aten.py 233.0 KB
Newer Older
S
SunAhong1993 已提交
1
# -*- coding:UTF-8 -*-
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
16
import copy
S
SunAhong1993 已提交
17
import numpy as np
S
SunAhong1993 已提交
18 19
from x2paddle.core.util import name_generator, string
from x2paddle.utils import paddle_dtypes
S
SunAhong1993 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
from x2paddle.core.program import PaddleGraph

dtype_dict = {
    0: string("uint8"),
    1: string("int8"),
    2: string("int16"),
    3: string("int32"),
    4: string("int64"),
    5: string("float16"),
    6: string("float32"),
    7: string("float64"),
    11: string("bool")
}


Y
yeliang2258 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
def aten_sum(mapper, graph, node):
    """ 构造获取元素求和的paddlelayer。
    TorchScript示例:
        %x_gap.15 : Tensor =  aten::sum(%x.58, %2166, %1450, %1453)
        参数含义:
        %x_gap.15 (Tensor): 求和后的Tensor。
        %n.3 (Tensor): 求和前的Tensor。
        %2166:axis
        %1450:keepdim
        %1453:dtype
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    if inputs_name[2] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
    if inputs_name[3] in mapper.attrs:
        layer_attrs["dtype"] = mapper.attrs[inputs_name[3]]
    graph.add_layer(
        "paddle.sum",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

W
WJJ1995 已提交
74

S
SunAhong1993 已提交
75 76 77 78 79 80 81 82
def aten_abs(mapper, graph, node):
    """ 构造获取绝对值的PaddleLayer。
    TorchScript示例:
        %n0.3 : Tensor = aten::abs(%n.3)
        参数含义:
        %n0.3 (Tensor): 绝对值后的Tensor。
        %n.3 (Tensor): 绝对值前的Tensor。
    """
S
SunAhong1993 已提交
83
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
84 85 86 87 88 89 90
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
S
SunAhong1993 已提交
91 92
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
93 94 95 96 97
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
98 99 100 101
        "paddle.abs",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
102 103 104
    return current_inputs, current_outputs


S
SunAhong1993 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def aten_adaptive_avg_pool1d(mapper, graph, node):
    """ 构造average adaptive pool1d的PaddleLayer。
    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool1d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的长度大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]][0]
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool1D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.getitem",
            inputs={"list": layer_inputs["output_size"]},
            outputs=[layer_inputs["output_size"]],
            scope_name=scope_name,
            index=0)
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool1d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
158 159 160 161 162 163 164 165 166
def aten_adaptive_avg_pool2d(mapper, graph, node):
    """ 构造average adaptive pool2d的PaddleLayer。
    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的宽、高大小。
    """
S
SunAhong1993 已提交
167 168
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
169
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
170
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
171 172 173 174 175 176
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
S
SunAhong1993 已提交
177 178
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
179
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
180 181 182 183
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
184
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
185 186 187 188 189 190
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool2D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
191 192
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
193 194
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
S
SunAhong1993 已提交
195
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
196 197 198 199 200 201
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool2d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    return current_inputs, current_outputs


def aten_addmm(mapper, graph, node):
    """ 构造addmm的PaddleLayer,该节点实现out = alpha ∗ x ∗ y + beta ∗ input。
    TorchScript示例:
        %ret.2 : Tensor = aten::addmm(%150, %input.3, %156, %151, %152)
        参数含义:
        %ret.2 (Tensor): addmm结果Tensor。
        %150 (Tensor): 输入Tensor input。
        %input.3 (Tensor): 输入Tensor x。
        %156 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
        %152 (int/float): 输入beta。
    """
S
SunAhong1993 已提交
217
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
218 219 220 221 222 223 224 225
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%150
S
SunAhong1993 已提交
226 227
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
228 229
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%input.3
S
SunAhong1993 已提交
230 231
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
232 233
    layer_inputs["x"] = inputs_name[1]
    # 处理输入2,即%156
S
SunAhong1993 已提交
234 235
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
236 237 238 239 240 241 242 243
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入3,即%152
    if inputs_name[3] in mapper.attrs:
        layer_attrs["beta"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
244
                            current_outputs, scope_name)
S
SunAhong1993 已提交
245 246 247 248 249 250 251
        layer_inputs["beta"] = inputs_name[3]
        current_inputs.append(inputs_name[3])
    # 处理输入4,即%151
    if inputs_name[4] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[4]]
    else:
        mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
252
                            current_outputs, scope_name)
S
SunAhong1993 已提交
253 254 255 256 257 258 259
        layer_inputs["alpha"] = inputs_name[4]
        current_inputs.append(inputs_name[4])

    graph.add_layer(
        "paddle.addmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
260
        scope_name=scope_name,
S
SunAhong1993 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274
        **layer_attrs)
    return current_inputs, current_outputs


def aten_add(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + alpha * y。
    TorchScript示例:
        %137 : Tensor = aten::add(%136, %130, %130)
        参数含义:
        %output.5 (Tensor): add结果Tensor。
        %output.2 (Tensor): 输入Tensor x。
        %150 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
    """
S
SunAhong1993 已提交
275
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
276 277 278 279 280 281 282 283
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%output.2
S
SunAhong1993 已提交
284 285
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
286 287
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%150
S
SunAhong1993 已提交
288 289
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
290 291 292
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
293 294 295 296 297 298 299 300 301
    if len(inputs_name) > 2:
        # 处理输入2,即%151
        if inputs_name[2] in mapper.attrs:
            layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs, scope_name)
            layer_inputs["alpha"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
S
SunAhong1993 已提交
302

303 304 305 306 307 308 309 310 311 312 313 314 315
        graph.add_layer(
            "prim.add_",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        graph.add_layer(
            "prim.add",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
316 317 318 319 320 321 322 323 324 325 326 327
    return current_inputs, current_outputs


def aten___and__(mapper, graph, node):
    """ 构造与计算的PaddleLayer。
    TorchScript示例:
        %361 : bool = aten::__and__(%360, %358)
        参数含义:
        %361 (bool): 输出,与计算结果。
        %360 (-): 输入 x。
        %358 (-): 输入 y。
    """
S
SunAhong1993 已提交
328
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
329 330 331 332 333 334 335
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
336 337
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
338 339
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
S
SunAhong1993 已提交
340 341
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
342 343 344 345
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
346 347 348 349 350
    graph.add_layer(
        "prim.and",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
351 352 353 354 355 356 357 358 359 360 361 362
    return current_inputs, current_outputs


def aten_append(mapper, graph, node):
    """ 构造对list进行append的PaddleLayer。
    TorchScript示例:
        %90 : int[] = aten::append(%_output_size.1, %v.1)
        参数含义:
        %90 (list): 输出,append后的list。
        %_output_size.1 (list): 需要进行append的list。
        %v.1 (-): append的元素。
    """
S
SunAhong1993 已提交
363
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
364 365 366 367 368 369
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    layer_outputs = [inputs_name[0]]
    # 获取当前节点输出的list
    current_outputs = [inputs_name[0]]
    # 处理输入0,即_output_size.1
S
SunAhong1993 已提交
370 371
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
372 373
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即v.1
S
SunAhong1993 已提交
374 375
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
376 377 378 379
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
380 381 382 383 384
    graph.add_layer(
        "prim.append",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
385 386 387 388 389 390 391 392
    return current_inputs, current_outputs


def aten_arange(mapper, graph, node):
    """ 构造以步长均匀分隔给定数值区间的PaddleLayer。
    TorchScript示例:
        有三种情况,分别处理。
    """
S
SunAhong1993 已提交
393
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    if len(inputs_name) == 5:
        # %position_ids.1 : Tensor = aten::arange(%52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%52,代表end
        if inputs_name[0] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
410
                                current_outputs, scope_name)
S
SunAhong1993 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
            layer_inputs["end"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%43,代表dtype
        if mapper.attrs[inputs_name[1]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
    elif len(inputs_name) == 6:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
426
                                current_outputs, scope_name)
S
SunAhong1993 已提交
427 428 429 430 431 432 433
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
434
                                current_outputs, scope_name)
S
SunAhong1993 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%43,代表dtype
        if mapper.attrs[inputs_name[2]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    elif len(inputs_name) == 7:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
450
                                current_outputs, scope_name)
S
SunAhong1993 已提交
451 452 453 454 455 456 457
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
458
                                current_outputs, scope_name)
S
SunAhong1993 已提交
459 460 461 462 463 464 465
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%53,代表step
        if inputs_name[2] in mapper.attrs:
            layer_attrs["step"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
466
                                current_outputs, scope_name)
S
SunAhong1993 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
            layer_inputs["step"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
        # 处理输入3,即%43,代表dtype
        if mapper.attrs[inputs_name[3]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[3]]]
    else:
        raise Exception("Unknown aten::arange signature taking " + str(
            len(inputs_name)) + " arguments.")

