fill_value=9.999999747378752e-06)
            x2paddle_164 = paddle.mean(x=x2paddle_162, axis=[-1], keepdim=True)
            x2paddle_165 = paddle.subtract(x=x2paddle_162, y=x2paddle_164)
            x2paddle_167 = paddle.pow(x=x2paddle_165, y=x2paddle_166)
            x2paddle_168 = paddle.mean(x=x2paddle_167, axis=[-1], keepdim=True)
            x2paddle_170 = paddle.add(x=x2paddle_168, y=x2paddle_169)
            x2paddle_171 = paddle.sqrt(x=x2paddle_170)
            x2paddle_172 = paddle.divide(x=x2paddle_165, y=x2paddle_171)
            x2paddle_173 = paddle.multiply(x=x2paddle_172, y=x2paddle_ln_pre_weight)
            x2paddle_174 = paddle.add(x=x2paddle_173, y=x2paddle_ln_pre_bias)
        """

        def gen_name(id):
            return "x" + str(id)

        self.pattern.add_layer(
            "self.create_parameter", inputs={}, outputs=[gen_name(0)])
        self.pattern.add_layer(
            "self.create_parameter", inputs={}, outputs=[gen_name(1)])
        self.pattern.add_layer(
            "paddle.full",
            inputs={},
            outputs=[gen_name(2)],
            shape=[1],
            fill_value=0.5)
        self.pattern.add_layer(
            "paddle.full",
            inputs={},
            outputs=[gen_name(3)],
            shape=[1],
            fill_value=9.999999747378752e-06)
        self.pattern.add_layer(
            "paddle.mean",
            inputs={"x": "layernorm-input-0"},
            outputs=[gen_name(4)],
            axis=[-1],
            keep_dim=True)
        self.pattern.add_layer(
            "paddle.subtract",
            inputs={"x": "layernorm-input-0",
                    "y": gen_name(4)},
            outputs=[gen_name(5)])
        self.pattern.add_layer(
            "paddle.pow",
            inputs={"x": gen_name(5),
                    "y": gen_name(2)},
            outputs=[gen_name(6)])
        self.pattern.add_layer(
            "paddle.mean",
            inputs={"x": gen_name(6)},
            outputs=[gen_name(7)],
            axis=[-1],
            keep_dim=True)
        self.pattern.add_layer(
            "paddle.add",
            inputs={"x": gen_name(7),
                    "y": gen_name(3)},
            outputs=[gen_name(8)])
        self.pattern.add_layer(
            "paddle.sqrt", inputs={"x": gen_name(8)}, outputs=[gen_name(9)])
        self.pattern.add_layer(
            "paddle.divide",
            inputs={"x": gen_name(5),
                    "y": gen_name(9)},
            outputs=[gen_name(10)])
        self.pattern.add_layer(
            "paddle.multiply",
            inputs={"x": gen_name(10),
                    "y": gen_name(0)},
            outputs=[gen_name(11)])
        self.pattern.add_layer(
            "paddle.add",
            inputs={"x": gen_name(11),
                    "y": gen_name(1)},
            outputs=[gen_name(12)])
        self.pattern.build(inputs={"input-0": "layernorm-input-0", })

    def insert_new_layer(self, graph, parameters, matches):
        new_layer, new_layer_id = self.gen_new_layer(parameters, matches)
        graph.layers[new_layer_id] = new_layer
        matches_copy = copy.deepcopy(matches)
        for layer_id, layer in matches_copy.items():
            if layer.kernel in ["self.create_parameter", "paddle.full"]:
                matches.pop(layer_id)
        matches.pop(new_layer_id)

    def gen_new_layer(self, parameters, matches):
        layer_id_list = list(matches.keys())
        layer_id_list.sort(key=int)
        layer_inputs = list()
        layer_inputs_ids = list()
        param_name = list()
        for layer_id, layer in matches.items():
            if layer.kernel == "paddle.mean":
                layer_inputs.append(layer.inputs)
                layer_inputs_ids.append(layer_id)
            if layer.kernel == "self.create_parameter":
                param_name.append(layer.outputs[0])
            if layer.kernel == "paddle.add":
                output_name = layer.outputs[0]
        param = parameters[param_name[0]]
        c = param.shape[0]
        weight_param = parameters.pop(param_name[0])
        parameters["{}.weight".format(output_name)] = weight_param
        bias_param = parameters.pop(param_name[1])
        parameters["{}.bias".format(output_name)] = bias_param
        new_layer = PaddleLayer(
            layer_id_list[0],
            "paddle.nn.LayerNorm",
            inputs=layer_inputs[0],
            outputs=[output_name],
            normalized_shape=[c])
        return new_layer, layer_inputs_ids[0]