aten.py 228.2 KB
Newer Older
S
SunAhong1993 已提交
1
# -*- coding:UTF-8 -*-
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
16
import copy
S
SunAhong1993 已提交
17
import numpy as np
S
SunAhong1993 已提交
18 19
from x2paddle.core.util import name_generator, string
from x2paddle.utils import paddle_dtypes
S
SunAhong1993 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
from x2paddle.core.program import PaddleGraph

dtype_dict = {
    0: string("uint8"),
    1: string("int8"),
    2: string("int16"),
    3: string("int32"),
    4: string("int64"),
    5: string("float16"),
    6: string("float32"),
    7: string("float64"),
    11: string("bool")
}


Y
yeliang2258 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
def aten_sum(mapper, graph, node):
    """ 构造获取元素求和的paddlelayer。
    TorchScript示例:
        %x_gap.15 : Tensor =  aten::sum(%x.58, %2166, %1450, %1453)
        参数含义:
        %x_gap.15 (Tensor): 求和后的Tensor。
        %n.3 (Tensor): 求和前的Tensor。
        %2166:axis
        %1450:keepdim
        %1453:dtype
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    if inputs_name[2] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
    if inputs_name[3] in mapper.attrs:
        layer_attrs["dtype"] = mapper.attrs[inputs_name[3]]
    graph.add_layer(
        "paddle.sum",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

W
WJJ1995 已提交
74

S
SunAhong1993 已提交
75 76 77 78 79 80 81 82
def aten_abs(mapper, graph, node):
    """ 构造获取绝对值的PaddleLayer。
    TorchScript示例:
        %n0.3 : Tensor = aten::abs(%n.3)
        参数含义:
        %n0.3 (Tensor): 绝对值后的Tensor。
        %n.3 (Tensor): 绝对值前的Tensor。
    """
S
SunAhong1993 已提交
83
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
84 85 86 87 88 89 90
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
S
SunAhong1993 已提交
91 92
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
93 94 95 96 97
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
98 99 100 101
        "paddle.abs",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
102 103 104
    return current_inputs, current_outputs


S
SunAhong1993 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def aten_adaptive_avg_pool1d(mapper, graph, node):
    """ 构造average adaptive pool1d的PaddleLayer。
    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool1d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的长度大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]][0]
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool1D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.getitem",
            inputs={"list": layer_inputs["output_size"]},
            outputs=[layer_inputs["output_size"]],
            scope_name=scope_name,
            index=0)
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool1d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
158 159 160 161 162 163 164 165 166
def aten_adaptive_avg_pool2d(mapper, graph, node):
    """ 构造average adaptive pool2d的PaddleLayer。
    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的宽、高大小。
    """
S
SunAhong1993 已提交
167 168
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
169
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
170
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
171 172 173 174 175 176
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
S
SunAhong1993 已提交
177 178
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
179
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
180 181 182 183
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
184
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
185 186 187 188 189 190
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool2D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
191 192
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
193 194
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
S
SunAhong1993 已提交
195
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
196 197 198 199 200 201
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool2d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    return current_inputs, current_outputs


def aten_addmm(mapper, graph, node):
    """ 构造addmm的PaddleLayer,该节点实现out = alpha ∗ x ∗ y + beta ∗ input。
    TorchScript示例:
        %ret.2 : Tensor = aten::addmm(%150, %input.3, %156, %151, %152)
        参数含义:
        %ret.2 (Tensor): addmm结果Tensor。
        %150 (Tensor): 输入Tensor input。
        %input.3 (Tensor): 输入Tensor x。
        %156 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
        %152 (int/float): 输入beta。
    """
S
SunAhong1993 已提交
217
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
218 219 220 221 222 223 224 225
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%150
S
SunAhong1993 已提交
226 227
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
228 229
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%input.3
S
SunAhong1993 已提交
230 231
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
232 233
    layer_inputs["x"] = inputs_name[1]
    # 处理输入2,即%156
S
SunAhong1993 已提交
234 235
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
236 237 238 239 240 241 242 243
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入3,即%152
    if inputs_name[3] in mapper.attrs:
        layer_attrs["beta"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
244
                            current_outputs, scope_name)
S
SunAhong1993 已提交
245 246 247 248 249 250 251
        layer_inputs["beta"] = inputs_name[3]
        current_inputs.append(inputs_name[3])
    # 处理输入4,即%151
    if inputs_name[4] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[4]]
    else:
        mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
252
                            current_outputs, scope_name)
S
SunAhong1993 已提交
253 254 255 256 257 258 259
        layer_inputs["alpha"] = inputs_name[4]
        current_inputs.append(inputs_name[4])

    graph.add_layer(
        "paddle.addmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
260
        scope_name=scope_name,
S
SunAhong1993 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274
        **layer_attrs)
    return current_inputs, current_outputs


def aten_add(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + alpha * y。
    TorchScript示例:
        %137 : Tensor = aten::add(%136, %130, %130)
        参数含义:
        %output.5 (Tensor): add结果Tensor。
        %output.2 (Tensor): 输入Tensor x。
        %150 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
    """
S
SunAhong1993 已提交
275
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
276 277 278 279 280 281 282 283
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%output.2
S
SunAhong1993 已提交
284 285
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
286 287
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%150
S
SunAhong1993 已提交
288 289
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
290 291 292
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
293 294 295 296 297 298 299 300 301
    if len(inputs_name) > 2:
        # 处理输入2,即%151
        if inputs_name[2] in mapper.attrs:
            layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs, scope_name)
            layer_inputs["alpha"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
S
SunAhong1993 已提交
302

303 304 305 306 307 308 309 310 311 312 313 314 315
        graph.add_layer(
            "prim.add_",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        graph.add_layer(
            "prim.add",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
316 317 318 319 320 321 322 323 324 325 326 327
    return current_inputs, current_outputs


def aten___and__(mapper, graph, node):
    """ 构造与计算的PaddleLayer。
    TorchScript示例:
        %361 : bool = aten::__and__(%360, %358)
        参数含义:
        %361 (bool): 输出,与计算结果。
        %360 (-): 输入 x。
        %358 (-): 输入 y。
    """
S
SunAhong1993 已提交
328
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
329 330 331 332 333 334 335
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
336 337
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
338 339
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
S
SunAhong1993 已提交
340 341
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
342 343 344 345
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
346 347 348 349 350
    graph.add_layer(
        "prim.and",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
351 352 353 354 355 356 357 358 359 360 361 362
    return current_inputs, current_outputs


def aten_append(mapper, graph, node):
    """ 构造对list进行append的PaddleLayer。
    TorchScript示例:
        %90 : int[] = aten::append(%_output_size.1, %v.1)
        参数含义:
        %90 (list): 输出,append后的list。
        %_output_size.1 (list): 需要进行append的list。
        %v.1 (-): append的元素。
    """
S
SunAhong1993 已提交
363
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
364 365 366 367 368 369
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    layer_outputs = [inputs_name[0]]
    # 获取当前节点输出的list
    current_outputs = [inputs_name[0]]
    # 处理输入0,即_output_size.1
S
SunAhong1993 已提交
370 371
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
372 373
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即v.1
S
SunAhong1993 已提交
374 375
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
376 377 378 379
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
380 381 382 383 384
    graph.add_layer(
        "prim.append",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
385 386 387 388 389 390 391 392
    return current_inputs, current_outputs


def aten_arange(mapper, graph, node):
    """ 构造以步长均匀分隔给定数值区间的PaddleLayer。
    TorchScript示例:
        有三种情况,分别处理。
    """
S
SunAhong1993 已提交
393
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    if len(inputs_name) == 5:
        # %position_ids.1 : Tensor = aten::arange(%52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%52,代表end
        if inputs_name[0] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
410
                                current_outputs, scope_name)
S
SunAhong1993 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
            layer_inputs["end"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%43,代表dtype
        if mapper.attrs[inputs_name[1]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
    elif len(inputs_name) == 6:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
426
                                current_outputs, scope_name)
S
SunAhong1993 已提交
427 428 429 430 431 432 433
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
434
                                current_outputs, scope_name)
S
SunAhong1993 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%43,代表dtype
        if mapper.attrs[inputs_name[2]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    elif len(inputs_name) == 7:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
450
                                current_outputs, scope_name)
S
SunAhong1993 已提交
451 452 453 454 455 456 457
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
458
                                current_outputs, scope_name)
S
SunAhong1993 已提交
459 460 461 462 463 464 465
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%53,代表step
        if inputs_name[2] in mapper.attrs:
            layer_attrs["step"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
466
                                current_outputs, scope_name)
S
SunAhong1993 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
            layer_inputs["step"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
        # 处理输入3,即%43,代表dtype
        if mapper.attrs[inputs_name[3]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[3]]]
    else:
        raise Exception("Unknown aten::arange signature taking " + str(
            len(inputs_name)) + " arguments.")

    graph.add_layer(
        "paddle.arange",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
482
        scope_name=scope_name,
S
SunAhong1993 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        **layer_attrs)
    return current_inputs, current_outputs


def aten_avg_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
S
SunAhong1993 已提交
501 502
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
503
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
504
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
505 506 507 508 509 510
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
511 512
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
513 514 515 516
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
517
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
518
    # 处理输入2,即%539
S
SunAhong1993 已提交
519
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
520
    # 处理输入3,即%540
S
SunAhong1993 已提交
521
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
522 523 524 525 526 527 528 529
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
530
        outputs=[inputs_name[6] + "_assert"],
S
SunAhong1993 已提交
531
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
S
SunAhong1993 已提交
532 533 534
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)
S
SunAhong1993 已提交
535 536

    graph.add_layer(
S
SunAhong1993 已提交
537
        kernel="paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
538
        inputs=layer_inputs,
S
SunAhong1993 已提交
539
        outputs=layer_outputs,
S
SunAhong1993 已提交
540 541
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
542

S
SunAhong1993 已提交
543 544
    return current_inputs, current_outputs

S
SunAhong1993 已提交
545

S
SunAhong1993 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
def aten_avg_pool3d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
570 571
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
572 573 574 575
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
576
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
577
    # 处理输入2,即%539
S
SunAhong1993 已提交
578
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
579
    # 处理输入3,即%540
S
SunAhong1993 已提交
580
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

S
SunAhong1993 已提交
595
    graph.add_layer(
S
SunAhong1993 已提交
596
        kernel="paddle.nn.AvgPool3D",
S
SunAhong1993 已提交
597
        inputs=layer_inputs,
S
SunAhong1993 已提交
598
        outputs=layer_outputs,
S
SunAhong1993 已提交
599 600 601 602 603
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
fix  
SunAhong1993 已提交
604
def aten_avg_pool1d(mapper, graph, node):
S
SunAhong1993 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool1d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
628 629
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
630 631 632 633
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
634
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
635
    # 处理输入2,即%539
S
SunAhong1993 已提交
636
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
637
    # 处理输入3,即%540
S
SunAhong1993 已提交
638
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

    graph.add_layer(
S
SunAhong1993 已提交
654
        kernel="paddle.nn.AvgPool1D",
S
SunAhong1993 已提交
655
        inputs=layer_inputs,
S
SunAhong1993 已提交
656
        outputs=layer_outputs,
S
SunAhong1993 已提交
657
        scope_name=scope_name,
S
SunAhong1993 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        **layer_attrs)
    return current_inputs, current_outputs


def aten_batch_norm(mapper, graph, node):
    """ 构造BatchNorm的PaddleLayer。
    TorchScript示例:
        %input.81 : Tensor = aten::batch_norm(%input.80, %778, %779, %776, %777, %780,
                                              %exponential_average_factor.23, %766, %781)
        参数含义:
        %input.81 (Tensor): 输出,批处理后的结果。
        %input.80 (Tensor): 需要进行批处理的特征层。
        %778 (Tensor): weights。
        %779 (Tensor): bias。
        %776 (Tensor): 全局均值。
        %777 (Tensor): 全局方差。
        %780 (bool): 是否训练。
        %exponential_average_factor.23 (float): 用于计算均值和方差的比例。
        %766 (float): 为了数值稳定加在分母上的值。
        %781 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
679 680
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("batchnorm", mapper.nn_name2id)
S
SunAhong1993 已提交
681
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
682
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
683 684 685 686 687 688 689
    layer_inputs = {}
    layer_attrs = {}
    layer_attrs["is_test"] = True
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
690 691
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
692 693 694 695 696
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%778
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
697
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
698 699 700 701 702
    layer_attrs['num_channels'] = weights.shape[0]
    # 处理输入2,即%779
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
703
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
704
    else:
S
SunAhong1993 已提交
705
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
706 707
    # 处理输入3,即%776
    mean = mapper.pytorch_params[inputs_name[3]]
S
SunAhong1993 已提交
708
    mapper.paddle_params[op_name + "._mean"] = mean
S
SunAhong1993 已提交
709 710
    # 处理输入4,即%777
    var = mapper.pytorch_params[inputs_name[4]]
S
SunAhong1993 已提交
711
    mapper.paddle_params[op_name + "._variance"] = var
S
SunAhong1993 已提交
712 713 714 715 716 717 718 719 720
    # 处理输入6,即%exponential_average_factor.23
    layer_attrs["momentum"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%766
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "paddle.nn.BatchNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
721
        scope_name=scope_name,
S
SunAhong1993 已提交
722 723 724 725
        **layer_attrs)
    return current_inputs, current_outputs


W
WJJ1995 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
def aten_bitwise_not(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bitwise_not(%32)
        参数含义:
        %x.222 (Tensor): 输出,逻辑非运算后的结果。
        %32 (Tensor): 输入1。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%32
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.not",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


def aten_bitwise_xor(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bitwise_xor(%32, %8)
        参数含义:
        %x.222 (Tensor): 输出,逻辑或运算后的结果。
        %32 (Tensor): 输入1。
        %8 (Tensor): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%32
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%8
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.or",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


def aten_bitwise_and(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bitwise_and(%32, %8)
        参数含义:
        %x.222 (Tensor): 输出,逻辑与运算后的结果。
        %32 (Tensor): 输入1。
        %8 (Tensor): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%32
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%8
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.and",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
def aten_bmm(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bmm(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,矩阵相乘后的结果。
        %i.12 (list): 输入1。
        %7 (int): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
843 844
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
845 846
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
S
SunAhong1993 已提交
847 848
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
849 850 851 852
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
853 854 855 856 857
    graph.add_layer(
        "paddle.bmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
858 859 860
    return current_inputs, current_outputs