    graph.add_layer(
        "paddle.arange",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
482
        scope_name=scope_name,
S
SunAhong1993 已提交
483 484 485 486
        **layer_attrs)
    return current_inputs, current_outputs


W
WJJ1995 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
def aten_argmax(mapper, graph, node):
    """
    TorchScript:
        %x.28 : Tensor = aten::argmax(%result.1, %4967, %3, %2)
        Parameter meaning:
        %x.28 (Tensor): Output Tensor
        %result.1 (Tensor): Input Tensor
        %4967 (int/list): Axis
        %3 (bool): Keepdim
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # output list
    current_outputs = [output_name]
    # process Input Tensor
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # process Axis
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # process Keepdim
    if inputs_name[2] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.argmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549
def aten_avg_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
S
SunAhong1993 已提交
550 551
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
552
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
553
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
554 555 556 557 558 559
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
560 561
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
562 563 564 565
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
566
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
567
    # 处理输入2,即%539
S
SunAhong1993 已提交
568
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
569
    # 处理输入3,即%540
S
SunAhong1993 已提交
570
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
571 572 573 574 575 576 577 578
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
579
        outputs=[inputs_name[6] + "_assert"],
S
SunAhong1993 已提交
580
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
S
SunAhong1993 已提交
581 582 583
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)
S
SunAhong1993 已提交
584 585

    graph.add_layer(
S
SunAhong1993 已提交
586
        kernel="paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
587
        inputs=layer_inputs,
S
SunAhong1993 已提交
588
        outputs=layer_outputs,
S
SunAhong1993 已提交
589 590
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
591

S
SunAhong1993 已提交
592 593
    return current_inputs, current_outputs

S
SunAhong1993 已提交
594

S
SunAhong1993 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
def aten_avg_pool3d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
619 620
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
621 622 623 624
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
625
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
626
    # 处理输入2,即%539
S
SunAhong1993 已提交
627
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
628
    # 处理输入3,即%540
S
SunAhong1993 已提交
629
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

S
SunAhong1993 已提交
644
    graph.add_layer(
S
SunAhong1993 已提交
645
        kernel="paddle.nn.AvgPool3D",
S
SunAhong1993 已提交
646
        inputs=layer_inputs,
S
SunAhong1993 已提交
647
        outputs=layer_outputs,
S
SunAhong1993 已提交
648 649 650 651 652
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
fix  
SunAhong1993 已提交
653
def aten_avg_pool1d(mapper, graph, node):
S
SunAhong1993 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool1d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
677 678
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
679 680 681 682
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
683
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
684
    # 处理输入2,即%539
S
SunAhong1993 已提交
685
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
686
    # 处理输入3,即%540
S
SunAhong1993 已提交
687
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

    graph.add_layer(
S
SunAhong1993 已提交
703
        kernel="paddle.nn.AvgPool1D",
S
SunAhong1993 已提交
704
        inputs=layer_inputs,
S
SunAhong1993 已提交
705
        outputs=layer_outputs,
S
SunAhong1993 已提交
706
        scope_name=scope_name,
S
SunAhong1993 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        **layer_attrs)
    return current_inputs, current_outputs


def aten_batch_norm(mapper, graph, node):
    """ 构造BatchNorm的PaddleLayer。
    TorchScript示例:
        %input.81 : Tensor = aten::batch_norm(%input.80, %778, %779, %776, %777, %780,
                                              %exponential_average_factor.23, %766, %781)
        参数含义:
        %input.81 (Tensor): 输出,批处理后的结果。
        %input.80 (Tensor): 需要进行批处理的特征层。
        %778 (Tensor): weights。
        %779 (Tensor): bias。
        %776 (Tensor): 全局均值。
        %777 (Tensor): 全局方差。
        %780 (bool): 是否训练。
        %exponential_average_factor.23 (float): 用于计算均值和方差的比例。
        %766 (float): 为了数值稳定加在分母上的值。
        %781 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
728 729
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("batchnorm", mapper.nn_name2id)
S
SunAhong1993 已提交
730
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
731
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
732 733 734 735 736 737 738
    layer_inputs = {}
    layer_attrs = {}
    layer_attrs["is_test"] = True
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
739 740
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
741 742 743 744 745
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%778
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
746
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
747 748 749 750 751
    layer_attrs['num_channels'] = weights.shape[0]
    # 处理输入2,即%779
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
752
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
753
    else:
S
SunAhong1993 已提交
754
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
755 756
    # 处理输入3,即%776
    mean = mapper.pytorch_params[inputs_name[3]]
S
SunAhong1993 已提交
757
    mapper.paddle_params[op_name + "._mean"] = mean
S
SunAhong1993 已提交
758 759
    # 处理输入4,即%777
    var = mapper.pytorch_params[inputs_name[4]]
S
SunAhong1993 已提交
760
    mapper.paddle_params[op_name + "._variance"] = var
S
SunAhong1993 已提交
761 762 763 764 765 766 767 768 769
    # 处理输入6,即%exponential_average_factor.23
    layer_attrs["momentum"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%766
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "paddle.nn.BatchNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
770
        scope_name=scope_name,
S
SunAhong1993 已提交
771 772 773 774
        **layer_attrs)
    return current_inputs, current_outputs


W
WJJ1995 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
def aten_bitwise_not(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bitwise_not(%32)
        参数含义:
        %x.222 (Tensor): 输出,逻辑非运算后的结果。
        %32 (Tensor): 输入1。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%32
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.not",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


def aten_bitwise_xor(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bitwise_xor(%32, %8)
        参数含义:
        %x.222 (Tensor): 输出,逻辑或运算后的结果。
        %32 (Tensor): 输入1。
        %8 (Tensor): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%32
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%8
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.or",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


def aten_bitwise_and(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bitwise_and(%32, %8)
        参数含义:
        %x.222 (Tensor): 输出,逻辑与运算后的结果。
        %32 (Tensor): 输入1。
        %8 (Tensor): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%32
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%8
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.and",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
def aten_bmm(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bmm(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,矩阵相乘后的结果。
        %i.12 (list): 输入1。
        %7 (int): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
892 893
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
894 895
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
S
SunAhong1993 已提交
896 897
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
898 899 900 901
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
902 903 904 905 906
    graph.add_layer(
        "paddle.bmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
907 908 909
    return current_inputs, current_outputs


