vgg.py 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
import paddle
import paddle.nn as nn
from paddle.utils.download import get_weights_path_from_url
from typing import Union, List, Dict, Any, cast
from x2paddle import torch2paddle

__all__ = [
    'VGG',
    'vgg11',
    'vgg11_bn',
    'vgg13',
    'vgg13_bn',
    'vgg16',
    'vgg16_bn',
    'vgg19_bn',
    'vgg19',
]

model_urls = {
    'vgg11': 'https://x2paddle.bj.bcebos.com/vision/models/vgg11-pt.pdparams',
    'vgg13': 'https://x2paddle.bj.bcebos.com/vision/models/vgg13-pt.pdparams',
    'vgg16': 'https://x2paddle.bj.bcebos.com/vision/models/vgg16-pt.pdparams',
    'vgg19': 'https://x2paddle.bj.bcebos.com/vision/models/vgg19-pt.pdparams',
    'vgg11_bn':
    'https://x2paddle.bj.bcebos.com/vision/models/vgg11_bn-pt.pdparams',
    'vgg13_bn':
    'https://x2paddle.bj.bcebos.com/vision/models/vgg13_bn-pt.pdparams',
    'vgg16_bn':
    'https://x2paddle.bj.bcebos.com/vision/models/vgg16_bn-pt.pdparams',
    'vgg19_bn':
    'https://x2paddle.bj.bcebos.com/vision/models/vgg19_bn-pt.pdparams',
}


class VGG(nn.Layer):
    def __init__(self, features, num_classes=1000, init_weights=True):
        super(VGG, self).__init__()
        self.features = features
        self.avgpool = nn.AdaptiveAvgPool2D((7, 7))
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
42
            torch2paddle.ReLU(True),
43 44
            nn.Dropout(),
            nn.Linear(4096, 4096),
45
            torch2paddle.ReLU(True),
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
            nn.Dropout(),
            nn.Linear(4096, num_classes), )
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = paddle.flatten(x, 1)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2D):
                torch2paddle.kaiming_normal_(
                    m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    torch2paddle.constant_init_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2D):
                torch2paddle.constant_init_(m.weight, 1)
                torch2paddle.constant_init_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                torch2paddle.normal_init_(m.weight, 0, 0.01)
                torch2paddle.constant_init_(m.bias, 0)


def make_layers(cfg: List[Union[str, int]],
                batch_norm: bool=False) -> nn.Sequential:
    layers: List[nn.Layer] = []
    in_channels = 3
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2D(kernel_size=2, stride=2)]
        else:
            v = cast(int, v)
            conv2d = nn.Conv2D(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
84
                layers += [conv2d, nn.BatchNorm2D(v), torch2paddle.ReLU(True)]
85
            else:
86
                layers += [conv2d, torch2paddle.ReLU(True)]
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
            in_channels = v
    return nn.Sequential(*layers)


cfgs: Dict[str, List[Union[str, int]]] = {
    'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'B':
    [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'D': [
        64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512,
        512, 512, 'M'
    ],
    'E': [
        64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512,
        'M', 512, 512, 512, 512, 'M'
    ],
}


def _vgg(arch: str, cfg: str, batch_norm: bool, pretrained: bool,
         **kwargs: Any) -> VGG:
    if pretrained:
        kwargs['init_weights'] = False
    model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
    if pretrained:
        state_dict = get_weights_path_from_url(model_urls[arch])
        model.load_dict(state_dict)
    return model


def vgg11(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG:
    r"""VGG 11-layer model (configuration "A") from
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg11', 'A', False, pretrained, **kwargs)


def vgg11_bn(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG:
    r"""VGG 11-layer model (configuration "A") with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg11_bn', 'A', True, pretrained, **kwargs)


def vgg13(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG:
    r"""VGG 13-layer model (configuration "B")
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg13', 'B', False, pretrained, **kwargs)


def vgg13_bn(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG:
    r"""VGG 13-layer model (configuration "B") with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg13_bn', 'B', True, pretrained, **kwargs)


def vgg16(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG:
    r"""VGG 16-layer model (configuration "D")
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg16', 'D', False, pretrained, **kwargs)


def vgg16_bn(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG:
    r"""VGG 16-layer model (configuration "D") with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg16_bn', 'D', True, pretrained, **kwargs)


def vgg19(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG:
    r"""VGG 19-layer model (configuration "E")
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg19', 'E', False, pretrained, **kwargs)


def vgg19_bn(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG:
    r"""VGG 19-layer model (configuration 'E') with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg19_bn', 'E', True, pretrained, **kwargs)