S
SunAhong1993 已提交
861 862 863 864 865 866 867 868 869
def aten_cat(mapper, graph, node):
    """ 构造连接Tensor的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::cat(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,连接后的结果。
        %i.12 (list): 需要连接的Tensor组成的list。
        %7 (int): 连接的轴。
    """
S
SunAhong1993 已提交
870
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
871 872 873 874 875 876 877 878
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
879 880
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
881
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
882 883 884 885 886 887 888
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
889
                            current_outputs, scope_name)
S
SunAhong1993 已提交
890 891 892
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
893
        "paddle.concat",
S
SunAhong1993 已提交
894 895
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
896
        scope_name=scope_name,
S
SunAhong1993 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910
        **layer_attrs)
    return current_inputs, current_outputs


def aten_chunk(mapper, graph, node):
    """构造分割Tensor的PaddleLayer。
    TorchScript示例:
        %724 : Tensor[] = aten::chunk(%input.170, %720, %719)
        参数含义:
        %724 (Tensor): 输出,分割后的结果。
        %input.170 (Tensor): 需要进行分割的Tensor。
        %720 (int): 分割的块数。
        %719 (int): 分割的维度。
    """
S
SunAhong1993 已提交
911
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
912 913 914 915 916 917 918 919
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.170
S
SunAhong1993 已提交
920 921
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
922
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
923 924 925 926 927 928 929
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%720
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
930
                            current_outputs, scope_name)
S
SunAhong1993 已提交
931 932 933 934
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%719
    if inputs_name[2] in mapper.attrs:
S
SunAhong1993 已提交
935
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
936 937
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
938 939
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
940 941
        current_inputs.append(inputs_name[2])
    graph.add_layer(
S
SunAhong1993 已提交
942
        "paddle.split",
S
SunAhong1993 已提交
943 944
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
945
        scope_name=scope_name,
S
SunAhong1993 已提交
946 947 948 949
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
def aten_clamp(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::clamp(%input.1, %46, %48, %49)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
        %48 (float/Tensor): 最大值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
969 970
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%48,代表dtype
    if inputs_name[2] in mapper.attrs:
        layer_attrs["max"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["max"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
def aten_clamp_min(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::clamp_min(%input.1, %46)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
1018 1019
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


W
wjj19950828 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
def aten_complex(mapper, graph, node):
    """
    TorchScript示例:
        %ret.2 : Tensor = aten::complex(%150, %156)
        参数含义:
        %ret.2 (Tensor): complex结果Tensor。
        %150 (Tensor): 实部输入Tensor。
        %156 (Tensor): 虚部输入Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%150
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["real"] = inputs_name[0]
    # 处理输入1,即%156
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["imag"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.complex",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086
def aten___contains__(mapper, graph, node):
    """ 构造in的PaddleLayer。
    TorchScript示例:
        %51 : bool = aten::__contains__(%50, %name.1)
        参数含义:
        %51 (bool): 输出,第一个元素是否包含第二个元素。
        %50 (-): 需对比的输入1。
        %name.1 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1087
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1088 1089 1090 1091 1092 1093 1094
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%50
S
SunAhong1993 已提交
1095 1096
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1097 1098
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%name.1
S
SunAhong1993 已提交
1099 1100
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1101 1102 1103 1104
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1105 1106 1107 1108 1109
    graph.add_layer(
        "prim.contain",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    return current_inputs, current_outputs


def aten_constant_pad_nd(mapper, graph, node):
    """ 构造填充固定值的PaddleLayer。
    TorchScript示例:
        %58 : Tensor = aten::constant_pad_nd(%input1.24, %4876, %42)
        参数含义:
        %58 (Tensor): 输出,填充后的Tensor。
        %input1.24 (Tensor): 需要填充的Tensor。
        %4876 (list): 填充大小。
        %42 (-): 填充值。
    """
S
SunAhong1993 已提交
1123 1124
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad", mapper.nn_name2id)
S
SunAhong1993 已提交
1125
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1126
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1127 1128 1129 1130 1131 1132
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input1.24
S
SunAhong1993 已提交
1133 1134
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1135
    layer_inputs["input"] = inputs_name[0]
1136 1137 1138 1139 1140
    # 处理输入1,即%4876
    is_padding_tensor = False
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
W
WJJ1995 已提交
1141 1142
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
1143 1144
        layer_inputs["pad"] = inputs_name[1]
        is_padding_tensor = True
S
SunAhong1993 已提交
1145 1146 1147
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%42
S
SunAhong1993 已提交
1148
    layer_attrs["value"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    if not is_padding_tensor:
        graph.add_layer(
            "prim.shape",
            inputs={"input": inputs_name[0]},
            outputs=[inputs_name[0] + "_shape"],
            scope_name=scope_name)
        graph.add_layer(
            "prim.len",
            inputs={"input": inputs_name[0] + "_shape"},
            outputs=[inputs_name[0] + "_len"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1161 1162 1163 1164 1165 1166

    def add_pad_layers(kernel, dim):
        graph.add_layer(
            "prim.ne",
            inputs={"x": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
1167
            scope_name=scope_name,
S
SunAhong1993 已提交
1168 1169 1170
            y=dim)
        graph.add_layer(
            "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1171 1172
            outputs=[inputs_name[0] + "_if", output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
1173
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
1174
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
1175 1176 1177 1178
        block.add_layer(
            "prim.sub",
            inputs={"y": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_len0"],
S
SunAhong1993 已提交
1179
            scope_name=scope_name,
1180
            alpha=1.0,
S
SunAhong1993 已提交
1181 1182 1183 1184
            x=dim)
        block.add_layer(
            "prim.len2list",
            inputs={"len": inputs_name[0] + "_len0"},
S
SunAhong1993 已提交
1185 1186
            outputs=[inputs_name[0] + "_list"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1187
        block.add_layer(
S
SunAhong1993 已提交
1188
            "paddle.unsqueeze",
S
SunAhong1993 已提交
1189 1190
            inputs={"x": inputs_name[0],
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
1191 1192
            outputs=[inputs_name[0] + "_var"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1193 1194 1195
        block.add_layer(
            kernel,
            inputs={"input": inputs_name[0] + "_var"},
S
SunAhong1993 已提交
1196
            outputs=copy.deepcopy(layer_outputs),
S
SunAhong1993 已提交
1197
            scope_name=scope_name,
S
SunAhong1993 已提交
1198 1199
            **layer_attrs)
        block.add_layer(
S
SunAhong1993 已提交
1200
            "paddle.squeeze",
S
SunAhong1993 已提交
1201 1202
            inputs={"x": output_name,
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
1203 1204
            outputs=[output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
1205
        if_layer.add_block(block)
W
WJJ1995 已提交
1206
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
1207 1208
        layer_inputs["input"] = inputs_name[0]
        block.add_layer(
S
SunAhong1993 已提交
1209 1210 1211 1212 1213
            kernel,
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1214 1215 1216 1217
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[0]
        if_layer.inputs["input-1"] = inputs_name[0] + "_len"

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    if not is_padding_tensor:
        if len(layer_attrs["padding"]) == 2:
            layer_outputs[0] = layer_outputs[0].replace("pad", "pad1d")
            add_pad_layers("paddle.nn.Pad1D", 3)
        elif len(layer_attrs["padding"]) == 4:
            layer_outputs[0] = layer_outputs[0].replace("pad", "pad2d")
            add_pad_layers("paddle.nn.Pad2D", 4)
        elif len(layer_attrs["padding"]) == 6:
            layer_outputs[0] = layer_outputs[0].replace("pad", "pad3d")
            add_pad_layers("paddle.nn.Pad3D", 5)
        else:
            raise Exception("The lenght of padding list must be 2, 4 or 6!")
S
SunAhong1993 已提交
1230
    else:
1231 1232 1233 1234 1235 1236
        graph.add_layer(
            "custom_layer:Pad",
            inputs=layer_inputs,
            outputs=[output_name],
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    return current_inputs, current_outputs


def aten_contiguous(mapper, graph, node):
    """ 构造在内存中连续存储的PaddleLayer。
    TorchScript示例:
        %x.7 : Tensor = aten::contiguous(%4058, %4046)
        参数含义:
        %x.7 (Tensor): 输出,在内存中连续存储的Tensor。
        %4058 (Tensor): 原始Tensor。
        %4046 (int): 存储的形式。
    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
1250
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1251 1252 1253 1254 1255 1256 1257
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4058
S
SunAhong1993 已提交
1258 1259
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1260 1261 1262 1263
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1264 1265 1266 1267 1268
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    return current_inputs, current_outputs


def aten_conv2d(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。
    TorchScript示例:
        %input.10 : Tensor = aten::conv2d(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
S
SunAhong1993 已提交
1283
        %30 (int): 空洞大小。
S
SunAhong1993 已提交
1284 1285
        %26 (int): 卷积的组数。
    """
S
SunAhong1993 已提交
1286 1287
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
S
SunAhong1993 已提交
1288
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1289
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1290 1291 1292 1293 1294 1295
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1296 1297
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1298 1299 1300 1301 1302
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
1303
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
1304 1305 1306 1307 1308 1309
    layer_attrs["out_channels"] = weights.shape[0]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1310
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[inputs_name[6]]

    graph.add_layer(
S
SunAhong1993 已提交
1326
        "paddle.nn.Conv2D",
S
SunAhong1993 已提交
1327 1328
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1329
        scope_name=scope_name,
S
SunAhong1993 已提交
1330 1331 1332 1333 1334 1335 1336
        **layer_attrs)
    return current_inputs, current_outputs


def aten__convolution(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。
    TorchScript示例:
S
SunAhong1993 已提交
1337
        %input.10 : Tensor = aten::_convolution(%input.1, %18, %10, %19, %20, %21, %13, %22, %12, %13, %13, %15)
S
SunAhong1993 已提交
1338 1339 1340
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
S
SunAhong1993 已提交
1341 1342 1343 1344
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
S
SunAhong1993 已提交
1345
        %21 (list): 空洞大小。
S
SunAhong1993 已提交
1346 1347 1348
        %13 (bool): 是否进行转置卷积。
        %22 (list): 输出形状上一侧额外添加的大小。
        %12 (int): 卷积的组数。
S
SunAhong1993 已提交
1349
    """
S
SunAhong1993 已提交
1350
    scope_name = mapper.normalize_scope_name(node)
W
WJJ1995 已提交
1351 1352 1353 1354
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    weights = mapper.pytorch_params[inputs_name[1]]
    if len(weights.shape) == 3:
        op_name = name_generator("conv1d", mapper.nn_name2id)
W
wjj19950828 已提交
1355
    elif len(weights.shape) == 4:
W
WJJ1995 已提交
1356
        op_name = name_generator("conv2d", mapper.nn_name2id)
W
wjj19950828 已提交
1357 1358
    else:
        op_name = name_generator("conv3d", mapper.nn_name2id)
S
SunAhong1993 已提交
1359
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1360
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1361 1362 1363 1364 1365
    layer_inputs = {}
    layer_attrs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1366 1367
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1368 1369 1370
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1371
    # 处理输入1,即%18
S
SunAhong1993 已提交
1372 1373
    mapper.paddle_params[op_name +
                         ".weight"] = weights  #np.swapaxes(weights, 0, 1)
S
SunAhong1993 已提交
1374 1375 1376 1377
    if mapper.attrs[inputs_name[6]]:
        layer_attrs["out_channels"] = weights.shape[1]
    else:
        layer_attrs["out_channels"] = weights.shape[0]
S
SunAhong1993 已提交
1378
    layer_attrs["kernel_size"] = weights.shape[2:]
S
SunAhong1993 已提交
1379
    # 处理输入2,即%10
S
SunAhong1993 已提交
1380 1381 1382
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1383
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1384 1385 1386 1387
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
1388
    # 处理输入3,即%19
S
SunAhong1993 已提交
1389
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
1390
    # 处理输入4,即%20
S
SunAhong1993 已提交
1391
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1392
    # 处理输入5,即%21
S
SunAhong1993 已提交
1393
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
1394 1395 1396 1397 1398 1399
    # 处理输入6,即%13
    if mapper.attrs[inputs_name[6]]:
        # 处理输入7,即%22
        layer_attrs["output_padding"] = mapper.attrs[inputs_name[7]]
    # 处理输入8,即%12
    layer_attrs["groups"] = mapper.attrs[inputs_name[8]]
S
SunAhong1993 已提交
1400
    if mapper.attrs[inputs_name[6]]:
S
SunAhong1993 已提交
1401 1402
        layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[
            inputs_name[8]]
S
SunAhong1993 已提交
1403
    else:
S
SunAhong1993 已提交
1404 1405
        layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[
            inputs_name[8]]
W
wjj19950828 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    if len(weights.shape) == 3:
        if mapper.attrs[inputs_name[6]]:
            graph.add_layer(
                "paddle.nn.Conv1DTranspose",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
        else:
            graph.add_layer(
                "paddle.nn.Conv1D",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
    elif len(weights.shape) == 4:
W
WJJ1995 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
        if mapper.attrs[inputs_name[6]]:
            graph.add_layer(
                "paddle.nn.Conv2DTranspose",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
        else:
            graph.add_layer(
                "paddle.nn.Conv2D",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
S
SunAhong1993 已提交
1436
    else:
W
WJJ1995 已提交
1437 1438
        if mapper.attrs[inputs_name[6]]:
            graph.add_layer(
W
wjj19950828 已提交
1439
                "paddle.nn.Conv3DTranspose",
W
WJJ1995 已提交
1440 1441 1442 1443 1444 1445
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
        else:
            graph.add_layer(
W
wjj19950828 已提交
1446
                "paddle.nn.Conv3D",
W
WJJ1995 已提交
1447 1448 1449 1450
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
S
SunAhong1993 已提交
1451 1452 1453
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
def aten_conv_transpose2d(mapper, graph, node):
    """ 构造conv_transpose2d的PaddleLayer。
    TorchScript示例:
        %input.10 : Tensor = aten::conv_transpose2d(%input.1, %18, %10, %19, %20, %21, %13, %22)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
        %21 (int/tuple): 输出形状上一侧额外添加的大小。
        %13 (int): 二维卷积层的组数。
        %22 (int/tuple): 空洞大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1479 1480
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%18
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["out_channels"] = weights.shape[1]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%10
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[op_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%19
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%20
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%21
    layer_attrs["output_padding"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%13
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%22
    layer_attrs["dilation"] = mapper.attrs[inputs_name[7]]
S
SunAhong1993 已提交
1508
    layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[inputs_name[6]]
S
SunAhong1993 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517
    graph.add_layer(
        "paddle.nn.Conv2DTranspose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1518 1519 1520 1521 1522 1523 1524 1525
def aten_cos(mapper, graph, node):
    """ 构造数学计算cos的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::cos(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,cos之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
1526
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1527 1528 1529 1530 1531 1532 1533
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1534 1535
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1536 1537 1538 1539
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1540 1541 1542 1543 1544
    graph.add_layer(
        "paddle.cos",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    return current_inputs, current_outputs


def aten_cumsum(mapper, graph, node):
    """ 构造与前一个元素累加的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::cumsum(%mask.1, %46, %48)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %mask.1 (Tensor): 输入,需要累加的Tensor。
        %46 (int): 累加的维度。
        %48 (int/None): Tensor的类型。
    """
S
SunAhong1993 已提交
1558
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1559 1560 1561 1562 1563 1564 1565 1566
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
1567 1568
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1569 1570 1571 1572 1573 1574 1575 1576
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
1577
                            current_outputs, scope_name)
S
SunAhong1993 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入1,即%48,代表dtype
    if mapper.attrs[inputs_name[2]] is None:
        layer_attrs["dtype"] = None
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.cumsum",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1590
        scope_name=scope_name,
S
SunAhong1993 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
        **layer_attrs)
    return current_inputs, current_outputs


def aten_detach(mapper, graph, node):
    """ 构造返回一个新的Tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置的PaddleLayer。
    TorchScript示例:
        %107 : Tensor = aten::detach(%new_mem.1)
        参数含义:
        %107 (Tensor): 输出,得到的Scalar。
        %new_mem.1 (Tensor): 输入。
    【注意】由于Paddle无此操作,所以此处制转换为赋值。
    """
S
SunAhong1993 已提交
1604
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1605 1606 1607 1608 1609 1610 1611
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
1612 1613
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1614 1615 1616
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1617 1618 1619 1620 1621
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

    return current_inputs, current_outputs


def aten_dict(mapper, graph, node):
    """ 构造初始化dict的PaddleLayer。
    TorchScript示例:
        %features.1 : Dict(str, Tensor) = aten::dict()
        参数含义:
        %features.1: 输出,初始化的dict。
    """
S
SunAhong1993 已提交
1633
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1634 1635 1636 1637 1638 1639 1640
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    current_inputs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]