S
SunAhong1993 已提交
910 911 912 913 914 915 916 917 918
def aten_cat(mapper, graph, node):
    """ 构造连接Tensor的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::cat(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,连接后的结果。
        %i.12 (list): 需要连接的Tensor组成的list。
        %7 (int): 连接的轴。
    """
S
SunAhong1993 已提交
919
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
920 921 922 923 924 925 926 927
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
928 929
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
930
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
931 932 933 934 935 936 937
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
938
                            current_outputs, scope_name)
S
SunAhong1993 已提交
939 940 941
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
942
        "paddle.concat",
S
SunAhong1993 已提交
943 944
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
945
        scope_name=scope_name,
S
SunAhong1993 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959
        **layer_attrs)
    return current_inputs, current_outputs


def aten_chunk(mapper, graph, node):
    """构造分割Tensor的PaddleLayer。
    TorchScript示例:
        %724 : Tensor[] = aten::chunk(%input.170, %720, %719)
        参数含义:
        %724 (Tensor): 输出,分割后的结果。
        %input.170 (Tensor): 需要进行分割的Tensor。
        %720 (int): 分割的块数。
        %719 (int): 分割的维度。
    """
S
SunAhong1993 已提交
960
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
961 962 963 964 965 966 967 968
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.170
S
SunAhong1993 已提交
969 970
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
971
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
972 973 974 975 976 977 978
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%720
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
979
                            current_outputs, scope_name)
S
SunAhong1993 已提交
980 981 982 983
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%719
    if inputs_name[2] in mapper.attrs:
S
SunAhong1993 已提交
984
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
985 986
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
987 988
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
989 990
        current_inputs.append(inputs_name[2])
    graph.add_layer(
S
SunAhong1993 已提交
991
        "paddle.split",
S
SunAhong1993 已提交
992 993
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
994
        scope_name=scope_name,
S
SunAhong1993 已提交
995 996 997 998
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
def aten_clamp(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::clamp(%input.1, %46, %48, %49)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
        %48 (float/Tensor): 最大值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
1018 1019
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%48,代表dtype
    if inputs_name[2] in mapper.attrs:
        layer_attrs["max"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["max"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
def aten_clamp_min(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::clamp_min(%input.1, %46)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
1067 1068
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


W
wjj19950828 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
def aten_complex(mapper, graph, node):
    """
    TorchScript示例:
        %ret.2 : Tensor = aten::complex(%150, %156)
        参数含义:
        %ret.2 (Tensor): complex结果Tensor。
        %150 (Tensor): 实部输入Tensor。
        %156 (Tensor): 虚部输入Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%150
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["real"] = inputs_name[0]
    # 处理输入1,即%156
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["imag"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.complex",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


W
WJJ1995 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
def aten_copy(mapper, graph, node):
    """
    TorchScript Code:
        %107 : Tensor = aten::copy(%new_mem.1)
        Parameter meaning:
        %107 (Tensor): Output Tensor
        %new_mem.1 (Tensor): Input Tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # output list
    current_outputs = [output_name]
    # process Input Tensor
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)

    return current_inputs, current_outputs


S
SunAhong1993 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164
def aten___contains__(mapper, graph, node):
    """ 构造in的PaddleLayer。
    TorchScript示例:
        %51 : bool = aten::__contains__(%50, %name.1)
        参数含义:
        %51 (bool): 输出,第一个元素是否包含第二个元素。
        %50 (-): 需对比的输入1。
        %name.1 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1165
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1166 1167 1168 1169 1170 1171 1172
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%50
S
SunAhong1993 已提交
1173 1174
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1175 1176
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%name.1
S
SunAhong1993 已提交
1177 1178
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1179 1180 1181 1182
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1183 1184 1185 1186 1187
    graph.add_layer(
        "prim.contain",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    return current_inputs, current_outputs


def aten_constant_pad_nd(mapper, graph, node):
    """ 构造填充固定值的PaddleLayer。
    TorchScript示例:
        %58 : Tensor = aten::constant_pad_nd(%input1.24, %4876, %42)
        参数含义:
        %58 (Tensor): 输出,填充后的Tensor。
        %input1.24 (Tensor): 需要填充的Tensor。
        %4876 (list): 填充大小。
        %42 (-): 填充值。
    """
S
SunAhong1993 已提交
1201 1202
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad", mapper.nn_name2id)
S
SunAhong1993 已提交
1203
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1204
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1205 1206 1207 1208 1209 1210
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input1.24
S
SunAhong1993 已提交
1211 1212
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1213
    layer_inputs["input"] = inputs_name[0]
1214 1215 1216 1217 1218
    # 处理输入1,即%4876
    is_padding_tensor = False
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
W
WJJ1995 已提交
1219 1220
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
1221 1222
        layer_inputs["pad"] = inputs_name[1]
        is_padding_tensor = True
S
SunAhong1993 已提交
1223 1224 1225
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%42
S
SunAhong1993 已提交
1226
    layer_attrs["value"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    if not is_padding_tensor:
        graph.add_layer(
            "prim.shape",
            inputs={"input": inputs_name[0]},
            outputs=[inputs_name[0] + "_shape"],
            scope_name=scope_name)
        graph.add_layer(
            "prim.len",
            inputs={"input": inputs_name[0] + "_shape"},
            outputs=[inputs_name[0] + "_len"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1239 1240 1241 1242 1243 1244

    def add_pad_layers(kernel, dim):
        graph.add_layer(
            "prim.ne",
            inputs={"x": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
1245
            scope_name=scope_name,
S
SunAhong1993 已提交
1246 1247 1248
            y=dim)
        graph.add_layer(
            "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1249 1250
            outputs=[inputs_name[0] + "_if", output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
1251
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
1252
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
1253 1254 1255 1256
        block.add_layer(
            "prim.sub",
            inputs={"y": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_len0"],
S
SunAhong1993 已提交
1257
            scope_name=scope_name,
1258
            alpha=1.0,
S
SunAhong1993 已提交
1259 1260 1261 1262
            x=dim)
        block.add_layer(
            "prim.len2list",
            inputs={"len": inputs_name[0] + "_len0"},
S
SunAhong1993 已提交
1263 1264
            outputs=[inputs_name[0] + "_list"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1265
        block.add_layer(
S
SunAhong1993 已提交
1266
            "paddle.unsqueeze",
S
SunAhong1993 已提交
1267 1268
            inputs={"x": inputs_name[0],
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
1269 1270
            outputs=[inputs_name[0] + "_var"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1271 1272 1273
        block.add_layer(
            kernel,
            inputs={"input": inputs_name[0] + "_var"},
S
SunAhong1993 已提交
1274
            outputs=copy.deepcopy(layer_outputs),
S
SunAhong1993 已提交
1275
            scope_name=scope_name,
S
SunAhong1993 已提交
1276 1277
            **layer_attrs)
        block.add_layer(
S
SunAhong1993 已提交
1278
            "paddle.squeeze",
S
SunAhong1993 已提交
1279 1280
            inputs={"x": output_name,
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
1281 1282
            outputs=[output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
1283
        if_layer.add_block(block)
W
WJJ1995 已提交
1284
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
1285 1286
        layer_inputs["input"] = inputs_name[0]
        block.add_layer(
S
SunAhong1993 已提交
1287 1288 1289 1290 1291
            kernel,
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1292 1293 1294 1295
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[0]
        if_layer.inputs["input-1"] = inputs_name[0] + "_len"

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    if not is_padding_tensor:
        if len(layer_attrs["padding"]) == 2:
            layer_outputs[0] = layer_outputs[0].replace("pad", "pad1d")
            add_pad_layers("paddle.nn.Pad1D", 3)
        elif len(layer_attrs["padding"]) == 4:
            layer_outputs[0] = layer_outputs[0].replace("pad", "pad2d")
            add_pad_layers("paddle.nn.Pad2D", 4)
        elif len(layer_attrs["padding"]) == 6:
            layer_outputs[0] = layer_outputs[0].replace("pad", "pad3d")
            add_pad_layers("paddle.nn.Pad3D", 5)
        else:
            raise Exception("The lenght of padding list must be 2, 4 or 6!")
S
SunAhong1993 已提交
1308
    else:
1309 1310 1311 1312 1313 1314
        graph.add_layer(
            "custom_layer:Pad",
            inputs=layer_inputs,
            outputs=[output_name],
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    return current_inputs, current_outputs


def aten_contiguous(mapper, graph, node):
    """ 构造在内存中连续存储的PaddleLayer。
    TorchScript示例:
        %x.7 : Tensor = aten::contiguous(%4058, %4046)
        参数含义:
        %x.7 (Tensor): 输出,在内存中连续存储的Tensor。
        %4058 (Tensor): 原始Tensor。
        %4046 (int): 存储的形式。
    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
1328
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1329 1330 1331 1332 1333 1334 1335
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4058
S
SunAhong1993 已提交
1336 1337
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1338 1339 1340 1341
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1342 1343 1344 1345 1346
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
    return current_inputs, current_outputs