S
SunAhong1993 已提交
1641 1642 1643 1644 1645
    graph.add_layer(
        "prim.dict",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    return current_inputs, current_outputs


def aten_dim(mapper, graph, node):
    """ 构造获取维度的PaddleLayer。
    TorchScript示例:
        %106 : int = aten::dim(%101)
        参数含义:
        %106 (int): 输出,Tensor的维度。
        %101 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
1657
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1658 1659 1660 1661 1662 1663
    output_name = mapper._get_outputs_name(node)[0]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1664 1665
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1666
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1667 1668 1669 1670
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1671 1672 1673 1674
        "prim.shape",
        inputs=layer_inputs,
        outputs=[output_name],
        scope_name=scope_name)
S
SunAhong1993 已提交
1675
    graph.add_layer(
S
SunAhong1993 已提交
1676 1677 1678 1679
        "prim.len",
        inputs={"input": output_name},
        outputs=[output_name],
        scope_name=scope_name)
S
SunAhong1993 已提交
1680 1681 1682 1683 1684 1685
    return current_inputs, current_outputs


def aten_div(mapper, graph, node):
    """ 构造除法的PaddleLayer。
    TorchScript示例:
W
WJJ1995 已提交
1686
        %bx_bw0.3 : Tensor = aten::div(%bx_bw.3, %2678)
S
SunAhong1993 已提交
1687 1688 1689 1690 1691
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
S
SunAhong1993 已提交
1692
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1693 1694 1695 1696 1697 1698 1699
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1700 1701
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1702 1703
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1704 1705
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1706 1707 1708 1709
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1710 1711 1712 1713 1714
    graph.add_layer(
        "prim.div",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
    return current_inputs, current_outputs


def aten_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
1727 1728
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
S
SunAhong1993 已提交
1729
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1730
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1731 1732 1733 1734 1735
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1736 1737
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1738 1739 1740 1741 1742
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1743 1744 1745 1746 1747
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
    return current_inputs, current_outputs


def aten_embedding(mapper, graph, node):
    """ 构造embedding的PaddleLayer。
    TorchScript示例:
        %inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46)
        参数含义:
        %inputs_embeds.1 (Tensor): 输出,embedding后的结果。
        %57 (Tensor): weights。
        %input_ids.1 (Tensor): 需要进行embedding的特征层。
        %45 (int): padding_idx。
        %46 (bool): scale_grad_by_freq。
        %46 (bool): sparse。
    """
S
SunAhong1993 已提交
1763 1764
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("embedding", mapper.nn_name2id)
S
SunAhong1993 已提交
1765
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1766
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1767 1768 1769 1770 1771 1772 1773
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%57
    weights = mapper.pytorch_params[inputs_name[0]]
S
SunAhong1993 已提交
1774 1775 1776
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["num_embeddings"] = weights.shape[0]
    layer_attrs["embedding_dim"] = weights.shape[1]
S
SunAhong1993 已提交
1777
    # 处理输入1,即%input_ids.1
S
SunAhong1993 已提交
1778 1779
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788
    layer_inputs["input"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%45
    if mapper.attrs[inputs_name[2]] == -1:
        layer_attrs["padding_idx"] = None
    else:
        layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]]
    # 处理输入4,即%46
S
SunAhong1993 已提交
1789
    layer_attrs["sparse"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1790 1791

    graph.add_layer(
S
SunAhong1993 已提交
1792
        "paddle.nn.Embedding",
S
SunAhong1993 已提交
1793 1794
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1795
        scope_name=scope_name,
S
SunAhong1993 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
        **layer_attrs)
    return current_inputs, current_outputs


def aten_eq(mapper, graph, node):
    """ 构造判断数值是否相等的PaddleLayer。
    TorchScript示例:
        %125 : bool = aten::eq(%124, %123)
        参数含义:
        %125 (bool): 对比后结果。
        %124 (-): 需对比的输入1。
        %123 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1809
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1810 1811 1812 1813 1814 1815 1816
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1817 1818
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1819 1820 1821 1822
    layer_inputs["x"] = inputs_name[0]
    x_value = list(node.inputs())[0]
    x_type = x_value.type()
    # 处理输入1,即%123
S
SunAhong1993 已提交
1823 1824
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1825 1826 1827 1828 1829
    layer_inputs["y"] = inputs_name[1]
    y_value = list(node.inputs())[1]
    y_type = y_value.type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1830 1831 1832 1833 1834
    graph.add_layer(
        "prim.eq",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1835 1836 1837
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
def aten_erf(mapper, graph, node):
    """ 构造逐元素计算 Erf 激活函数的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::erf(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,erf之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行erf的Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1854 1855
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1856 1857 1858 1859
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1860 1861 1862 1863 1864
    graph.add_layer(
        "paddle.erf",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1865 1866 1867
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1868 1869 1870 1871 1872 1873 1874 1875
def aten_exp(mapper, graph, node):
    """ 构造以自然数e为底指数运算的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,运算后的结果。
        %54 (Tensor): 需要指数运算的Tensor。
    """
S
SunAhong1993 已提交
1876
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1877 1878 1879 1880 1881 1882 1883
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
1884 1885
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1886 1887 1888 1889 1890
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1891 1892 1893 1894
        "paddle.exp",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
    return current_inputs, current_outputs


def aten_expand(mapper, graph, node):
    """ 构造对某维度进行广播的PaddleLayer。
    TorchScript示例:
        %1889 : Tensor = aten::expand(%1875, %1888, %1567)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (int): 广播的维度。
        %1567 (bool): 未使用。
    """
S
SunAhong1993 已提交
1908
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1909 1910 1911
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
1912
    layer_attrs = {}
S
SunAhong1993 已提交
1913 1914 1915 1916
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1917 1918
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1919
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
1929
    graph.add_layer(
S
SunAhong1993 已提交
1930 1931 1932
        "paddle.expand",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1933
        scope_name=scope_name,
S
SunAhong1993 已提交
1934
        **layer_attrs)
S
SunAhong1993 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
    return current_inputs, current_outputs


def aten_expand_as(mapper, graph, node):
    """ 构造广播的PaddleLayer。
    TorchScript示例:
        %1889 : Tensor = aten::expand_as(%1875, %1888)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (Tensor): 广播的示例。
    """
S
SunAhong1993 已提交
1947
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1948 1949 1950 1951 1952 1953 1954
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1955 1956
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1957 1958
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1888
S
SunAhong1993 已提交
1959 1960
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1961
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
1962 1963
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1964

S
SunAhong1993 已提交
1965 1966 1967
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
1968 1969
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1970 1971 1972 1973
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
1974
        scope_name=scope_name,
S
SunAhong1993 已提交
1975
        y=paddle_dtypes.t_bool)
S
SunAhong1993 已提交
1976 1977
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
W
WJJ1995 已提交
1978
        outputs=[inputs_name[0] + "_if1", inputs_name[0]],
S
SunAhong1993 已提交
1979
        scope_name=scope_name)
S
SunAhong1993 已提交
1980
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
1981
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
1982 1983 1984
    block.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
1985 1986
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1987
    block.add_layer(
S
SunAhong1993 已提交
1988
        "paddle.cast",
S
SunAhong1993 已提交
1989 1990
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
S
SunAhong1993 已提交
1991
        scope_name=scope_name,
S
SunAhong1993 已提交
1992 1993
        dtype=inputs_name[1] + "_type")
    if_layer.add_block(block)
W
WJJ1995 已提交
1994
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
1995 1996 1997 1998
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.inputs["input-1"] = inputs_name[1]
    graph.add_layer(
S
SunAhong1993 已提交
1999 2000 2001 2002
        "paddle.expand_as",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2003 2004
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
W
WJJ1995 已提交
2005
        outputs=[inputs_name[0] + "_if2", output_name],
S
SunAhong1993 已提交
2006
        scope_name=scope_name)
S
SunAhong1993 已提交
2007
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
2008
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2009
    block.add_layer(
S
SunAhong1993 已提交
2010
        "paddle.cast",
S
SunAhong1993 已提交
2011
        inputs={"x": layer_outputs[0]},
S
SunAhong1993 已提交
2012 2013
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name,
S
SunAhong1993 已提交
2014 2015
        dtype=string("bool"))
    if_layer.add_block(block)
W
WJJ1995 已提交
2016
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2017 2018
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
S
SunAhong1993 已提交
2019
    # TODO(syf): check expand_as
S
SunAhong1993 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
    #     # 处理输入0,即%1875
    #     mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    #     layer_inputs["x"] = inputs_name[0]
    #     # 处理输入1,即%1888
    #     mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
    #     layer_inputs["y"] = inputs_name[1]
    #     # 获取当前节点输入的list
    #     current_inputs = list(layer_inputs.values())
    #     graph.add_layer(
    #         "paddle.expand_as", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    return current_inputs, current_outputs


def aten_eye(mapper, graph, node):
    """ 构造批次二维矩阵的PaddleLayer。
    TorchScript示例:
        %68 : Tensor = aten::eye(%49, %_50, %_51, %15, %9, %67, %7)
        参数含义:
        %68 (Tensor): 输出,构造的矩阵。
        %49 (int): 行数。
        %_50 (int): 列数,非必须。
        %_51 (Tensor): 非必须。
        %9 (int): layout。
        %67 (str): 设备。
        %7 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
2046
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2047 2048 2049 2050 2051 2052 2053 2054
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%49
S
SunAhong1993 已提交
2055 2056
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2057 2058 2059 2060
    layer_inputs["num_rows"] = inputs_name[0]
    if len(inputs_name) > 5:
        # 处理输入1,即%_50
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2061
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2062 2063 2064 2065 2066 2067 2068
        layer_inputs["num_columns"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理倒数第4个输入,即%15
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[-4]]]

    graph.add_layer(
S
SunAhong1993 已提交
2069
        "paddle.eye",
S
SunAhong1993 已提交
2070 2071
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2072
        scope_name=scope_name,
S
SunAhong1993 已提交
2073 2074 2075
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
2076

S
SunAhong1993 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
def aten_feature_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::feature_dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
2095 2096
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2097 2098 2099 2100 2101
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2102 2103 2104 2105 2106
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
2107 2108
    return current_inputs, current_outputs

S
SunAhong1993 已提交
2109

W
wjj19950828 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
def aten_fft_rfftn(mapper, graph, node):
    """
    TorchScript示例:
        %x_gap.15 : Tensor =  aten::fft_rfftn(%x.58, %2166, %1450, %1453)
        参数含义:
        %x_gap.15 (Tensor): Output Tensor。
        %x.58 (Tensor): Input Tensor。
        %2166:Sequence Length
        %1450:axes
        %1453:norm mode
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if inputs_name[1] in mapper.attrs:
        layer_attrs["s"] = mapper.attrs[inputs_name[1]]
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axes"] = mapper.attrs[inputs_name[2]]
    if inputs_name[3] in mapper.attrs:
        layer_attrs["norm"] = mapper.attrs[inputs_name[3]]
    graph.add_layer(
        "paddle.fft.rfftn",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_fft_irfftn(mapper, graph, node):
    """
    TorchScript示例:
        %x_gap.15 : Tensor =  aten::fft_irfftn(%x.58, %2166, %1450, %1453)
        参数含义:
        %x_gap.15 (Tensor): Output Tensor。
        %x.58 (Tensor): Input Tensor。
        %2166:Sequence Length
        %1450:axes
        %1453:norm mode
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if inputs_name[1] in mapper.attrs:
        layer_attrs["s"] = mapper.attrs[inputs_name[1]]
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axes"] = mapper.attrs[inputs_name[2]]
    if inputs_name[3] in mapper.attrs:
        layer_attrs["norm"] = mapper.attrs[inputs_name[3]]
    graph.add_layer(
        "paddle.fft.irfftn",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
def aten_flatten(mapper, graph, node):
    """ 构造flatten的PaddleLayer。
    TorchScript示例:
        %x.8 : Tensor = aten::flatten(%x, %4, %2)
        参数含义:
        %x.8 (Tensor): flatten后结果。
        %x (Tensor): 输入Tensor。
        %4 (int): flatten的开始维度。
        %2 (int): flatten的结束维度。
    """
S
SunAhong1993 已提交
2200
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2201 2202 2203
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
2204
    layer_attrs = {}
S
SunAhong1993 已提交
2205 2206 2207 2208
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x
S
SunAhong1993 已提交
2209 2210
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2211 2212 2213 2214
    # 处理输入1,即%4
    layer_attrs["start_axis"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%20
    layer_attrs["stop_axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
2215 2216 2217 2218 2219
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2220
        "paddle.flatten",
S
SunAhong1993 已提交
2221 2222
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2223 2224
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
    return current_inputs, current_outputs


def aten_Float(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。
    TorchScript示例:
        %3992 : float = aten::Float(%3991)
        参数含义:
        %3992 (int): 向上取整后的整数。
        %3991 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
2236
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2237 2238 2239 2240 2241 2242 2243
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3991
S
SunAhong1993 已提交
2244 2245
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2246 2247 2248 2249
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2250 2251 2252 2253 2254
    graph.add_layer(
        "prim.float",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
    return current_inputs, current_outputs


def aten_floor(mapper, graph, node):
    """ 构造向上取整的PaddleLayer。
    TorchScript示例:
        %3978 : int = aten::floor(%scale.18)
        参数含义:
        %3978 (int): 向上取整后的整数。
        %scale.18 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
2266
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2267 2268 2269 2270 2271 2272 2273
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%scale.18
S
SunAhong1993 已提交
2274 2275
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2276
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2277 2278
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2279
    graph.add_layer(
S
SunAhong1993 已提交
2280
        "prim.type", {'input': inputs_name[0]},
S
SunAhong1993 已提交
2281 2282 2283
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
S
SunAhong1993 已提交
2284
        "prim.str", {'input': inputs_name[0] + "_type"},
S
SunAhong1993 已提交
2285 2286 2287
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
S
SunAhong1993 已提交
2288 2289
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
S
SunAhong1993 已提交
2290 2291
        outputs=[inputs_name[0] + "_cond"],
        scope_name=scope_name,
S
SunAhong1993 已提交
2292
        y=paddle_dtypes.t_bool)
S
SunAhong1993 已提交
2293
    graph.add_layer(
S
SunAhong1993 已提交
2294
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
2295 2296 2297
        outputs=[inputs_name[0] + "_if"],
        scope_name=scope_name)
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
2298
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2299 2300 2301 2302 2303
    block.add_layer(
        "paddle.floor",
        inputs=copy.deepcopy(layer_inputs),
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name)
S
SunAhong1993 已提交
2304
    if_layer.add_block(block)
W
WJJ1995 已提交
2305
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2306 2307 2308 2309 2310
    block.add_layer(
        "prim.floor",
        inputs=copy.deepcopy(layer_inputs),
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name)
S
SunAhong1993 已提交
2311 2312 2313
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.outputs.append(output_name)
S
SunAhong1993 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
    return current_inputs, current_outputs


def aten_floordiv(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。
    TorchScript示例:
        %channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
2326
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2327 2328 2329 2330 2331 2332 2333
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
2334 2335
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2336 2337
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
2338 2339
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2340 2341 2342 2343
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2344 2345 2346 2347 2348
    graph.add_layer(
        "prim.floordiv",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
    return current_inputs, current_outputs


def aten_floor_divide(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。
    TorchScript示例:
        %channels_per_group.2 : int = aten::floor_divide(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
2361
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2362 2363 2364 2365 2366 2367 2368
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
2369 2370
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2371 2372
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
2373 2374
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2375 2376 2377 2378
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2379 2380 2381 2382 2383
    graph.add_layer(
        "prim.floordiv",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2384 2385 2386
    return current_inputs, current_outputs


2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
def aten_format(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。
    TorchScript示例:
        %628 : str = aten::format(%8, %627)
        参数含义:
        %628 (str): 输出,为一个字符串
        %8 (str): 输入字符串
        %627 (-): format后的参数
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入
    for i in range(len(inputs_node)):
        mapper._check_input(graph, inputs_node[i], inputs_name[i],
                            current_outputs, scope_name)
        layer_inputs["input" + str(i)] = inputs_name[i]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.format",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
def aten_full_like(mapper, graph, node):
    """ 构造创建一个与输入具有相同的形状并且数据类型固定的Tensor的PaddleLayer。
    TorchScript示例:
        %159 : Tensor = aten::full_like(%val_if_large.3, %51, %50, %62, %53, %65, %66)
        参数含义:
        %159 (Tensor): 输出,全为固定值的Tensor。
        %val_if_large.3 (Tensor): 类似形状的Tensor。
        %51 (int/float/bool): 填充值。
        %50 (int): dtype。
        %62 (int): layout。
        %53 (int): device。
        %65 (bool): 是否计算梯度。
        %66 (int): 内存形式。
    """
S
SunAhong1993 已提交
2433
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2434 2435 2436 2437 2438 2439 2440 2441
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%val_if_large.3
S
SunAhong1993 已提交
2442 2443
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2444 2445 2446 2447 2448 2449 2450 2451
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["fill_value"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2452
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461
        layer_inputs["fill_value"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%50,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.full_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2462
        scope_name=scope_name,
S
SunAhong1993 已提交
2463 2464 2465 2466
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
def aten_gather(mapper, graph, node):
    """ 构造gather激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::gather(%input.5, %18, %19, %20, %21)
        参数含义:
        %result.3 (Tensor): 输出,gather后的结果。
        %result.5 (Tensor): 需要gather的Tensor。
        %18 (int): 需要gather的维度。
        %19 (Tensor): 需要gather的索引。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gather", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2487 2488
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2489 2490 2491 2492
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%18
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%19
S
SunAhong1993 已提交
2493 2494
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2495 2496 2497
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2498

S
SunAhong1993 已提交
2499
    graph.add_layer(
S
SunAhong1993 已提交
2500 2501 2502
        "custom_layer:Gather",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2503 2504 2505 2506 2507
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516
def aten_gelu(mapper, graph, node):
    """ 构造GeLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::gelu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,GELU后的结果。
        %result.5 (Tensor): 需要GELU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2517 2518
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gelu", mapper.nn_name2id)
S
SunAhong1993 已提交
2519
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2520
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2521 2522 2523 2524 2525
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2526 2527
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2528 2529 2530 2531 2532
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2533 2534 2535 2536
        "paddle.nn.GELU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
    return current_inputs, current_outputs


def aten___getitem__(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。
    TorchScript示例:
        %v.1 : int = aten::__getitem__(%72, %88)
        参数含义:
        %v.1 (-): 输出,list中的元素。
        %72 (list): 需要获取元素的list。
        %88 (int): 索引。
    """
S
SunAhong1993 已提交
2549
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2550 2551 2552 2553 2554 2555 2556
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
2557 2558
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2559 2560
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即%88
S
SunAhong1993 已提交
2561 2562
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2563 2564 2565 2566
    layer_inputs["index"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2567 2568 2569 2570 2571
    graph.add_layer(
        "prim.getitem",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
    return current_inputs, current_outputs


def aten_gt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %83 : bool = aten::gt(%82, %78)
        参数含义:
        %83 (bool): 输出,第一个元素是否大于第二个元素。
        %82 (-): 需对比的输入1。
        %78 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2584
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2585 2586 2587 2588 2589 2590 2591
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%82
S
SunAhong1993 已提交
2592 2593
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2594 2595
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%78
S
SunAhong1993 已提交
2596 2597
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2598 2599 2600 2601
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2602 2603 2604 2605 2606
    graph.add_layer(
        "prim.gt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2607 2608 2609
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
def aten_gru(mapper, graph, node):
    """ 构造门控循环单元网络(GRU)的PaddleLayer。
    TorchScript示例:
        %21, %22 = aten::gru(%input, %hx, %20, %11, %10, %9, %11, %8, %11)
        参数含义:
        %21 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %22 (Tensor): 输出,最终状态。
        %input (Tensor): 网络输入。
        %hx (Tensor): 网络的初始状态。
        %20 (list): 所有权重组合成的list。
        %11 (bool): 是否使用bias。
        %10 (int): 网络层数。
        %9 (float): dropout概率。
        %11 (bool): 是否为训练阶段。
        %8 (bool): 是否使用双向LSTM。
        %11 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gru", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
S
SunAhong1993 已提交
2638 2639
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2640 2641
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
S
SunAhong1993 已提交
2642 2643
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2644 2645 2646 2647
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
S
SunAhong1993 已提交
2648 2649
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2650 2651 2652 2653 2654
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
S
SunAhong1993 已提交
2655 2656 2657 2658
            layer_attrs["hidden_size"] = int(
                mapper.paddle_params[param_name].shape[0] / 3)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name]
                                            .shape[1])
S
add gru  
SunAhong1993 已提交
2659 2660
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
S
SunAhong1993 已提交
2661 2662 2663 2664
            mapper.paddle_params["{}.weight_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name,
                                                               part_name))
S
add gru  
SunAhong1993 已提交
2665 2666
        else:
            part_name = param_name.split("_bias_")[-1]
S
SunAhong1993 已提交
2667 2668
            mapper.paddle_params["{}.bias_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
S
add gru  
SunAhong1993 已提交
2669
        mapper.paddle_params.pop(param_name)
S
SunAhong1993 已提交
2670

S
add gru  
SunAhong1993 已提交
2671 2672 2673 2674 2675
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
S
SunAhong1993 已提交
2676 2677 2678
            bias_shape = mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype(
                "float32")
S
add gru  
SunAhong1993 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.GRU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


2700
def aten_hardtanh(mapper, graph, node):
S
SunAhong1993 已提交
2701 2702
    """ 构造hardtanh激活的PaddleLayer。
    TorchScript示例:
2703
        %result.9 : Tensor = aten::hardtanh(%input.20, %67, %66)
S
SunAhong1993 已提交
2704 2705 2706 2707 2708 2709
        参数含义:
        %result.9 (Tensor): 输出,hardtanh激活后的Tensor。
        %input.20 (Tensor): 需要hardtanh激活的Tensor。
        %67 (float): hardtanh激活的最小阈值。
        %66 (float): hardtanh激活的最大阈值。
    """
S
SunAhong1993 已提交
2710 2711
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardtanh", mapper.nn_name2id)
S
SunAhong1993 已提交
2712
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2713
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2714 2715 2716 2717 2718 2719
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.20
S
SunAhong1993 已提交
2720 2721
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2722 2723 2724 2725 2726 2727 2728 2729
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%67
    layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%66
    layer_attrs["max"] = mapper.attrs[inputs_name[2]]

S
SunAhong1993 已提交
2730
    if layer_attrs["min"] == 0 and layer_attrs["max"] == 6:
S
SunAhong1993 已提交
2731
        graph.add_layer(
S
SunAhong1993 已提交
2732 2733 2734 2735
            "paddle.nn.ReLU6",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
2736 2737 2738 2739 2740 2741 2742
    else:
        graph.add_layer(
            'paddle.nn.Hardtanh',
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
2743 2744 2745
    return current_inputs, current_outputs


W
wjj19950828 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
def aten_hardsigmoid(mapper, graph, node):
    """
    TorchScript Code:
        %55 : Tensor = aten::hardsigmoid(%54)
        Parameter meaning:
        %55 (Tensor): output
        %54 (Tensor): input tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardsigmoid", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]

    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Hardsigmoid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


def aten_hardswish(mapper, graph, node):
    """
    TorchScript Code:
        %55 : Tensor = aten::hardswish(%54)
        Parameter meaning:
        %55 (Tensor): output
        %54 (Tensor): input tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardswish", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]

    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Hardswish",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
def aten_index(mapper, graph, node):
    """ 构造选择元素的PaddleLayer。
    TorchScript示例:
        %1681 : Float = aten::index(%1653, %1680)
        参数含义:
        %1681 (Tensor): 输出,选择后的Tensor。
        %1653 (Tensor): 需要选择的Tensor。
        %1680 (int): 选择的索引。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1653
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1680
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["index"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.getitem",
        inputs={"list": layer_inputs["index"]},
        outputs=[layer_inputs["index"]],
        scope_name=scope_name,
        index=0)
    graph.add_layer(
        "paddle.index_select",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2849

S
SunAhong1993 已提交
2850

W
wjj19950828 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
def aten_imag(mapper, graph, node):
    """ 构造获取绝对值的PaddleLayer。
    TorchScript示例:
        %n0.3 : Tensor = aten::imag(%1)
        参数含义:
        %1 (Tensor): Complex Tensor。
        %n0.3 (Tensor): 返回虚部 Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.imag",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2881 2882
def aten_index_select(mapper, graph, node):
    """ 构造选择元素的PaddleLayer。
S
SunAhong1993 已提交
2883 2884 2885 2886 2887 2888 2889 2890
    TorchScript示例:
        %bd.3 : Tensor = aten::index_select(%x2.3, %320, %371)
        参数含义:
        %bd.3 (Tensor): 输出,选择后的Tensor。
        %x2.3 (Tensor): 需要选择的Tensor。
        %320 (int): 维度。
        %371 (Tensor): 选择的索引。
    """
S
SunAhong1993 已提交
2891
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2892 2893 2894 2895 2896 2897 2898 2899
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x2.3
S
SunAhong1993 已提交
2900 2901
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2902 2903 2904 2905 2906 2907
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%320
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2908
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2909 2910
        layer_inputs["axis"] = inputs_name[1]
    # 处理输入2,即%371
S
SunAhong1993 已提交
2911 2912
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2913 2914 2915 2916 2917 2918 2919
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.index_select",
        inputs=layer_inputs,
2920
        outputs=layer_outputs,
S
SunAhong1993 已提交
2921
        scope_name=scope_name,
S
SunAhong1993 已提交
2922 2923 2924 2925
        **layer_attrs)
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
def aten_instance_norm(mapper, graph, node):
    """构造InstanceNorm的PaddleLayer
    TorchScript示例:
        %res.7 : Tensor = aten::instance_norm(%res.5, %88, %85, %84, %83, %87, %91, %92, %87)
        参数含义:
        %res.7 (Tensor): 输出,InstanceNorm的结果。
        %res.5 (Tensor): 需要进行InstanceNorm的特征层。
        %88 (Tensor): weights。
        %85 (Tensor): bias。
        %84 (Tensor): 全局均值。
        %83 (Tensor): 全局方差。
        %87 (bool): 是否使用输入的统计。
        %91 (float): momentum。
        %92 (float): eps。
        %87 (bool): 是否启用cudnn。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("instance_norm", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
2952 2953
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2954 2955 2956 2957 2958 2959
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%88
    if inputs_name[1] in mapper.pytorch_params:
        weights = mapper.pytorch_params[inputs_name[1]]
2960
        mapper.paddle_params[op_name + ".scale"] = weights
S
add gru  
SunAhong1993 已提交
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
        layer_attrs['num_features'] = weights.shape[0]
    # 处理输入2,即%85
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        mapper.paddle_params[op_name + ".bias"] = bias
    # 处理输入3,即%84
    if inputs_name[3] in mapper.pytorch_params:
        mean = mapper.pytorch_params[inputs_name[3]]
        mapper.paddle_params[op_name + "._mean"] = mean
    # 处理输入4,即%83
    if inputs_name[4] in mapper.pytorch_params:
        var = mapper.pytorch_params[inputs_name[4]]
        mapper.paddle_params[op_name + "._variance"] = var
    # 处理输入6,即%91
    layer_attrs["momentum"] = 1 - mapper.attrs[inputs_name[6]]
    # 处理输入7,即%92
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "custom_layer:InstanceNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2988 2989 2990 2991 2992 2993 2994 2995
def aten_Int(mapper, graph, node):
    """ 构造强转为int的PaddleLayer。
    TorchScript示例:
        %1739 : int = aten::Int(%1738)
        参数含义:
        %1739 (int): 输出,int型数据。
        %1738 (-): 需要强转的数据。
    """
S
SunAhong1993 已提交
2996
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2997 2998 2999 3000 3001 3002 3003
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1738
S
SunAhong1993 已提交
3004 3005
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3006 3007 3008 3009
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3010 3011 3012 3013 3014
    graph.add_layer(
        "prim.int",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
    return current_inputs, current_outputs


def aten___is__(mapper, graph, node):
    """ 构造is not的PaddleLayer。
    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3027
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3028 3029 3030 3031 3032 3033 3034
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
3035 3036
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3037 3038
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
3039 3040
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3041 3042 3043 3044
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3045 3046 3047 3048 3049
    graph.add_layer(
        "prim.is",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
    return current_inputs, current_outputs


def aten___isnot__(mapper, graph, node):
    """ 构造is not的PaddleLayer。
    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3062
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3063 3064 3065 3066 3067 3068 3069
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
3070 3071
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3072 3073
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
3074 3075
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3076 3077 3078 3079
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3080 3081 3082 3083 3084
    graph.add_layer(
        "prim.isnot",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
    return current_inputs, current_outputs


def aten_layer_norm(mapper, graph, node):
    """ 构造层归一化的PaddleLayer。
    TorchScript示例:
        %input0.4 : Tensor = aten::layer_norm(%input.6, %1181, %174, %173, %70, %71)
        参数含义:
        %input0.4 (Tensor): 输出,层归一化后的结果。
        %input.6 (Tensor): 需要进行层归一化的特征层。
        %1181 (list/int/tuple): 需规范化的shape。
        %174 (Tensor): weights。
        %173 (Tensor): bias。
        %70 (float): 指明在计算过程中是否添加较小的值到方差中以防止除零。
        %71 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
3101 3102
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("layernorm", mapper.nn_name2id)
S
SunAhong1993 已提交
3103
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3104
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3105 3106 3107 3108 3109 3110
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.6
S
SunAhong1993 已提交
3111 3112
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3113 3114 3115 3116 3117 3118 3119
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1181
    layer_attrs["normalized_shape"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%174
    weights = mapper.pytorch_params[inputs_name[2]]
S
SunAhong1993 已提交
3120
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
3121 3122 3123 3124
    # 处理输入3,即%173
    if inputs_name[3] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[3]]
        if bias is not None:
S
SunAhong1993 已提交
3125
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
3126
    else:
S
SunAhong1993 已提交
3127
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
3128 3129 3130 3131 3132 3133 3134
    # 处理输入4,即%70
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
        "paddle.nn.LayerNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3135
        scope_name=scope_name,
S
SunAhong1993 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
        **layer_attrs)
    return current_inputs, current_outputs


def aten_le(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %80 : bool = aten::le(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于等于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3149
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3150 3151 3152 3153 3154 3155 3156
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
3157 3158
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3159 3160
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
3161 3162
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3163 3164 3165 3166
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3167 3168 3169 3170 3171
    graph.add_layer(
        "prim.le",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3172 3173 3174
    return current_inputs, current_outputs