def aten_conv2d(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。
    TorchScript示例:
        %input.10 : Tensor = aten::conv2d(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
S
SunAhong1993 已提交
1361
        %30 (int): 空洞大小。
S
SunAhong1993 已提交
1362 1363
        %26 (int): 卷积的组数。
    """
S
SunAhong1993 已提交
1364 1365
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
S
SunAhong1993 已提交
1366
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1367
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1368 1369 1370 1371 1372 1373
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1374 1375
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1376 1377 1378 1379 1380
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
1381
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
1382 1383 1384 1385 1386 1387
    layer_attrs["out_channels"] = weights.shape[0]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1388
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[inputs_name[6]]

    graph.add_layer(
S
SunAhong1993 已提交
1404
        "paddle.nn.Conv2D",
S
SunAhong1993 已提交
1405 1406
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1407
        scope_name=scope_name,
S
SunAhong1993 已提交
1408 1409 1410 1411 1412 1413 1414
        **layer_attrs)
    return current_inputs, current_outputs


def aten__convolution(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。
    TorchScript示例:
S
SunAhong1993 已提交
1415
        %input.10 : Tensor = aten::_convolution(%input.1, %18, %10, %19, %20, %21, %13, %22, %12, %13, %13, %15)
S
SunAhong1993 已提交
1416 1417 1418
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
S
SunAhong1993 已提交
1419 1420 1421 1422
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
S
SunAhong1993 已提交
1423
        %21 (list): 空洞大小。
S
SunAhong1993 已提交
1424 1425 1426
        %13 (bool): 是否进行转置卷积。
        %22 (list): 输出形状上一侧额外添加的大小。
        %12 (int): 卷积的组数。
S
SunAhong1993 已提交
1427
    """
S
SunAhong1993 已提交
1428
    scope_name = mapper.normalize_scope_name(node)
W
WJJ1995 已提交
1429 1430 1431 1432
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    weights = mapper.pytorch_params[inputs_name[1]]
    if len(weights.shape) == 3:
        op_name = name_generator("conv1d", mapper.nn_name2id)
W
wjj19950828 已提交
1433
    elif len(weights.shape) == 4:
W
WJJ1995 已提交
1434
        op_name = name_generator("conv2d", mapper.nn_name2id)
W
wjj19950828 已提交
1435 1436
    else:
        op_name = name_generator("conv3d", mapper.nn_name2id)
S
SunAhong1993 已提交
1437
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1438
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1439 1440 1441 1442 1443
    layer_inputs = {}
    layer_attrs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1444 1445
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1446 1447 1448
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1449
    # 处理输入1,即%18
S
SunAhong1993 已提交
1450 1451
    mapper.paddle_params[op_name +
                         ".weight"] = weights  #np.swapaxes(weights, 0, 1)
S
SunAhong1993 已提交
1452 1453 1454 1455
    if mapper.attrs[inputs_name[6]]:
        layer_attrs["out_channels"] = weights.shape[1]
    else:
        layer_attrs["out_channels"] = weights.shape[0]
S
SunAhong1993 已提交
1456
    layer_attrs["kernel_size"] = weights.shape[2:]
S
SunAhong1993 已提交
1457
    # 处理输入2,即%10
S
SunAhong1993 已提交
1458 1459 1460
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1461
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1462 1463 1464 1465
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
1466
    # 处理输入3,即%19
S
SunAhong1993 已提交
1467
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
1468
    # 处理输入4,即%20
S
SunAhong1993 已提交
1469
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1470
    # 处理输入5,即%21
S
SunAhong1993 已提交
1471
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
1472 1473 1474 1475 1476 1477
    # 处理输入6,即%13
    if mapper.attrs[inputs_name[6]]:
        # 处理输入7,即%22
        layer_attrs["output_padding"] = mapper.attrs[inputs_name[7]]
    # 处理输入8,即%12
    layer_attrs["groups"] = mapper.attrs[inputs_name[8]]
S
SunAhong1993 已提交
1478
    if mapper.attrs[inputs_name[6]]:
S
SunAhong1993 已提交
1479 1480
        layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[
            inputs_name[8]]
S
SunAhong1993 已提交
1481
    else:
S
SunAhong1993 已提交
1482 1483
        layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[
            inputs_name[8]]
W
wjj19950828 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
    if len(weights.shape) == 3:
        if mapper.attrs[inputs_name[6]]:
            graph.add_layer(
                "paddle.nn.Conv1DTranspose",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
        else:
            graph.add_layer(
                "paddle.nn.Conv1D",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
    elif len(weights.shape) == 4:
W
WJJ1995 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        if mapper.attrs[inputs_name[6]]:
            graph.add_layer(
                "paddle.nn.Conv2DTranspose",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
        else:
            graph.add_layer(
                "paddle.nn.Conv2D",
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
S
SunAhong1993 已提交
1514
    else:
W
WJJ1995 已提交
1515 1516
        if mapper.attrs[inputs_name[6]]:
            graph.add_layer(
W
wjj19950828 已提交
1517
                "paddle.nn.Conv3DTranspose",
W
WJJ1995 已提交
1518 1519 1520 1521 1522 1523
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
        else:
            graph.add_layer(
W
wjj19950828 已提交
1524
                "paddle.nn.Conv3D",
W
WJJ1995 已提交
1525 1526 1527 1528
                inputs=layer_inputs,
                outputs=layer_outputs,
                scope_name=scope_name,
                **layer_attrs)
S
SunAhong1993 已提交
1529 1530 1531
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
def aten_conv_transpose2d(mapper, graph, node):
    """ 构造conv_transpose2d的PaddleLayer。
    TorchScript示例:
        %input.10 : Tensor = aten::conv_transpose2d(%input.1, %18, %10, %19, %20, %21, %13, %22)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
        %21 (int/tuple): 输出形状上一侧额外添加的大小。
        %13 (int): 二维卷积层的组数。
        %22 (int/tuple): 空洞大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1557 1558
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%18
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["out_channels"] = weights.shape[1]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%10
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[op_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%19
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%20
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%21
    layer_attrs["output_padding"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%13
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%22
    layer_attrs["dilation"] = mapper.attrs[inputs_name[7]]
S
SunAhong1993 已提交
1586
    layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[inputs_name[6]]
S
SunAhong1993 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595
    graph.add_layer(
        "paddle.nn.Conv2DTranspose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1596 1597 1598 1599 1600 1601 1602 1603
def aten_cos(mapper, graph, node):
    """ 构造数学计算cos的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::cos(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,cos之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
1604
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1605 1606 1607 1608 1609 1610 1611
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1612 1613
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1614 1615 1616 1617
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1618 1619 1620 1621 1622
    graph.add_layer(
        "paddle.cos",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
    return current_inputs, current_outputs


def aten_cumsum(mapper, graph, node):
    """ 构造与前一个元素累加的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::cumsum(%mask.1, %46, %48)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %mask.1 (Tensor): 输入,需要累加的Tensor。
        %46 (int): 累加的维度。
        %48 (int/None): Tensor的类型。
    """
S
SunAhong1993 已提交
1636
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1637 1638 1639 1640 1641 1642 1643 1644
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
1645 1646
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1647 1648 1649 1650 1651 1652 1653 1654
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
1655
                            current_outputs, scope_name)
S
SunAhong1993 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入1,即%48,代表dtype
    if mapper.attrs[inputs_name[2]] is None:
        layer_attrs["dtype"] = None
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.cumsum",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1668
        scope_name=scope_name,
S
SunAhong1993 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
        **layer_attrs)
    return current_inputs, current_outputs


def aten_detach(mapper, graph, node):
    """ 构造返回一个新的Tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置的PaddleLayer。
    TorchScript示例:
        %107 : Tensor = aten::detach(%new_mem.1)
        参数含义:
        %107 (Tensor): 输出,得到的Scalar。
        %new_mem.1 (Tensor): 输入。
    【注意】由于Paddle无此操作,所以此处制转换为赋值。
    """
S
SunAhong1993 已提交
1682
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1683 1684 1685 1686 1687 1688 1689
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
1690 1691
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1692 1693 1694
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1695 1696 1697 1698 1699
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

    return current_inputs, current_outputs


def aten_dict(mapper, graph, node):
    """ 构造初始化dict的PaddleLayer。
    TorchScript示例:
        %features.1 : Dict(str, Tensor) = aten::dict()
        参数含义:
        %features.1: 输出,初始化的dict。
    """
S
SunAhong1993 已提交
1711
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1712 1713 1714 1715 1716 1717 1718
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    current_inputs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]

S
SunAhong1993 已提交
1719 1720 1721 1722 1723
    graph.add_layer(
        "prim.dict",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
    return current_inputs, current_outputs


def aten_dim(mapper, graph, node):
    """ 构造获取维度的PaddleLayer。
    TorchScript示例:
        %106 : int = aten::dim(%101)
        参数含义:
        %106 (int): 输出,Tensor的维度。
        %101 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
1735
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1736 1737 1738 1739 1740 1741
    output_name = mapper._get_outputs_name(node)[0]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1742 1743
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1744
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1745 1746 1747 1748
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1749 1750 1751 1752
        "prim.shape",
        inputs=layer_inputs,
        outputs=[output_name],
        scope_name=scope_name)
S
SunAhong1993 已提交
1753
    graph.add_layer(
S
SunAhong1993 已提交
1754 1755 1756 1757
        "prim.len",
        inputs={"input": output_name},
        outputs=[output_name],
        scope_name=scope_name)
S
SunAhong1993 已提交
1758 1759 1760 1761 1762 1763
    return current_inputs, current_outputs


def aten_div(mapper, graph, node):
    """ 构造除法的PaddleLayer。
    TorchScript示例:
W
WJJ1995 已提交
1764
        %bx_bw0.3 : Tensor = aten::div(%bx_bw.3, %2678)
S
SunAhong1993 已提交
1765 1766 1767 1768 1769
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
S
SunAhong1993 已提交
1770
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1771 1772 1773 1774 1775 1776 1777
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1778 1779
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1780 1781
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1782 1783
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1784 1785 1786 1787
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1788 1789 1790 1791 1792
    graph.add_layer(
        "prim.div",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
    return current_inputs, current_outputs


def aten_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
1805 1806
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
S
SunAhong1993 已提交
1807
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1808
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1809 1810 1811 1812 1813
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1814 1815
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1816 1817 1818 1819 1820
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1821 1822 1823 1824 1825
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
    return current_inputs, current_outputs


def aten_embedding(mapper, graph, node):
    """ 构造embedding的PaddleLayer。
    TorchScript示例:
        %inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46)
        参数含义:
        %inputs_embeds.1 (Tensor): 输出,embedding后的结果。
        %57 (Tensor): weights。
        %input_ids.1 (Tensor): 需要进行embedding的特征层。
        %45 (int): padding_idx。
        %46 (bool): scale_grad_by_freq。
        %46 (bool): sparse。
    """
S
SunAhong1993 已提交
1841 1842
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("embedding", mapper.nn_name2id)
S
SunAhong1993 已提交
1843
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1844
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1845 1846 1847 1848 1849 1850 1851
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%57
    weights = mapper.pytorch_params[inputs_name[0]]
S
SunAhong1993 已提交
1852 1853 1854
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["num_embeddings"] = weights.shape[0]
    layer_attrs["embedding_dim"] = weights.shape[1]
S
SunAhong1993 已提交
1855
    # 处理输入1,即%input_ids.1
S
SunAhong1993 已提交
1856 1857
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866
    layer_inputs["input"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%45
    if mapper.attrs[inputs_name[2]] == -1:
        layer_attrs["padding_idx"] = None
    else:
        layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]]
    # 处理输入4,即%46
S
SunAhong1993 已提交
1867
    layer_attrs["sparse"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1868 1869

    graph.add_layer(
S
SunAhong1993 已提交
1870
        "paddle.nn.Embedding",
S
SunAhong1993 已提交
1871 1872
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1873
        scope_name=scope_name,
S
SunAhong1993 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
        **layer_attrs)
    return current_inputs, current_outputs


def aten_eq(mapper, graph, node):
    """ 构造判断数值是否相等的PaddleLayer。
    TorchScript示例:
        %125 : bool = aten::eq(%124, %123)
        参数含义:
        %125 (bool): 对比后结果。
        %124 (-): 需对比的输入1。
        %123 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1887
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1888 1889 1890 1891 1892 1893 1894
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1895 1896
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1897 1898 1899 1900
    layer_inputs["x"] = inputs_name[0]
    x_value = list(node.inputs())[0]
    x_type = x_value.type()
    # 处理输入1,即%123
S
SunAhong1993 已提交
1901 1902
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1903 1904 1905 1906 1907
    layer_inputs["y"] = inputs_name[1]
    y_value = list(node.inputs())[1]
    y_type = y_value.type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1908 1909 1910 1911 1912
    graph.add_layer(
        "prim.eq",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1913 1914 1915
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
def aten_erf(mapper, graph, node):
    """ 构造逐元素计算 Erf 激活函数的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::erf(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,erf之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行erf的Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1932 1933
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1934 1935 1936 1937
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1938 1939 1940 1941 1942
    graph.add_layer(
        "paddle.erf",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1943 1944 1945
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1946 1947 1948 1949 1950 1951 1952 1953
def aten_exp(mapper, graph, node):
    """ 构造以自然数e为底指数运算的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,运算后的结果。
        %54 (Tensor): 需要指数运算的Tensor。
    """
S
SunAhong1993 已提交
1954
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1955 1956 1957 1958 1959 1960 1961
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
1962 1963
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1964 1965 1966 1967 1968
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1969 1970 1971 1972
        "paddle.exp",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
    return current_inputs, current_outputs


def aten_expand(mapper, graph, node):
    """ 构造对某维度进行广播的PaddleLayer。
    TorchScript示例:
        %1889 : Tensor = aten::expand(%1875, %1888, %1567)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (int): 广播的维度。
        %1567 (bool): 未使用。
    """
S
SunAhong1993 已提交
1986
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1987 1988 1989
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
1990
    layer_attrs = {}
S
SunAhong1993 已提交
1991 1992 1993 1994
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1995 1996
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1997
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
2007
    graph.add_layer(
S
SunAhong1993 已提交
2008 2009 2010
        "paddle.expand",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2011
        scope_name=scope_name,
S
SunAhong1993 已提交
2012
        **layer_attrs)
S
SunAhong1993 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
    return current_inputs, current_outputs


def aten_expand_as(mapper, graph, node):
    """ 构造广播的PaddleLayer。
    TorchScript示例:
        %1889 : Tensor = aten::expand_as(%1875, %1888)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (Tensor): 广播的示例。
    """
S
SunAhong1993 已提交
2025
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2026 2027 2028 2029 2030 2031 2032
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
2033 2034
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2035 2036
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1888
S
SunAhong1993 已提交
2037 2038
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2039
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
2040 2041
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2042