3175 3176 3177 3178 3179 3180 3181
def aten_leaky_relu(mapper, graph, node):
    """ 构造leaky relu激活的PaddleLayer。
    TorchScript示例:
        %input.117 : Tensor = aten::leaky_relu(%input.114, %1570)
        参数含义:
        %input.117 (Tensor): 输出,leaky relu后的结果。
        %input.114 (Tensor): 需要leaky relu的Tensor。
S
SunAhong1993 已提交
3182 3183
        %1570 (float): 输入中的元素小于0时的斜率。
    """
S
SunAhong1993 已提交
3184 3185
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("leakly_relu", mapper.nn_name2id)
S
SunAhong1993 已提交
3186
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3187
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3188 3189 3190 3191 3192 3193
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
3194 3195
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1570
    layer_attrs["negative_slope"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.LeakyReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3206
        scope_name=scope_name,
S
SunAhong1993 已提交
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
        **layer_attrs)
    return current_inputs, current_outputs


def aten_len(mapper, graph, node):
    """ 构造获取list长度的PaddleLayer。
    TorchScript示例:
        %85 : int = aten::len(%83)
        参数含义:
        %85 (int): 输出,list的长度。
        %72 (list): 需要获取长度的list。
    """
S
SunAhong1993 已提交
3219
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3220 3221 3222 3223 3224 3225 3226
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
3227 3228
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3229 3230 3231 3232
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3233 3234 3235 3236 3237
    graph.add_layer(
        "prim.len",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3238 3239 3240
    return current_inputs, current_outputs


W
wjj19950828 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
def aten_linear(mapper, graph, node):
    """
    TorchScript Code:
        %x.6 : Float(1, 128, strides=[128, 1]) = aten::linear(%input.305, %weight.629, %bias.317)
        Parameter meaning:
        %x.6 (Tensor): output
        %input.305 (Tensor): input tensor
        %weight.629 (Tensor): weight tensor
        %bias.317 (Tensor): bias tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # transpose weight
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
W
wjj19950828 已提交
3266 3267
    layer_inputs["y"] = inputs_name[1]
    layer_attrs["transpose_y"] = True
W
wjj19950828 已提交
3268
    graph.add_layer(
W
wjj19950828 已提交
3269 3270 3271
        "paddle.matmul",
        inputs=layer_inputs,
        outputs=layer_outputs,
W
wjj19950828 已提交
3272
        scope_name=scope_name,
W
wjj19950828 已提交
3273
        **layer_attrs)
W
wjj19950828 已提交
3274 3275 3276
    if len(inputs_name) == 3:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
W
wjj19950828 已提交
3277 3278 3279 3280 3281 3282
        graph.add_layer(
            "paddle.add",
            inputs={"x": output_name,
                    "y": inputs_name[2]},
            outputs=layer_outputs,
            scope_name=scope_name)
W
wjj19950828 已提交
3283 3284 3285 3286 3287
    current_inputs = list(layer_inputs.values())

    return current_inputs, current_outputs


S
SunAhong1993 已提交
3288 3289 3290 3291 3292 3293 3294 3295
def aten_log(mapper, graph, node):
    """ 构构造log的PaddleLayer。
    TorchScript示例:
        %787 : Tensor = aten::log(%786)
        参数含义:
        %787 (Tensor): 输出,取log的Tensor。
        %786 (Tensor): 需要获取log的Tensor。
    """
S
SunAhong1993 已提交
3296
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3297 3298 3299 3300 3301 3302 3303
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
3304 3305
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3306 3307 3308 3309 3310
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
3311 3312 3313 3314
        "paddle.log",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3315 3316 3317
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
def aten_log_softmax(mapper, graph, node):
    """ 构造log_softmax的PaddleLayer。
    TorchScript示例:
        %4 = aten::log_softmax(%input, %2, %3)
        参数含义:
        %4 (Tensor): 输出的Tensor。
        %input (Tensor): 输入的Tensor。
        %2 (int): 指定对输入进行运算的轴。
        %3 (int): 输入Tensor的数据类型。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%input
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%2,代表dtype
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
    # 处理输入2,即%3,代表dtype
    if mapper.attrs[inputs_name[2]] is not None:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.functional.log_softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
def aten_lstm(mapper, graph, node):
    """ 构造长短期记忆网络(LSTM)的PaddleLayer。
    TorchScript示例:
        %input.96, %551, %552 = aten::lstm(%input.95, %734, %549, %526, %525, %524, %526, %526, %526)
        参数含义:
        %input.96 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %551 (Tensor): cell state。
        %552 (Tensor): hidden state。
        %input.95 (Tensor): 网络输入。
        %734 (Tensor): 网络的初始状态。
        %549 (list): 所有权重组合成的list。
        %526 (bool): 是否使用bias。
        %525 (int): 网络层数。
        %524 (float): dropout概率。
        %526 (bool): 是否为训练阶段。
        %526 (bool): 是否使用双向LSTM。
        %526 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("lstm", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
S
SunAhong1993 已提交
3392 3393
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3394 3395
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
S
SunAhong1993 已提交
3396 3397
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3398 3399 3400 3401
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
S
SunAhong1993 已提交
3402 3403
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3404 3405 3406 3407 3408
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
S
SunAhong1993 已提交
3409 3410 3411 3412
            layer_attrs["hidden_size"] = int(
                mapper.paddle_params[param_name].shape[0] / 4)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name]
                                            .shape[1])
S
SunAhong1993 已提交
3413 3414
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
S
SunAhong1993 已提交
3415 3416 3417 3418
            mapper.paddle_params["{}.weight_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name,
                                                               part_name))
S
SunAhong1993 已提交
3419 3420
        else:
            part_name = param_name.split("_bias_")[-1]
S
SunAhong1993 已提交
3421 3422
            mapper.paddle_params["{}.bias_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
S
SunAhong1993 已提交
3423
        mapper.paddle_params.pop(param_name)
S
SunAhong1993 已提交
3424

S
SunAhong1993 已提交
3425 3426 3427 3428 3429
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
S
SunAhong1993 已提交
3430 3431 3432
            bias_shape = mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype(
                "float32")
S
SunAhong1993 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.LSTM",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462
def aten_lt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %80 : bool = aten::lt(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3463
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3464 3465 3466 3467 3468 3469 3470
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
3471 3472
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3473 3474
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
3475 3476
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3477 3478 3479 3480
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3481 3482 3483 3484 3485
    graph.add_layer(
        "prim.lt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
    return current_inputs, current_outputs


def aten_masked_fill(mapper, graph, node):
    """ 构造填充mask的PaddleLayer。
    TorchScript示例:
        %input.4 : Tensor = aten::masked_fill(%scores.2, %mask.2, %46)
        参数含义:
        %input.4 (Tensor): 输出,填充后的结果。
        %scores.2 (Tensor): 需要填充的Tensor。
        %mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
        %46 (-): 填充的值。
    """
S
SunAhong1993 已提交
3499
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3500 3501 3502 3503 3504 3505 3506 3507
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输入的list
    current_inputs = []
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.4
S
SunAhong1993 已提交
3508 3509
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3510 3511 3512 3513
    current_inputs.append(inputs_name[0])
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
3514 3515
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3516
    # 处理输入1,即%scores.2
S
SunAhong1993 已提交
3517 3518
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3519 3520 3521 3522
    current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.logical_not",
        inputs={"x": inputs_name[1]},
S
SunAhong1993 已提交
3523 3524
        outputs=[inputs_name[1] + "_not"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3525
    graph.add_layer(
S
SunAhong1993 已提交
3526
        "paddle.cast",
S
SunAhong1993 已提交
3527 3528
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_mask"],
S
SunAhong1993 已提交
3529
        scope_name=scope_name,
S
SunAhong1993 已提交
3530 3531
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
S
SunAhong1993 已提交
3532
        "paddle.cast",
S
SunAhong1993 已提交
3533 3534
        inputs={"x": inputs_name[1] + "_not"},
        outputs=[inputs_name[1] + "_not_mask"],
S
SunAhong1993 已提交
3535
        scope_name=scope_name,
S
SunAhong1993 已提交
3536 3537 3538 3539 3540
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "paddle.multiply",
        inputs={"x": inputs_name[0],
                "y": inputs_name[1] + "_not_mask"},
S
SunAhong1993 已提交
3541 3542
        outputs=[inputs_name[0] + "_not_mask"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3543
    # 处理输入2,即%46
S
SunAhong1993 已提交
3544 3545
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3546 3547 3548 3549
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond1"],
S
SunAhong1993 已提交
3550
        scope_name=scope_name,
S
SunAhong1993 已提交
3551 3552 3553 3554 3555
        y="-float('inf')")
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond2"],
S
SunAhong1993 已提交
3556
        scope_name=scope_name,
S
SunAhong1993 已提交
3557 3558 3559 3560 3561 3562 3563
        y="float('inf')")
    graph.add_layer(
        "prim.or",
        inputs={
            "x": inputs_name[2] + "_cond1",
            "y": inputs_name[2] + "_cond2"
        },
S
SunAhong1993 已提交
3564 3565
        outputs=[inputs_name[2] + "_cond"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3566 3567
    graph.add_layer(
        "prim.if", {'input': inputs_name[2] + "_cond"},
S
SunAhong1993 已提交
3568 3569
        outputs=[inputs_name[2] + "_if"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3570
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
3571
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
3572 3573 3574
    block.add_layer(
        "prim.equal",
        inputs={"input": inputs_name[1] + "_mask"},
S
SunAhong1993 已提交
3575 3576
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3577
    if_layer.add_block(block)
W
WJJ1995 已提交
3578
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
3579 3580 3581 3582
    block.add_layer(
        "prim.mul",
        inputs={"x": inputs_name[1] + "_mask",
                "y": inputs_name[2]},
S
SunAhong1993 已提交
3583 3584
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3585 3586 3587 3588 3589
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
    if_layer.inputs["input-1"] = inputs_name[2]
    if_layer.outputs.append(inputs_name[2] + "_1")
    graph.add_layer(
S
SunAhong1993 已提交
3590
        "paddle.add",
S
SunAhong1993 已提交
3591 3592
        inputs={"x": inputs_name[2] + "_1",
                "y": inputs_name[0] + "_not_mask"},
S
SunAhong1993 已提交
3593 3594
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
    return current_inputs, current_outputs


def aten_max(mapper, graph, node):
    """ 构造获取最大值的PaddleLayer。
    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::max(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
3607
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3618
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3619 3620 3621
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3622
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3623 3624 3625 3626
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
3627 3628 3629 3630
            "paddle.maximum",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3631 3632 3633 3634 3635
    else:
        pass
    return current_inputs, current_outputs


W
WJJ1995 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
def aten_max_pool1d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %input.8 : Tensor = aten::max_pool1d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.11
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%23
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
    # 处理输入3,即%21
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]

    graph.add_layer(
        "paddle.nn.MaxPool1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
def aten_max_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %input.8 : Tensor = aten::max_pool2d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
S
SunAhong1993 已提交
3695 3696
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
3697
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3698
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3699 3700
    layer_inputs = {}
    layer_attrs = {}
S
SunAhong1993 已提交
3701
    layer_attrs_tmp = {}
S
SunAhong1993 已提交
3702 3703 3704 3705
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.11
S
SunAhong1993 已提交
3706 3707
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3708 3709 3710 3711
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
S
SunAhong1993 已提交
3712 3713
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
    layer_attrs_tmp["pool_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3714
    # 处理输入2,即%23
S
SunAhong1993 已提交
3715 3716
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
    layer_attrs_tmp["pool_stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3717
    # 处理输入3,即%21
S
SunAhong1993 已提交
3718 3719
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
    layer_attrs_tmp["pool_padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
3720 3721 3722 3723
    # 处理输入4,即%22
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
3724
        outputs=[inputs_name[4] + "_assert"],
S
SunAhong1993 已提交
3725
        scope_name=scope_name + "_assert",
S
SunAhong1993 已提交
3726 3727 3728 3729 3730
        type="eq",
        key=mapper.attrs[inputs_name[4]],
        value=[1, [1, 1]])
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
3731
    layer_attrs_tmp["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
3732

S
SunAhong1993 已提交
3733 3734 3735 3736 3737 3738
    graph.add_layer(
        "paddle.nn.MaxPool2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
    return current_inputs, current_outputs


def aten_matmul(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %output.2 : Tensor = aten::matmul(%101, %111)
        参数含义:
        %output.2 (Tensor): 输出,相乘后的结果。
        %101 (Tensor): 矩阵1。
        %102 (Tensor): 矩阵2。
    """
S
SunAhong1993 已提交
3751
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3752 3753 3754 3755 3756 3757 3758
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%101
S
SunAhong1993 已提交
3759 3760
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3761 3762
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%102
S
SunAhong1993 已提交
3763 3764
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3765 3766 3767 3768
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3769 3770 3771 3772 3773
    graph.add_layer(
        "paddle.matmul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
    return current_inputs, current_outputs


def aten_min(mapper, graph, node):
    """ 构造获取最小值的PaddleLayer。
    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::min(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
3786
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3797
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3798 3799 3800
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3801
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3802 3803 3804 3805
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
3806 3807 3808 3809
            "paddle.minimum",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
    else:
        pass
    return current_inputs, current_outputs


def aten_mean(mapper, graph, node):
    """ 构造求均值的PaddleLayer。
    TorchScript示例:
        %x.28 : Tensor = aten::mean(%result.1, %4967, %3, %2)
        参数含义:
        %x.28 (Tensor): 输出,求均值后的结果。
        %result.1 (Tensor): 输入,需要求均值的Tensor。
        %4967 (int/list): 求平均值运算的维度。
        %3 (bool): 是否在输出Tensor中保留减小的维度。
        %2 (Tensor): 结果Tensor。
    """
S
SunAhong1993 已提交
3826
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3827 3828 3829 3830 3831 3832 3833 3834
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.1
S
SunAhong1993 已提交
3835 3836
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3837
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3838 3839 3840
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4967
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3841
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3842 3843
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3844 3845
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
3846 3847 3848
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%3
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3849
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3850 3851
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
3852 3853
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
S
SunAhong1993 已提交
3854 3855 3856
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
3857
        "paddle.mean",
S
SunAhong1993 已提交
3858 3859
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3860
        scope_name=scope_name,
S
SunAhong1993 已提交
3861 3862
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880


def aten_meshgrid(mapper, graph, node):
    """ 构造对每个张量做扩充操作的PaddleLayer。
    TorchScript示例:
        %out.39 : int = aten::mshgrid(%input.1)
        参数含义:
        %out.39 (Tensor): 输出,扩充后的结果。
        %input.1 (Tensor): 输入。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
3881 3882
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3883 3884 3885 3886 3887
    layer_inputs["args"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = layer_inputs.values()
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3888 3889 3890 3891 3892
    graph.add_layer(
        "paddle.meshgrid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3893
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904


def aten_mul(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。
    TorchScript示例:
        %size_prods.39 : int = aten::mul(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
S
SunAhong1993 已提交
3905
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3906 3907 3908 3909 3910 3911 3912
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
S
SunAhong1993 已提交
3913 3914
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3915 3916
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
S
SunAhong1993 已提交
3917 3918
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3919 3920 3921 3922 3923
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3924 3925 3926 3927 3928
    graph.add_layer(
        "prim.mul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
    return current_inputs, current_outputs


def aten_ne(mapper, graph, node):
    """ 构造判断数值是否不相等的PaddleLayer。
    TorchScript示例:
        %134 : bool = aten::ne(%133, %132)
        参数含义:
        %134 (bool): 对比后结果。
        %133 (-): 需对比的输入1。
        %132 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3941
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3942 3943 3944 3945 3946 3947 3948
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3949 3950
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3951 3952
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
3953 3954
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3955 3956 3957 3958
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3959 3960 3961 3962 3963
    graph.add_layer(
        "prim.ne",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
    return current_inputs, current_outputs


def aten_neg(mapper, graph, node):
    """ 构造对数值取负的PaddleLayer。
    TorchScript示例:
        %909 : int = aten::neg(%908)
        参数含义:
        %909 (int): 取负后结果。
        %908 (int): 需取负的输入。
    """
S
SunAhong1993 已提交
3975
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3976 3977 3978 3979 3980 3981 3982
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3983 3984
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3985 3986 3987 3988
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3989 3990 3991 3992 3993
    graph.add_layer(
        "prim.neg",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3994 3995 3996
    return current_inputs, current_outputs