S
SunAhong1993 已提交
2043 2044 2045
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
2046 2047
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2048 2049 2050 2051
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
2052
        scope_name=scope_name,
S
SunAhong1993 已提交
2053
        y=paddle_dtypes.t_bool)
S
SunAhong1993 已提交
2054 2055
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
W
WJJ1995 已提交
2056
        outputs=[inputs_name[0] + "_if1", inputs_name[0]],
S
SunAhong1993 已提交
2057
        scope_name=scope_name)
S
SunAhong1993 已提交
2058
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
2059
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2060 2061 2062
    block.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
2063 2064
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2065
    block.add_layer(
S
SunAhong1993 已提交
2066
        "paddle.cast",
S
SunAhong1993 已提交
2067 2068
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
S
SunAhong1993 已提交
2069
        scope_name=scope_name,
S
SunAhong1993 已提交
2070 2071
        dtype=inputs_name[1] + "_type")
    if_layer.add_block(block)
W
WJJ1995 已提交
2072
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2073 2074 2075 2076
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.inputs["input-1"] = inputs_name[1]
    graph.add_layer(
S
SunAhong1993 已提交
2077 2078 2079 2080
        "paddle.expand_as",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2081 2082
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
W
WJJ1995 已提交
2083
        outputs=[inputs_name[0] + "_if2", output_name],
S
SunAhong1993 已提交
2084
        scope_name=scope_name)
S
SunAhong1993 已提交
2085
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
2086
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2087
    block.add_layer(
S
SunAhong1993 已提交
2088
        "paddle.cast",
S
SunAhong1993 已提交
2089
        inputs={"x": layer_outputs[0]},
S
SunAhong1993 已提交
2090 2091
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name,
S
SunAhong1993 已提交
2092 2093
        dtype=string("bool"))
    if_layer.add_block(block)
W
WJJ1995 已提交
2094
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2095 2096
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
S
SunAhong1993 已提交
2097
    # TODO(syf): check expand_as
S
SunAhong1993 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
    #     # 处理输入0,即%1875
    #     mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    #     layer_inputs["x"] = inputs_name[0]
    #     # 处理输入1,即%1888
    #     mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
    #     layer_inputs["y"] = inputs_name[1]
    #     # 获取当前节点输入的list
    #     current_inputs = list(layer_inputs.values())
    #     graph.add_layer(
    #         "paddle.expand_as", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
    return current_inputs, current_outputs


def aten_eye(mapper, graph, node):
    """ 构造批次二维矩阵的PaddleLayer。
    TorchScript示例:
        %68 : Tensor = aten::eye(%49, %_50, %_51, %15, %9, %67, %7)
        参数含义:
        %68 (Tensor): 输出,构造的矩阵。
        %49 (int): 行数。
        %_50 (int): 列数,非必须。
        %_51 (Tensor): 非必须。
        %9 (int): layout。
        %67 (str): 设备。
        %7 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
2124
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2125 2126 2127 2128 2129 2130 2131 2132
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%49
S
SunAhong1993 已提交
2133 2134
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2135 2136 2137 2138
    layer_inputs["num_rows"] = inputs_name[0]
    if len(inputs_name) > 5:
        # 处理输入1,即%_50
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2139
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2140 2141 2142 2143 2144 2145 2146
        layer_inputs["num_columns"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理倒数第4个输入,即%15
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[-4]]]

    graph.add_layer(
S
SunAhong1993 已提交
2147
        "paddle.eye",
S
SunAhong1993 已提交
2148 2149
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2150
        scope_name=scope_name,
S
SunAhong1993 已提交
2151 2152 2153
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
2154

S
SunAhong1993 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
def aten_feature_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::feature_dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
2173 2174
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2175 2176 2177 2178 2179
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2180 2181 2182 2183 2184
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
2185 2186
    return current_inputs, current_outputs

S
SunAhong1993 已提交
2187

W
wjj19950828 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
def aten_fft_rfftn(mapper, graph, node):
    """
    TorchScript示例:
        %x_gap.15 : Tensor =  aten::fft_rfftn(%x.58, %2166, %1450, %1453)
        参数含义:
        %x_gap.15 (Tensor): Output Tensor。
        %x.58 (Tensor): Input Tensor。
        %2166:Sequence Length
        %1450:axes
        %1453:norm mode
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if inputs_name[1] in mapper.attrs:
        layer_attrs["s"] = mapper.attrs[inputs_name[1]]
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axes"] = mapper.attrs[inputs_name[2]]
    if inputs_name[3] in mapper.attrs:
        layer_attrs["norm"] = mapper.attrs[inputs_name[3]]
    graph.add_layer(
        "paddle.fft.rfftn",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_fft_irfftn(mapper, graph, node):
    """
    TorchScript示例:
        %x_gap.15 : Tensor =  aten::fft_irfftn(%x.58, %2166, %1450, %1453)
        参数含义:
        %x_gap.15 (Tensor): Output Tensor。
        %x.58 (Tensor): Input Tensor。
        %2166:Sequence Length
        %1450:axes
        %1453:norm mode
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if inputs_name[1] in mapper.attrs:
        layer_attrs["s"] = mapper.attrs[inputs_name[1]]
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axes"] = mapper.attrs[inputs_name[2]]
    if inputs_name[3] in mapper.attrs:
        layer_attrs["norm"] = mapper.attrs[inputs_name[3]]
    graph.add_layer(
        "paddle.fft.irfftn",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
def aten_flatten(mapper, graph, node):
    """ 构造flatten的PaddleLayer。
    TorchScript示例:
        %x.8 : Tensor = aten::flatten(%x, %4, %2)
        参数含义:
        %x.8 (Tensor): flatten后结果。
        %x (Tensor): 输入Tensor。
        %4 (int): flatten的开始维度。
        %2 (int): flatten的结束维度。
    """
S
SunAhong1993 已提交
2278
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2279 2280 2281
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
2282
    layer_attrs = {}
S
SunAhong1993 已提交
2283 2284 2285 2286
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x
S
SunAhong1993 已提交
2287 2288
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2289 2290 2291 2292
    # 处理输入1,即%4
    layer_attrs["start_axis"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%20
    layer_attrs["stop_axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
2293 2294 2295 2296 2297
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2298
        "paddle.flatten",
S
SunAhong1993 已提交
2299 2300
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2301 2302
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
    return current_inputs, current_outputs


def aten_Float(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。
    TorchScript示例:
        %3992 : float = aten::Float(%3991)
        参数含义:
        %3992 (int): 向上取整后的整数。
        %3991 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
2314
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2315 2316 2317 2318 2319 2320 2321
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3991
S
SunAhong1993 已提交
2322 2323
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2324 2325 2326 2327
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2328 2329 2330 2331 2332
    graph.add_layer(
        "prim.float",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
    return current_inputs, current_outputs


def aten_floor(mapper, graph, node):
    """ 构造向上取整的PaddleLayer。
    TorchScript示例:
        %3978 : int = aten::floor(%scale.18)
        参数含义:
        %3978 (int): 向上取整后的整数。
        %scale.18 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
2344
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2345 2346 2347 2348 2349 2350 2351
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%scale.18
S
SunAhong1993 已提交
2352 2353
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2354
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2355 2356
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2357
    graph.add_layer(
S
SunAhong1993 已提交
2358
        "prim.type", {'input': inputs_name[0]},
S
SunAhong1993 已提交
2359 2360 2361
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
S
SunAhong1993 已提交
2362
        "prim.str", {'input': inputs_name[0] + "_type"},
S
SunAhong1993 已提交
2363 2364 2365
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
S
SunAhong1993 已提交
2366 2367
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
S
SunAhong1993 已提交
2368 2369
        outputs=[inputs_name[0] + "_cond"],
        scope_name=scope_name,
S
SunAhong1993 已提交
2370
        y=paddle_dtypes.t_bool)
S
SunAhong1993 已提交
2371
    graph.add_layer(
S
SunAhong1993 已提交
2372
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
2373 2374 2375
        outputs=[inputs_name[0] + "_if"],
        scope_name=scope_name)
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
2376
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2377 2378 2379 2380 2381
    block.add_layer(
        "paddle.floor",
        inputs=copy.deepcopy(layer_inputs),
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name)
S
SunAhong1993 已提交
2382
    if_layer.add_block(block)
W
WJJ1995 已提交
2383
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
2384 2385 2386 2387 2388
    block.add_layer(
        "prim.floor",
        inputs=copy.deepcopy(layer_inputs),
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name)
S
SunAhong1993 已提交
2389 2390 2391
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.outputs.append(output_name)
S
SunAhong1993 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
    return current_inputs, current_outputs


def aten_floordiv(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。
    TorchScript示例:
        %channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
2404
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2405 2406 2407 2408 2409 2410 2411
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
2412 2413
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2414 2415
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
2416 2417
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2418 2419 2420 2421
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2422 2423 2424 2425 2426
    graph.add_layer(
        "prim.floordiv",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
    return current_inputs, current_outputs


def aten_floor_divide(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。
    TorchScript示例:
        %channels_per_group.2 : int = aten::floor_divide(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
2439
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2440 2441 2442 2443 2444 2445 2446
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
2447 2448
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2449 2450
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
2451 2452
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2453 2454 2455 2456
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2457 2458 2459 2460 2461
    graph.add_layer(
        "prim.floordiv",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2462 2463 2464
    return current_inputs, current_outputs


2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
def aten_format(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。
    TorchScript示例:
        %628 : str = aten::format(%8, %627)
        参数含义:
        %628 (str): 输出,为一个字符串
        %8 (str): 输入字符串
        %627 (-): format后的参数
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入
    for i in range(len(inputs_node)):
        mapper._check_input(graph, inputs_node[i], inputs_name[i],
                            current_outputs, scope_name)
        layer_inputs["input" + str(i)] = inputs_name[i]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.format",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


W
wjj19950828 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
def aten_full(mapper, graph, node):
    """
    TorchScript Code:
        %159 : Tensor = aten::full(%775, %50, %49, %56, %48, %53)
        Parameter meaning:
        %159 (Tensor): Output Tensor
        %775 (Tensor): size
        %50 (int/float/bool): fill_value
        %49 (int): dtype
        %56 (int): layout
        %48 (int): device
        %53 (bool): requires_grad
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # output list
    current_outputs = [output_name]
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["shape"] = inputs_name[0]
    # input list
    current_inputs = list(layer_inputs.values())

    if inputs_name[1] in mapper.attrs:
        layer_attrs["fill_value"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["fill_value"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # dtype
    if mapper.attrs[inputs_name[2]] is not None:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.full",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
def aten_full_like(mapper, graph, node):
    """ 构造创建一个与输入具有相同的形状并且数据类型固定的Tensor的PaddleLayer。
    TorchScript示例:
        %159 : Tensor = aten::full_like(%val_if_large.3, %51, %50, %62, %53, %65, %66)
        参数含义:
        %159 (Tensor): 输出,全为固定值的Tensor。
        %val_if_large.3 (Tensor): 类似形状的Tensor。
        %51 (int/float/bool): 填充值。
        %50 (int): dtype。
        %62 (int): layout。
        %53 (int): device。
        %65 (bool): 是否计算梯度。
        %66 (int): 内存形式。
    """
S
SunAhong1993 已提交
2558
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2559 2560 2561 2562 2563 2564 2565 2566
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%val_if_large.3
S
SunAhong1993 已提交
2567 2568
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2569 2570 2571 2572 2573 2574 2575 2576
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["fill_value"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2577
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586
        layer_inputs["fill_value"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%50,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.full_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2587
        scope_name=scope_name,
S
SunAhong1993 已提交
2588 2589 2590 2591
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
def aten_gather(mapper, graph, node):
    """ 构造gather激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::gather(%input.5, %18, %19, %20, %21)
        参数含义:
        %result.3 (Tensor): 输出,gather后的结果。
        %result.5 (Tensor): 需要gather的Tensor。
        %18 (int): 需要gather的维度。
        %19 (Tensor): 需要gather的索引。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gather", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2612 2613
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2614 2615 2616 2617
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%18
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%19
S
SunAhong1993 已提交
2618 2619
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2620 2621 2622
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2623

S
SunAhong1993 已提交
2624
    graph.add_layer(
S
SunAhong1993 已提交
2625 2626 2627
        "custom_layer:Gather",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2628 2629 2630 2631 2632
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641
def aten_gelu(mapper, graph, node):
    """ 构造GeLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::gelu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,GELU后的结果。
        %result.5 (Tensor): 需要GELU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2642 2643
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gelu", mapper.nn_name2id)
S
SunAhong1993 已提交
2644
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2645
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2646 2647 2648 2649 2650
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2651 2652
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2653 2654 2655 2656 2657
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2658 2659 2660 2661
        "paddle.nn.GELU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
    return current_inputs, current_outputs


def aten___getitem__(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。
    TorchScript示例:
        %v.1 : int = aten::__getitem__(%72, %88)
        参数含义:
        %v.1 (-): 输出,list中的元素。
        %72 (list): 需要获取元素的list。
        %88 (int): 索引。
    """
S
SunAhong1993 已提交
2674
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2675 2676 2677 2678 2679 2680 2681
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
2682 2683
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2684 2685
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即%88
S
SunAhong1993 已提交
2686 2687
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2688 2689 2690 2691
    layer_inputs["index"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2692 2693 2694 2695 2696
    graph.add_layer(
        "prim.getitem",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
    return current_inputs, current_outputs


def aten_gt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %83 : bool = aten::gt(%82, %78)
        参数含义:
        %83 (bool): 输出,第一个元素是否大于第二个元素。
        %82 (-): 需对比的输入1。
        %78 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2709
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2710 2711 2712 2713 2714 2715 2716
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%82
S
SunAhong1993 已提交
2717 2718
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2719 2720
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%78
S
SunAhong1993 已提交
2721 2722
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2723 2724 2725 2726
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2727 2728 2729 2730 2731
    graph.add_layer(
        "prim.gt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2732 2733 2734
    return current_inputs, current_outputs


W
WJJ1995 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
def aten_group_norm(mapper, graph, node):
    """
    TorchScript Code:
        %input.81 : Tensor = aten::group_norm(%input.2, %25, %60, %59, %26, %30)
        Parameter meaning:
        %input.81 (Tensor): Output Tensor
        %input.2 (Tensor): Input Tensor
        %25 (Tensor): num_groups
        %60 (Tensor): weight
        %59 (Tensor): bias
        %26 (Tensor): eps
        %30 (bool): enabled cudnn
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("groupnorm", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # output list
    current_outputs = [output_name]
    # process Input Tensor
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    # input list
    current_inputs = list(layer_inputs.values())
    # process num_groups
    layer_attrs['num_groups'] = mapper.attrs[inputs_name[1]]
    # process weight
    weights = mapper.pytorch_params[inputs_name[2]]
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs['num_channels'] = weights.shape[0]
    # process bias
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[3]]
        if bias is not None:
            mapper.paddle_params[op_name + ".bias"] = bias
    else:
        mapper.paddle_params[op_name + ".bias"] = False
    # process eps
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
        "paddle.nn.GroupNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
def aten_gru(mapper, graph, node):
    """ 构造门控循环单元网络(GRU)的PaddleLayer。
    TorchScript示例:
        %21, %22 = aten::gru(%input, %hx, %20, %11, %10, %9, %11, %8, %11)
        参数含义:
        %21 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %22 (Tensor): 输出,最终状态。
        %input (Tensor): 网络输入。
        %hx (Tensor): 网络的初始状态。
        %20 (list): 所有权重组合成的list。
        %11 (bool): 是否使用bias。
        %10 (int): 网络层数。
        %9 (float): dropout概率。
        %11 (bool): 是否为训练阶段。
        %8 (bool): 是否使用双向LSTM。
        %11 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gru", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
S
SunAhong1993 已提交
2816 2817
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2818 2819
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
S
SunAhong1993 已提交
2820 2821
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2822 2823 2824 2825
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
S
SunAhong1993 已提交
2826 2827
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2828 2829 2830 2831 2832
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
S
SunAhong1993 已提交
2833 2834 2835 2836
            layer_attrs["hidden_size"] = int(
                mapper.paddle_params[param_name].shape[0] / 3)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name]
                                            .shape[1])
S
add gru  
SunAhong1993 已提交
2837 2838
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
S
SunAhong1993 已提交
2839 2840 2841 2842
            mapper.paddle_params["{}.weight_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name,
                                                               part_name))
S
add gru  
SunAhong1993 已提交
2843 2844
        else:
            part_name = param_name.split("_bias_")[-1]
S
SunAhong1993 已提交
2845 2846
            mapper.paddle_params["{}.bias_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
S
add gru  
SunAhong1993 已提交
2847
        mapper.paddle_params.pop(param_name)
S
SunAhong1993 已提交
2848