W
WJJ1995 已提交
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
def aten_frobenius_norm(mapper, graph, node):
    """ 构造计算范数的PaddleLayer。
    TorchScript示例:
        %25 = aten::frobenius_norm(%input, %58, %24)
        参数含义:
        %25 (Tensor): 取范数后的结果。
        %input (Tensor): 输入。
        %58 (int): 使用范数计算的轴。
        %24 (bool): 是否在输出的Tensor中保留和输入一样的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    layer_attrs["p"] = 2
    # 处理输入1,即%58
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%24
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.norm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
def aten_norm(mapper, graph, node):
    """ 构造计算范数的PaddleLayer。
    TorchScript示例:
        %25 = aten::norm(%input, %21, %58, %24)
        参数含义:
        %25 (Tensor): 取范数后的结果。
        %input (Tensor): 输入。
        %21 (int): 范数的种类。
        %58 (int): 使用范数计算的轴。
        %24 (bool): 是否在输出的Tensor中保留和输入一样的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4067 4068
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%21
    if inputs_name[1] in mapper.attrs:
        layer_attrs["p"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["p"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%58
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 处理输入3,即%24
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[3]
        current_inputs.append(inputs_name[3])

    graph.add_layer(
        "paddle.norm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4105 4106 4107 4108 4109 4110 4111 4112
def aten___not__(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。
    TorchScript示例:
        %4498 : bool = aten::__not__(%aux_defined.2)
        参数含义:
        %4498 (bool): 取负后结果。
        %aux_defined.2 (bool): 需取负的输入。
    """
S
SunAhong1993 已提交
4113
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4114 4115 4116 4117 4118 4119 4120
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
4121 4122
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4123 4124 4125 4126
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4127 4128 4129 4130 4131
    graph.add_layer(
        "prim.not",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
    return current_inputs, current_outputs


def aten_ones(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %input.49 : Tensor = aten::ones(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
4147
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
4161
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.ones",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4171
        scope_name=scope_name,
S
SunAhong1993 已提交
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
        **layer_attrs)
    return current_inputs, current_outputs


def aten_permute(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。
    TorchScript示例:
        %2385 : Tensor = aten::permute(%cls_confs0.2, %2384)
        参数含义:
        %2385 (Tensor): 重排后的结果。
        %cls_confs0.2 (Tensor): 需要重排的Tensor。
        %2348 (list): 依照此参数进行重排。
    """
S
SunAhong1993 已提交
4185
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4186 4187 4188 4189 4190 4191 4192 4193
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%cls_confs0.2
S
SunAhong1993 已提交
4194 4195
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4196 4197 4198 4199 4200 4201 4202 4203
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2348
    if inputs_name[1] in mapper.attrs:
        layer_attrs["perm"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4204
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4205 4206 4207 4208
        layer_inputs["perm"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
4209
        "paddle.transpose",
S
SunAhong1993 已提交
4210 4211
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4212
        scope_name=scope_name,
S
SunAhong1993 已提交
4213 4214 4215 4216
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
def aten_pixel_shuffle(mapper, graph, node):
    """ 构造以像素的方式重排的PaddleLayer。
    TorchScript示例:
        %x.6 : aten::pixel_shuffle(%input.101, %726)
        参数含义:
        %x.6 (Tensor): 输出,重排后的Tensor。
        %input.101 (Tensor): 需要重排的Tensor。
        %726 (int): 增大空间分辨率的增大因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.101
S
SunAhong1993 已提交
4235 4236
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%726
    layer_attrs["upscale_factor"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.functional.pixel_shuffle",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
4250

S
SunAhong1993 已提交
4251 4252 4253 4254 4255 4256 4257 4258
def aten_pow(mapper, graph, node):
    """ 构造指数激活的PaddleLayer。
    TorchScript示例:
        %x.6 : Tensor = aten::pow(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,指数激活后的Tensor。
        %4700 (Tensor): 需要指数激活的Tensor。
    """
S
SunAhong1993 已提交
4259
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4260 4261 4262 4263 4264 4265 4266 4267
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
4268 4269
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4270 4271 4272 4273 4274
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
4275
        layer_attrs["y"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
4276 4277
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4278 4279
                            current_outputs, scope_name)
        layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
4280 4281 4282
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
4283
        "paddle.pow",
S
SunAhong1993 已提交
4284 4285
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4286
        scope_name=scope_name,
S
SunAhong1993 已提交
4287 4288 4289 4290
        **layer_attrs)
    return current_inputs, current_outputs


4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
def aten_prelu(mapper, graph, node):
    """ 构造prelu激活的PaddleLayer。
    TorchScript示例:
        %result.3 : aten::prelu(%input.150, %999)
        参数含义:
        %result.3 (Tensor): 输出,prelu后的结果。
        %input.150 (Tensor): 需要prelu的Tensor。
        %999 (Tnsor): 权重。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.150
S
SunAhong1993 已提交
4309 4310
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
4311 4312 4313 4314 4315 4316 4317 4318
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%999
    weight = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + "._weight"] = weight
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4319 4320 4321 4322
        "paddle.nn.PReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
4323 4324 4325 4326
        num_parameters=weight.shape[0])
    return current_inputs, current_outputs


W
wjj19950828 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
def aten_real(mapper, graph, node):
    """
    TorchScript示例:
        %n0.3 : Tensor = aten::real(%n.3)
        参数含义:
        %n0.3 (Tensor): Return Real Tensor。
        %n.3 (Tensor): Input Complex Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.real",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
def aten_reflection_pad1d(mapper, graph, node):
    """ 构造1维映射填充的PaddleLayer。
    TorchScript示例:
        %6 = aten::reflection_pad1d(%input, %7)
        参数含义:
        %6 (Tensor): 输出,填充后的Tensor。
        %input (Tensor): 需要填充的Tensor。
        %7 (list|Tensor): 填充大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4376 4377
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%7
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        ipt_node = inputs_node[1]
        while ipt_node.kind() != "prim::GetAttr":
            inputs_name, inputs_node = mapper._get_inputs_name(ipt_node)
            ipt_node = inputs_node[0]
        layer_attrs["padding"] = list(mapper.pytorch_params[inputs_name[0]])
    layer_attrs["mode"] = string("reflect")
S
SunAhong1993 已提交
4393

S
add gru  
SunAhong1993 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
    graph.add_layer(
        "paddle.nn.Pad1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_reflection_pad2d(mapper, graph, node):
    """ 构造2维映射填充的PaddleLayer。
    TorchScript示例:
        %6 = aten::reflection_pad2d(%input, %7)
        参数含义:
        %6 (Tensor): 输出,填充后的Tensor。
        %input (Tensor): 需要填充的Tensor。
        %7 (list|Tensor): 填充大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4422 4423
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%7
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        ipt_node = inputs_node[1]
        while ipt_node.kind() != "prim::GetAttr":
            inputs_name, inputs_node = mapper._get_inputs_name(ipt_node)
            ipt_node = inputs_node[0]
        layer_attrs["padding"] = list(mapper.pytorch_params[inputs_name[0]])
    layer_attrs["mode"] = string("reflect")
S
SunAhong1993 已提交
4439

S
add gru  
SunAhong1993 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448
    graph.add_layer(
        "paddle.nn.Pad2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457
def aten_relu(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4458 4459
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
S
SunAhong1993 已提交
4460
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4461
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4462 4463 4464 4465 4466
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4467 4468
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4469 4470 4471 4472 4473
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4474 4475 4476 4477
        "paddle.nn.ReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
    return current_inputs, current_outputs


def aten_relu6(mapper, graph, node):
    """ 构造ReLU6激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu6(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU6后的结果。
        %result.5 (Tensor): 需要ReLU6的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4490 4491
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu6", mapper.nn_name2id)
S
SunAhong1993 已提交
4492
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4493
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4494 4495 4496 4497 4498
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4499 4500
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4501 4502 4503 4504 4505
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4506 4507 4508 4509
        "paddle.nn.ReLU6",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4510 4511 4512
    return current_inputs, current_outputs


4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
def aten_remainder(mapper, graph, node):
    """ 构造取余数的PaddleLayer。
    TorchScript示例:
        %701 : Tensor = aten::remainder(%661, %139)
        参数含义:
        %701 (Tensor): 输出,取余结果的Tensor。
        %661 (Tensor): 需要取余的Tensor。
        %139 (Tensor): 除数Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%661
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%139
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
W
WJJ1995 已提交
4539

4540 4541 4542 4543 4544 4545 4546 4547
    graph.add_layer(
        "prim.remainder",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4548 4549 4550
def aten_repeat(mapper, graph, node):
    """ 构造根据参数对输入各维度进行复制的PaddleLayer。
    TorchScript示例:
4551
        %701 : Tensor = aten::repeat(%699, %700)
S
SunAhong1993 已提交
4552 4553 4554 4555 4556
        参数含义:
        %701 (Tensor): 输出,复制后的Tensor。
        %699 (Tensor): 需要复制的Tensor。
        %700 (list): 指定每个维度复制的次数。
    """
S
SunAhong1993 已提交
4557
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4558 4559 4560 4561 4562 4563 4564 4565
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%699
S
SunAhong1993 已提交
4566 4567
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4568 4569 4570 4571 4572 4573 4574 4575
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%700
    if inputs_name[1] in mapper.attrs:
        layer_attrs["repeat_times"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4576
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4577 4578 4579 4580 4581 4582 4583
        layer_inputs["repeat_times"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.tile",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4584
        scope_name=scope_name,
S
SunAhong1993 已提交
4585 4586 4587 4588
        **layer_attrs)
    return current_inputs, current_outputs


W
WJJ1995 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
def aten_repeat_interleave(mapper, graph, node):
    """ 构造根据参数对输入各维度进行复制的PaddleLayer。
    TorchScript示例:
        %701 : Tensor = aten::repeat(%699, %700, %702)
        参数含义:
        %701 (Tensor): 输出,复制后的Tensor。
        %699 (Tensor): 需要复制的Tensor。
        %700 (int | Tensor): 指定每个维度复制的次数。
        %702 (int): 指定在哪个轴上进行复制。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%699
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%700
    if inputs_name[1] in mapper.attrs:
        layer_attrs["repeat_times"] = [int(mapper.attrs[inputs_name[1]])]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["repeat_times"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.tile",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)

    layer_attrs_reshape = {}
    layer_attrs_reshape["shape"] = [0, int(mapper.attrs[inputs_name[1]]), -1]
    graph.add_layer(
        "paddle.reshape",
        inputs={"x": layer_outputs[0]},
        outputs=[layer_outputs[0] + "_reshape"],
        scope_name=scope_name,
        **layer_attrs_reshape)

    layer_attrs_transpose = {}
    layer_attrs_transpose["perm"] = [0, 2, 1]
    graph.add_layer(
        "paddle.transpose",
        inputs={"x": layer_outputs[0] + "_reshape"},
        outputs=[layer_outputs[0] + "_transpose"],
        scope_name=scope_name,
        **layer_attrs_transpose)

    layer_attrs_reshape = {}
    layer_attrs_reshape["shape"] = [0, -1]
    graph.add_layer(
        "paddle.reshape",
        inputs={"x": layer_outputs[0] + "_transpose"},
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs_reshape)

    return current_inputs, current_outputs


W
wjj19950828 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
def aten_replication_pad1d(mapper, graph, node):
    """
    TorchScript Code:
        %58 : Tensor = aten::replication_pad1d(%input.1, %152)
        Parameter meaning:
        %58 (Tensor): Output Tensor
        %input.1 (Tensor): Input Tensor
        %%152 (list): Padding size
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # output list
    current_outputs = [output_name]
    # input list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    layer_attrs["mode"] = string("replicate")
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Pad1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)

    return current_inputs, current_outputs


S
SunAhong1993 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703
def aten_reshape(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。
    TorchScript示例:
        %x.6 : Tensor = aten::reshape(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,reshape后的Tensor。
        %4700 (Tensor): 需要reshape的Tensor。
        %4703 (list): 形状大小组成的list。
    """
S
SunAhong1993 已提交
4704
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4705 4706 4707 4708 4709 4710 4711 4712
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
4713 4714
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4715 4716 4717 4718 4719 4720 4721 4722
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4723
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4724 4725
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
4726

S
SunAhong1993 已提交
4727
    graph.add_layer(
S
SunAhong1993 已提交
4728
        "paddle.reshape",
S
SunAhong1993 已提交
4729 4730
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4731
        scope_name=scope_name,
S
SunAhong1993 已提交
4732 4733 4734 4735
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
def aten_roll(mapper, graph, node):
    """ 构造循环滚动的PaddleLayer。
    TorchScript示例:
        %x.87 : Float = aten::roll(%x.86, %1862, %1863)
        参数含义:
        %x.87 (Tensor): 输出Tensor。
        %x.86 (Tensor): 输入Tensor。
        %1862 (int/list/tuple): 滚动位移。
        %1863 (int/list/tuple): 滚动轴。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.86
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1862
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shifts"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shifts"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%1863
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.roll",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
def aten_rsub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer,计算公式为:out = y - alpha * x。
    TorchScript示例:
        %31 : Tensor = aten::rsub(%30, %13, %7)
        参数含义:
        %31 (Tensor): 相减结果。
        %30 (Tensor): 输入Tensor x。
        %13 (int/float): 输入数值 y。
        %7 (int/float): alpha。
    """
S
SunAhong1993 已提交
4796
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4797 4798 4799 4800 4801 4802 4803
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%30
S
SunAhong1993 已提交
4804 4805
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4806 4807
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%13
S
SunAhong1993 已提交
4808 4809
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4810 4811
    layer_inputs["y"] = inputs_name[1]
    # 处理输入2,即%7
S
SunAhong1993 已提交
4812 4813
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4814 4815 4816 4817
    layer_inputs["alpha"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4818 4819 4820 4821 4822
    graph.add_layer(
        "prim.rsub",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
    return current_inputs, current_outputs


def aten_ScalarImplicit(mapper, graph, node):
    """ 构造获取scalar的PaddleLayer。
    TorchScript示例:
        %89 : Scalar = aten::ScalarImplicit(%end.1)
        参数含义:
        %89 (Scalar): 输出,得到的Scalar。
        %end.1 (-): 组要转换的数据。
    【注意】由于Paddle无Scalar,所以最后转换为Tensor。
    """
S
SunAhong1993 已提交
4835
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4836 4837 4838 4839 4840 4841 4842
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
4843 4844
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4845 4846 4847 4848 4849 4850
    layer_inputs["input"] = inputs_name[0]
    input_type = list(node.inputs())[0].type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if str(input_type) == "Tensor":
        graph.add_layer(
S
SunAhong1993 已提交
4851 4852 4853 4854
            "prim.equal",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
    else:
        raise Exception(
            "The input type {} of aten::ScalarImplicit is not implemented yet!"
        ).format(input_type)
    return current_inputs, current_outputs


def aten_select(mapper, graph, node):
    """ 构造选取特定维度Variable的PaddleLayer。
    TorchScript示例:
        %19 : Tensor = aten::select(%18, %8, %7)
        参数含义:
        %19 (Tensor): 输出,选取的Tensor。
        %18 (Tensor): 需要选取的Tensor。
        %8 (int): select的维度。
        %7 (int): select的第n个向量。
    """
S
SunAhong1993 已提交
4872
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4873 4874 4875 4876 4877 4878 4879 4880
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%18
S
SunAhong1993 已提交
4881 4882
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4883 4884 4885 4886
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%8
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%75
S
SunAhong1993 已提交
4887 4888
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4889 4890 4891 4892 4893 4894 4895
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.select",
        inputs=layer_inputs,
4896
        outputs=layer_outputs,
S
SunAhong1993 已提交
4897
        scope_name=scope_name,
S
SunAhong1993 已提交
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
        **layer_attrs)
    return current_inputs, current_outputs


def aten__set_item(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。
    TorchScript示例:
        = aten::_set_item(%features.1, %out_name.1, %x.3)
        参数含义:
        %features.1 (list): dict。
        %out_name.1 (-): dict的key。
        %x.3 (-): dict的value。
    """
S
SunAhong1993 已提交
4911
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4912 4913 4914 4915 4916
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = []
    # 处理输入0,即%features.1
S
SunAhong1993 已提交
4917 4918
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4919 4920
    layer_inputs["dict"] = inputs_name[0]
    # 处理输入1,即%out_name.1
S
SunAhong1993 已提交
4921 4922
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4923 4924
    layer_inputs["key"] = inputs_name[1]
    # 处理输入2,即%x.3
S
SunAhong1993 已提交
4925 4926
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4927 4928 4929 4930
    layer_inputs["value"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4931 4932
    graph.add_layer(
        "prim.set_item", inputs=layer_inputs, outputs=[], scope_name=scope_name)
S
SunAhong1993 已提交
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
    return current_inputs, current_outputs


def aten_sigmoid(mapper, graph, node):
    """ 构造sigmoid激活的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::sigmoid(%54)
        参数含义:
        %55 (Tensor): 输出,sigmoid后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
4944 4945
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("sigmoid", mapper.nn_name2id)
S
SunAhong1993 已提交
4946
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4947
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4948 4949 4950 4951 4952
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%54
S
SunAhong1993 已提交
4953 4954
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4955 4956 4957 4958 4959
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4960 4961 4962 4963
        "paddle.nn.Sigmoid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4964 4965 4966
    return current_inputs, current_outputs


4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
def aten_silu(mapper, graph, node):
    """ 构造Silu激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::silu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,Silu后的结果。
        %input.5 (Tensor): 需要Silu的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("silu", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Silu",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4999 5000 5001 5002 5003 5004 5005 5006
def aten_sin(mapper, graph, node):
    """ 构造数学计算sin的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::sin(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,sin之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
5007
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5008 5009 5010 5011 5012 5013 5014
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
5015 5016
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5017 5018 5019 5020
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5021 5022 5023 5024 5025
    graph.add_layer(
        "paddle.sin",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
    return current_inputs, current_outputs


def aten_size(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。
    TorchScript示例:
        %73 : int[] = aten::size(%x.12, %10)
        参数含义:
        %73 (list): 输出,shape的list。
        %x.12 (Tensor): 需要获取shape的Tensor。
        %10 (int): 非必须,代表维度。
    """
S
SunAhong1993 已提交
5038
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5039 5040 5041 5042 5043 5044 5045 5046
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
5047 5048
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5049 5050 5051 5052 5053 5054 5055 5056 5057
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if len(inputs_name) > 1:
        # 处理输入1,即%12
        if inputs_name[1] in mapper.attrs:
            layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5058
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5059 5060 5061 5062 5063 5064
            layer_inputs["dim"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.shape_dim",
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
5065
            scope_name=scope_name,
S
SunAhong1993 已提交
5066 5067 5068 5069
            **layer_attrs)
        return current_inputs, current_outputs

    graph.add_layer(
S
SunAhong1993 已提交
5070 5071 5072 5073
        "prim.shape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
    return current_inputs, current_outputs


def aten_slice(mapper, graph, node):
    """ 构造切分list或Variable的PaddleLayer。
    TorchScript示例:
        %83 : int[] = aten::slice(%73, %_81, %82, %75, %77)
        参数含义:
        %83 (list/Tensor): 输出,切分后的list。
        %73 (list/Tensor): 需要切分的list。
        %_81 (int): 切分的维度,不一定存在。
        %82 (int): 切分的开始索引。
        %75 (int): 切分的结束索引。
        %77 (int): 切分的步长。
    """
S
SunAhong1993 已提交
5089
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    if len(inputs_name) == 5:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
5099 5100
                            current_outputs, scope_name)
        layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
5101 5102 5103 5104 5105 5106 5107 5108 5109

        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        # 处理输入1,即%_81
        if inputs_name[1] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[1] + "_list"],
S
SunAhong1993 已提交
5110
                scope_name=scope_name,
S
SunAhong1993 已提交
5111 5112 5113
                input0=mapper.attrs[inputs_name[1]])
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5114
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5115 5116 5117
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[1]},
S
SunAhong1993 已提交
5118 5119
                outputs=[inputs_name[1] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
            current_inputs.append(inputs_name[1])
        layer_inputs["axes"] = inputs_name[1] + "_list"
        current_inputs.append(inputs_name[1] + "_list")
        current_outputs.append(inputs_name[1] + "_list")
        # 处理输入2,即%82
        if inputs_name[2] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[2] + "_list"],
S
SunAhong1993 已提交
5130
                scope_name=scope_name,
S
SunAhong1993 已提交
5131 5132 5133
                input0=mapper.attrs[inputs_name[2]])
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
5134
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5135 5136 5137
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[2]},
S
SunAhong1993 已提交
5138 5139
                outputs=[inputs_name[2] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
            current_inputs.append(inputs_name[2])
        layer_inputs["starts"] = inputs_name[2] + "_list"
        current_inputs.append(inputs_name[2] + "_list")
        current_outputs.append(inputs_name[2] + "_list")
        # 处理输入3,即%85
        if inputs_name[3] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[3] + "_list"],
S
SunAhong1993 已提交
5150
                scope_name=scope_name,
S
SunAhong1993 已提交
5151 5152 5153
                input0=mapper.attrs[inputs_name[3]])
        else:
            mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
5154
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5155 5156 5157
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[3]},
S
SunAhong1993 已提交
5158 5159
                outputs=[inputs_name[3] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
            current_inputs.append(inputs_name[3])
        layer_inputs["ends"] = inputs_name[3] + "_list"
        current_inputs.append(inputs_name[3] + "_list")
        current_outputs.append(inputs_name[3] + "_list")
        # 处理输入4,即%77
        if inputs_name[4] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[4] + "_list"],
S
SunAhong1993 已提交
5170
                scope_name=scope_name,
S
SunAhong1993 已提交
5171 5172 5173
                input0=mapper.attrs[inputs_name[4]])
        else:
            mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
5174
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5175 5176 5177
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[4]},
S
SunAhong1993 已提交
5178 5179
                outputs=[inputs_name[4] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5180 5181 5182 5183 5184 5185
            current_inputs.append(inputs_name[4])
        layer_inputs["strides"] = inputs_name[4] + "_list"
        current_inputs.append(inputs_name[4] + "_list")
        current_outputs.append(inputs_name[4] + "_list")

        graph.add_layer(
S
SunAhong1993 已提交
5186
            "paddle.strided_slice",
S
SunAhong1993 已提交
5187
            inputs=layer_inputs,
S
SunAhong1993 已提交
5188 5189
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
5190 5191 5192
    else:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
5193
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5194 5195 5196
        layer_inputs["input"] = inputs_name[0]
        # 处理输入1,即%82
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5197
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5198 5199 5200
        layer_inputs["start"] = inputs_name[1]
        # 处理输入2,即%75
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
5201
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5202 5203 5204
        layer_inputs["end"] = inputs_name[2]
        # 处理输入3,即%77
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
5205
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5206 5207 5208 5209 5210
        layer_inputs["step"] = inputs_name[3]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())

        graph.add_layer(
S
SunAhong1993 已提交
5211 5212 5213 5214
            "prim.slice",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
    return current_inputs, current_outputs


def aten_softmax(mapper, graph, node):
    """ 构造softmax激活的PaddleLayer。
    TorchScript示例:
        %input2.1 : Tensor = aten::softmax(%input.5, %80, %72)
        参数含义:
        %input2.1 (Tensor): 激活后结果。
        %input.5 (Tensor): 需要激活的Tensor。
        %80 (int): 指定对输入Tensor进行运算的轴。
        %72 (str): 类型,默认为None。
    """
S
SunAhong1993 已提交
5228 5229
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softmax", mapper.nn_name2id)
S
SunAhong1993 已提交
5230
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5231
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5232 5233 5234 5235 5236 5237
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
5238 5239
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5240 5241 5242 5243 5244 5245 5246 5247 5248
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["axis"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.Softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5249
        scope_name=scope_name,
S
SunAhong1993 已提交
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
        **layer_attrs)
    return current_inputs, current_outputs


def aten_softplus(mapper, graph, node):
    """ 构造softplus激活的PaddleLayer。
    TorchScript示例:
        %54 : Tensor = aten::softplus(%x.31, %30, %29)
        参数含义:
        %54 (Tensor): 激活后结果。
        %x.31 (Tensor): 需要激活的Tensor。
        %30 (int): beta。
        %29 (int): 阈值。
    """
S
SunAhong1993 已提交
5264 5265
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softplus", mapper.nn_name2id)
S
SunAhong1993 已提交
5266
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5267
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5268 5269 5270 5271 5272 5273
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
5274 5275
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["beta"] = mapper.attrs[inputs_name[1]]
    layer_attrs["threshold"] = mapper.attrs[inputs_name[2]]

    graph.add_layer(
        "paddle.nn.Softplus",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5286
        scope_name=scope_name,
S
SunAhong1993 已提交
5287 5288 5289 5290
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
def aten_split_with_sizes(mapper, graph, node):
    """ 构构造split的PaddleLayer。
    TorchScript示例:
        %1450 : Tensor[] = aten::split_with_sizes(%1446, %1750, %41)
        参数含义:
        %1450 (Tensor): 输出,split后的Tensor。
        %1446 (Tensor): 需要获取split的Tensor。
        %1750 (list): 子Tensor的数量列表。
        %41 (int): 需要分割的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1446
S
SunAhong1993 已提交
5310 5311
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1750
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%135
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.split",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5341 5342 5343 5344 5345 5346 5347 5348
def aten_sqrt(mapper, graph, node):
    """ 构构造sqrt的PaddleLayer。
    TorchScript示例:
        %787 : Tensor = aten::sqrt(%786)
        参数含义:
        %787 (Tensor): 输出,取sqrt的Tensor。
        %786 (Tensor): 需要获取sqrt的Tensor。
    """
S
SunAhong1993 已提交
5349
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5350 5351 5352 5353 5354 5355 5356
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
5357 5358
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5359 5360 5361 5362 5363
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5364 5365 5366 5367
        "paddle.sqrt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
    return current_inputs, current_outputs


def aten_squeeze(mapper, graph, node):
    """ 构造删除位数为1的维度的PaddleLayer。
    TorchScript示例:
        %12 : Tensor = aten::squeeze(%start_logits.1, %4)
        参数含义:
        %12 (Tensor): 输出,删除维度后的Tensor。
        %start_logits.1 (Tensor): 需要删除维度的Tensor。
        %4 (int): 维度。
    """
S
SunAhong1993 已提交
5380
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5381 5382 5383 5384 5385 5386 5387 5388
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%start_logits.1
S
SunAhong1993 已提交
5389 5390
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5391 5392 5393 5394 5395 5396 5397 5398
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5399
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5400 5401 5402
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
5403
        "paddle.squeeze",
S
SunAhong1993 已提交
5404 5405
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5406
        scope_name=scope_name,
S
SunAhong1993 已提交
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
        **layer_attrs)
    return current_inputs, current_outputs


def aten_stack(mapper, graph, node):
    """ 构造堆叠Tensor的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::stack(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,堆叠后的结果。
        %i.12 (Tensor): 需要堆叠的Tensor组成的Tensor。
        %7 (int): 堆叠的轴。
    """
S
SunAhong1993 已提交
5420
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5421 5422 5423 5424 5425 5426 5427 5428
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5429 5430
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5431 5432 5433 5434 5435 5436 5437 5438
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5439
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5440 5441 5442 5443 5444 5445
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.stack",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5446
        scope_name=scope_name,
S
SunAhong1993 已提交
5447 5448 5449 5450 5451 5452 5453
        **layer_attrs)
    return current_inputs, current_outputs


def aten_sub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。
    TorchScript示例:
S
SunAhong1993 已提交
5454
        %840 : int = aten::sub(%839, %836, %3)
S
SunAhong1993 已提交
5455 5456 5457 5458
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
S
SunAhong1993 已提交
5459
        %3 (-): alpha。
S
SunAhong1993 已提交
5460
    """
S
SunAhong1993 已提交
5461
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5462 5463 5464
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
5465
    layer_attrs = {}
S
SunAhong1993 已提交
5466 5467 5468 5469
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%839
S
SunAhong1993 已提交
5470 5471
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5472 5473
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%836
S
SunAhong1993 已提交
5474 5475
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5476
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
    # 处理输入2,即%3
    if len(inputs_node) > 2:
        if inputs_name[2] in mapper.attrs:
            layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs, scope_name)
            layer_inputs["alpha"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
    else:
        layer_attrs["alpha"] = 1.0
S
SunAhong1993 已提交
5488 5489 5490
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5491 5492 5493 5494 5495 5496
    graph.add_layer(
        "prim.sub",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
    return current_inputs, current_outputs


def aten_t(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。
    TorchScript示例:
        %840 : int = aten::sub(%839, %836)
        参数含义:
        %109 (Tensor): 输出,转置后的矩阵。
        %102 (Tensor): 需要转置的Tensor。
    """
S
SunAhong1993 已提交
5508
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5509 5510 5511 5512 5513 5514 5515
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
5516 5517
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5518 5519 5520 5521 5522
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5523
        "paddle.transpose",
S
SunAhong1993 已提交
5524 5525
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5526
        scope_name=scope_name,
S
SunAhong1993 已提交
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
        perm=[1, 0])
    return current_inputs, current_outputs


def aten_tanh(mapper, graph, node):
    """ 构造tanh激活的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,tanh后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
5539 5540
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("tanh", mapper.nn_name2id)
S
SunAhong1993 已提交
5541
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5542
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5543 5544 5545 5546 5547
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
5548 5549
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5550 5551 5552 5553 5554
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5555 5556 5557 5558
        "paddle.nn.Tanh",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
    return current_inputs, current_outputs


def aten_split(mapper, graph, node):
    """ 构造分割Tensor的PaddleLayer。
    TorchScript示例:
        %160 : Tensor[] = aten::split(%159, %135, %123)
        参数含义:
        %160 (Tensor): 输出,分割后的矩阵。
        %159 (Tensor): 需要分割的Tensor。
        %135 (int): 分割的数量。
W
WJJ1995 已提交
5570
        %123 (int): 轴。
S
SunAhong1993 已提交
5571
    """
S
SunAhong1993 已提交
5572
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5573 5574 5575 5576 5577 5578 5579 5580
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%159
S
SunAhong1993 已提交
5581 5582
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5583
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
5584
    # 处理输入2,即%723
S
SunAhong1993 已提交
5585 5586
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5587
    layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
5588
    # 处理输入1,即%135
S
SunAhong1993 已提交
5589 5590
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5591 5592 5593 5594
    input_type = list(node.inputs())[0].type()
    if "[]" in str(input_type):
        layer_inputs["num_or_sections"] = inputs_name[1]
    else:
W
WJJ1995 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
        index = mapper.attrs[inputs_name[2]]
        graph.add_layer(
            "prim.shape",
            inputs={"input": inputs_name[0]},
            outputs=[inputs_name[0] + '_shape'],
            scope_name=scope_name)
        graph.add_layer(
            "prim.getitem",
            inputs={"list": inputs_name[0] + '_shape'},
            outputs=[inputs_name[0] + '_dim'],
            scope_name=scope_name,
            index=index)
        graph.add_layer(
            "prim.floordiv",
            inputs={'x': inputs_name[0] + '_dim',
                    'y': inputs_name[1]},
            outputs=[inputs_name[1] + '_div'],
            scope_name=scope_name)
        layer_attrs["num_or_sections"] = inputs_name[1] + '_div'
S
SunAhong1993 已提交
5614 5615 5616 5617
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5618
        "paddle.split",
S
SunAhong1993 已提交
5619 5620
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5621
        scope_name=scope_name,
S
SunAhong1993 已提交
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
        **layer_attrs)
    return current_inputs, current_outputs


def aten_transpose(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。
    TorchScript示例:
        %715 : Tensor = aten::transpose(%x.21, %704, %705)
        参数含义:
        %715 (Tensor): 输出,转置后的矩阵。
        %x.21 (Tensor): 需要转置的Tensor。
        %704 (int): 转置的维度1。
        %705 (int): 转置的维度2。
    """
S
SunAhong1993 已提交
5636
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5637 5638 5639 5640 5641 5642 5643
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.21
S
SunAhong1993 已提交
5644 5645
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5646 5647
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%704
S
SunAhong1993 已提交
5648 5649
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5650 5651
    dim1 = inputs_name[1]
    # 处理输入2,即%705
S
SunAhong1993 已提交
5652 5653
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5654 5655
    dim2 = inputs_name[2]
    # 获取当前节点输入的list
S
SunAhong1993 已提交
5656
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
5657
    graph.add_layer(
S
SunAhong1993 已提交
5658
        "prim.shape",
S
SunAhong1993 已提交
5659
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
5660 5661
        outputs=[output_name + "_shape"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5662 5663 5664 5665
    current_outputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len",
        inputs={"input": output_name + "_shape"},
S
SunAhong1993 已提交
5666 5667
        outputs=[output_name + "_len"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5668 5669 5670 5671 5672
    current_outputs.append(output_name + "_len")
    current_inputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len2list",
        inputs={"len": output_name + "_len"},
S
SunAhong1993 已提交
5673 5674
        outputs=[output_name + "_list"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5675 5676 5677 5678 5679 5680
    current_outputs.append(output_name + "_list")
    current_inputs.append(output_name + "_len")
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim1},
S
SunAhong1993 已提交
5681 5682
        outputs=[dim1 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5683 5684 5685 5686
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim2},
S
SunAhong1993 已提交
5687 5688
        outputs=[dim2 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5689 5690 5691 5692 5693 5694 5695
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim1 + "_new",
            "item": dim2 + "_new"
        },
S
SunAhong1993 已提交
5696 5697
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
5698 5699 5700 5701 5702 5703 5704
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim2 + "_new",
            "item": dim1 + "_new"
        },
S
SunAhong1993 已提交
5705 5706
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
5707
    graph.add_layer(
S
SunAhong1993 已提交
5708
        "paddle.transpose",
S
SunAhong1993 已提交
5709 5710
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5711
        scope_name=scope_name,
S
SunAhong1993 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
        perm=output_name + "_list")
    return current_inputs, current_outputs


def aten_to(mapper, graph, node):
    """ 构造类型转换的PaddleLayer。
    TorchScript示例:
        %30 : Tensor = aten::to(%extended_attention_mask.1, %12, %5, %5, %4)
        参数含义:
        %30 (Tensor): 转换后的Tensor。
        %extended_attention_mask.1 (Tensor): 需要转换的Tensor。
        %12 (int): 转换的类型。
    """
S
SunAhong1993 已提交
5725
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5726 5727 5728 5729 5730 5731 5732 5733
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5734 5735
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if len(inputs_name) == 6:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
S
SunAhong1993 已提交
5746
        "paddle.cast",
S
SunAhong1993 已提交
5747 5748
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5749
        scope_name=scope_name,
S
SunAhong1993 已提交
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
        **layer_attrs)
    return current_inputs, current_outputs


def aten_type_as(mapper, graph, node):
    """ 构造转换Tensor类型的PaddleLayer。
    TorchScript示例:
        %57 : Tensor = aten::type_as(%56, %mask.1)
        参数含义:
        %57 (Tensor): 输出,改变类型后的Tensor。
        %56 (Tensor): 需要改变类型的Tensor。
        %mask.1 (Tensor): 转换成与该Tensor相一致的类型。
    """
S
SunAhong1993 已提交
5763
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5764 5765 5766 5767 5768 5769 5770
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%56
S
SunAhong1993 已提交
5771 5772
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5773 5774 5775 5776
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
5777 5778
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5779 5780 5781
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
5782 5783
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5784 5785 5786 5787
    layer_inputs["dtype"] = inputs_name[1] + "_type"
    current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
5788 5789 5790 5791
        "paddle.cast",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
    return current_inputs, current_outputs


def aten_unsqueeze(mapper, graph, node):
    """ 构造插入维度的PaddleLayer。
    TorchScript示例:
        %13 : Tensor = aten::unsqueeze(%12, %7)
        参数含义:
        %13 (Tensor): 输出,插入维度后的Tensor。
        %12 (Tensor): 需要插入维度的Tensor。
        %7 (int): 维度。
    """
S
SunAhong1993 已提交
5804
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5805 5806 5807 5808 5809 5810 5811 5812
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5813 5814
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5815 5816 5817 5818 5819 5820 5821 5822
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5823
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5824 5825 5826
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
5827
        "paddle.unsqueeze",
S
SunAhong1993 已提交
5828 5829
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5830
        scope_name=scope_name,
S
SunAhong1993 已提交
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
        **layer_attrs)
    return current_inputs, current_outputs


def aten_upsample_bilinear2d(mapper, graph, node):
    """ 构造使用bilinear上采样的PaddleLayer。
    TorchScript示例:
        %4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
        %4995 (float): 高度的乘数因子。
W
WJJ1995 已提交
5845
        %4996 (float): 宽度的乘数因子。
S
SunAhong1993 已提交
5846
    """
S
SunAhong1993 已提交
5847
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5848 5849 5850 5851 5852 5853 5854 5855
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
5856 5857
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5858 5859 5860 5861 5862 5863 5864 5865
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5866
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5867 5868 5869 5870 5871 5872
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
S
SunAhong1993 已提交
5873
            scope_name=scope_name,
S
SunAhong1993 已提交
5874
            cls="paddle.fluid.Variable")
S
SunAhong1993 已提交
5875
        # TODO(syf): paddle.Variable
S
SunAhong1993 已提交
5876 5877
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
S
SunAhong1993 已提交
5878 5879
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
S
SunAhong1993 已提交
5880
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
5881
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
5882 5883 5884
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
5885 5886
            outputs=[inputs_name[1]],
            scope_name=scope_name)
S
SunAhong1993 已提交
5887
        if_layer.add_block(block)
W
WJJ1995 已提交
5888
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
5889 5890 5891 5892 5893 5894 5895
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
    # 处理输入2,即%5421
    if inputs_name[2] in mapper.attrs:
        layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
5896
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5897 5898
        layer_inputs["align_corners"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
S
fix2  
SunAhong1993 已提交
5899 5900 5901 5902
    if "size" in layer_attrs and layer_attrs["size"] is None:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
5903
    layer_attrs["align_mode"] = 0
C
channingss 已提交
5904
    layer_attrs["mode"] = string("bilinear")
S
SunAhong1993 已提交
5905 5906 5907 5908
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5909
        scope_name=scope_name,
S
SunAhong1993 已提交
5910 5911 5912
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
5913

S
SunAhong1993 已提交
5914 5915 5916 5917 5918 5919 5920 5921
def aten_upsample_nearest2d(mapper, graph, node):
    """ 构造使用nearest上采样的PaddleLayer。
    TorchScript示例:
        %4997 : Tensor = aten::upsample_nearest2d(%x.13, %4963, %5421, %4995)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
W
WJJ1995 已提交
5922
        %5421 (float): 高度的乘数因子。
S
SunAhong1993 已提交
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
        %4995 (float): 宽度的乘数因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
5934 5935
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
            scope_name=scope_name,
            cls="paddle.fluid.Variable")
        # TODO(syf): paddle.Variable
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
5959
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
5960 5961 5962 5963 5964 5965
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1]],
            scope_name=scope_name)
        if_layer.add_block(block)
W
WJJ1995 已提交
5966
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
5967 5968
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
S
fix  
SunAhong1993 已提交
5969
    if "size" in layer_attrs and layer_attrs["size"] is None:
5970
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
fix  
SunAhong1993 已提交
5971
                            current_outputs, scope_name)
5972
        layer_inputs["scale_factor"] = inputs_name[2]
S
SunAhong1993 已提交
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
    layer_attrs["align_mode"] = 0
    layer_attrs["mode"] = string("nearest")
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
5983

S
SunAhong1993 已提交
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
def aten_values(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %5 : Float(1, *, 1024, 2048)[] = aten::values(%1)
        参数含义:
        %5 (list): 输出,由字典获取的values的list。
        %1 (dict): 字典。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
6000 6001
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6002 6003 6004 6005
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
6006 6007 6008 6009 6010
    graph.add_layer(
        "prim.dict2values",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
6011 6012 6013
    return current_inputs, current_outputs


S
SunAhong1993 已提交
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
def aten_view(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。
    TorchScript示例:
        %input.152 : Tensor = aten::view(%x.20, %430)
        参数含义:
        %input.152 (Tensor): 输出,view后的Tensor。
        %x.20 (Tensor): 需要view的Tensor。
        %430 (list): 形状大小组成的list。
    【注意】view 函数只能用于contiguous后的Tensor上,
          也就是只能用于内存中连续存储的Tensor。
          如果对Tensor调用过transpose,permute等操作的话会使该Tensor在内存中变得不再连续,
          此时就不能再调用view函数。因此,需要先使用contiguous来返回一个contiguous copy。
          reshape则不需要依赖目标Tensor是否在内存中是连续的。
    """
S
SunAhong1993 已提交
6028
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6029 6030 6031 6032 6033 6034 6035 6036
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.20
S
SunAhong1993 已提交
6037 6038
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6039 6040 6041 6042 6043 6044 6045 6046
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%430
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
6047
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6048 6049 6050
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
6051
        "paddle.reshape",
S
SunAhong1993 已提交
6052 6053
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6054
        scope_name=scope_name,
S
SunAhong1993 已提交
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
        **layer_attrs)
    return current_inputs, current_outputs


def aten_warn(mapper, graph, node):
    """ 构造warning的PaddleLayer。
    TorchScript示例:
        = aten::warn(%3, %2)
        参数含义:
        %3 (str): warning的提示字符串。
        %2 (int): warning的stacklevel。
    """
S
SunAhong1993 已提交
6067
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6068 6069 6070 6071 6072 6073 6074 6075
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3
S
SunAhong1993 已提交
6076 6077
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6078 6079 6080 6081 6082 6083 6084 6085
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2
    if inputs_name[1] in mapper.attrs:
        layer_attrs["stacklevel"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
6086
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6087 6088 6089 6090 6091 6092 6093
        layer_inputs["stacklevel"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "prim.warnings",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6094
        scope_name=scope_name,
S
SunAhong1993 已提交
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
        **layer_attrs)
    return current_inputs, current_outputs


def aten_where(mapper, graph, node):
    """ 构造返回一个根据输入condition, 选择x或y的元素组成的多维Tensor的PaddleLayer,该节点实现out = x + y。
    TorchScript示例:
        %input.4 : Tensor = aten::where(%209, %w0.2, %210)
        参数含义:
        %input.4 (Tensor): 选择的结果。
        %209 (Tensor): 条件。
        %w0.2 (Tensor): 输入数值 x。
        %210 (Tensor): 输入数值 y。
    """
S
SunAhong1993 已提交
6109
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6110 6111 6112 6113 6114 6115 6116
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%209
S
SunAhong1993 已提交
6117 6118
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6119 6120
    layer_inputs["condition"] = inputs_name[0]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
6121 6122
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6123 6124
    layer_inputs["x"] = inputs_name[1]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
6125 6126
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6127 6128 6129 6130
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
6131 6132 6133 6134 6135
    graph.add_layer(
        "paddle.where",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
    return current_inputs, current_outputs


def aten_zeros(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %input.49 : Tensor = aten::zeros(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
6151
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
6165
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6166 6167 6168 6169 6170 6171 6172 6173 6174
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6175
        scope_name=scope_name,
S
SunAhong1993 已提交
6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
        **layer_attrs)
    return current_inputs, current_outputs


def aten_zeros_like(mapper, graph, node):
    """ 构造创建与输入Tensor形状一致的、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %782 : Tensor = aten::zeros_like(%n.2, %655, %670, %662, %671, %672)
        参数含义:
        %782 (Tensor): 输出,全0的Tensor。
        %n.2 (Tensor): 标准Tensor。
        %655 (int): 类型dtype。
        %670 (int): layout。
        %662 (Device): 设备。
        %671 (bool): 是否计算梯度。
        %672 (memory_format): 存储类型。
    """
S
SunAhong1993 已提交
6193
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6194 6195 6196 6197 6198 6199 6200 6201
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.2
S
SunAhong1993 已提交
6202 6203
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%655,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6214
        scope_name=scope_name,
S
SunAhong1993 已提交
6215 6216
        **layer_attrs)
    return current_inputs, current_outputs