S
add gru  
SunAhong1993 已提交
2849 2850 2851 2852 2853
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
S
SunAhong1993 已提交
2854 2855 2856
            bias_shape = mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype(
                "float32")
S
add gru  
SunAhong1993 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.GRU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


2878
def aten_hardtanh(mapper, graph, node):
S
SunAhong1993 已提交
2879 2880
    """ 构造hardtanh激活的PaddleLayer。
    TorchScript示例:
2881
        %result.9 : Tensor = aten::hardtanh(%input.20, %67, %66)
S
SunAhong1993 已提交
2882 2883 2884 2885 2886 2887
        参数含义:
        %result.9 (Tensor): 输出,hardtanh激活后的Tensor。
        %input.20 (Tensor): 需要hardtanh激活的Tensor。
        %67 (float): hardtanh激活的最小阈值。
        %66 (float): hardtanh激活的最大阈值。
    """
S
SunAhong1993 已提交
2888 2889
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardtanh", mapper.nn_name2id)
S
SunAhong1993 已提交
2890
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2891
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2892 2893 2894 2895 2896 2897
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.20
S
SunAhong1993 已提交
2898 2899
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2900 2901 2902 2903 2904 2905 2906 2907
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%67
    layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%66
    layer_attrs["max"] = mapper.attrs[inputs_name[2]]

S
SunAhong1993 已提交
2908
    if layer_attrs["min"] == 0 and layer_attrs["max"] == 6:
S
SunAhong1993 已提交
2909
        graph.add_layer(
S
SunAhong1993 已提交
2910 2911 2912 2913
            "paddle.nn.ReLU6",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
2914 2915 2916 2917 2918 2919 2920
    else:
        graph.add_layer(
            'paddle.nn.Hardtanh',
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
2921 2922 2923
    return current_inputs, current_outputs


W
wjj19950828 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
def aten_hardsigmoid(mapper, graph, node):
    """
    TorchScript Code:
        %55 : Tensor = aten::hardsigmoid(%54)
        Parameter meaning:
        %55 (Tensor): output
        %54 (Tensor): input tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardsigmoid", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]

    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Hardsigmoid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


def aten_hardswish(mapper, graph, node):
    """
    TorchScript Code:
        %55 : Tensor = aten::hardswish(%54)
        Parameter meaning:
        %55 (Tensor): output
        %54 (Tensor): input tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardswish", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]

    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Hardswish",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2986
def aten_index(mapper, graph, node):
W
WJJ1995 已提交
2987 2988
    """
    TorchScript Code:
S
SunAhong1993 已提交
2989
        %1681 : Float = aten::index(%1653, %1680)
W
WJJ1995 已提交
2990 2991 2992 2993
        Parameter meaning:
        %1681 (Tensor): Output Tensor
        %1653 (Tensor): Input Tensor
        %1680 (int): Index
S
SunAhong1993 已提交
2994 2995 2996 2997 2998 2999
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
W
WJJ1995 已提交
3000
    # output list
S
SunAhong1993 已提交
3001
    current_outputs = [output_name]
W
WJJ1995 已提交
3002
    # process Input Tensor
S
SunAhong1993 已提交
3003 3004 3005
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
W
WJJ1995 已提交
3006
    # process Index
S
SunAhong1993 已提交
3007 3008 3009
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["index"] = inputs_name[1]
W
WJJ1995 已提交
3010

S
SunAhong1993 已提交
3011 3012 3013 3014
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.getitem",
W
WJJ1995 已提交
3015
        inputs={"list": layer_inputs["x"]},
S
SunAhong1993 已提交
3016 3017
        outputs=layer_outputs,
        scope_name=scope_name,
W
WJJ1995 已提交
3018
        index=layer_inputs["index"])
S
SunAhong1993 已提交
3019
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3020

S
SunAhong1993 已提交
3021

W
wjj19950828 已提交
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
def aten_imag(mapper, graph, node):
    """ 构造获取绝对值的PaddleLayer。
    TorchScript示例:
        %n0.3 : Tensor = aten::imag(%1)
        参数含义:
        %1 (Tensor): Complex Tensor。
        %n0.3 (Tensor): 返回虚部 Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.imag",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3052 3053
def aten_index_select(mapper, graph, node):
    """ 构造选择元素的PaddleLayer。
S
SunAhong1993 已提交
3054 3055 3056 3057 3058 3059 3060 3061
    TorchScript示例:
        %bd.3 : Tensor = aten::index_select(%x2.3, %320, %371)
        参数含义:
        %bd.3 (Tensor): 输出,选择后的Tensor。
        %x2.3 (Tensor): 需要选择的Tensor。
        %320 (int): 维度。
        %371 (Tensor): 选择的索引。
    """
S
SunAhong1993 已提交
3062
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3063 3064 3065 3066 3067 3068 3069 3070
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x2.3
S
SunAhong1993 已提交
3071 3072
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3073 3074 3075 3076 3077 3078
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%320
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3079
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3080 3081
        layer_inputs["axis"] = inputs_name[1]
    # 处理输入2,即%371
S
SunAhong1993 已提交
3082 3083
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3084 3085 3086 3087 3088 3089 3090
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.index_select",
        inputs=layer_inputs,
3091
        outputs=layer_outputs,
S
SunAhong1993 已提交
3092
        scope_name=scope_name,
S
SunAhong1993 已提交
3093 3094 3095 3096
        **layer_attrs)
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
def aten_instance_norm(mapper, graph, node):
    """构造InstanceNorm的PaddleLayer
    TorchScript示例:
        %res.7 : Tensor = aten::instance_norm(%res.5, %88, %85, %84, %83, %87, %91, %92, %87)
        参数含义:
        %res.7 (Tensor): 输出,InstanceNorm的结果。
        %res.5 (Tensor): 需要进行InstanceNorm的特征层。
        %88 (Tensor): weights。
        %85 (Tensor): bias。
        %84 (Tensor): 全局均值。
        %83 (Tensor): 全局方差。
        %87 (bool): 是否使用输入的统计。
        %91 (float): momentum。
        %92 (float): eps。
        %87 (bool): 是否启用cudnn。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("instance_norm", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
3123 3124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
3125 3126 3127 3128 3129 3130
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%88
    if inputs_name[1] in mapper.pytorch_params:
        weights = mapper.pytorch_params[inputs_name[1]]
3131
        mapper.paddle_params[op_name + ".scale"] = weights
S
add gru  
SunAhong1993 已提交
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
        layer_attrs['num_features'] = weights.shape[0]
    # 处理输入2,即%85
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        mapper.paddle_params[op_name + ".bias"] = bias
    # 处理输入3,即%84
    if inputs_name[3] in mapper.pytorch_params:
        mean = mapper.pytorch_params[inputs_name[3]]
        mapper.paddle_params[op_name + "._mean"] = mean
    # 处理输入4,即%83
    if inputs_name[4] in mapper.pytorch_params:
        var = mapper.pytorch_params[inputs_name[4]]
        mapper.paddle_params[op_name + "._variance"] = var
    # 处理输入6,即%91
    layer_attrs["momentum"] = 1 - mapper.attrs[inputs_name[6]]
    # 处理输入7,即%92
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "custom_layer:InstanceNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3159 3160 3161 3162 3163 3164 3165 3166
def aten_Int(mapper, graph, node):
    """ 构造强转为int的PaddleLayer。
    TorchScript示例:
        %1739 : int = aten::Int(%1738)
        参数含义:
        %1739 (int): 输出,int型数据。
        %1738 (-): 需要强转的数据。
    """
S
SunAhong1993 已提交
3167
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3168 3169 3170 3171 3172 3173 3174
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1738
S
SunAhong1993 已提交
3175 3176
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3177 3178 3179 3180
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3181 3182 3183 3184 3185
    graph.add_layer(
        "prim.int",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
    return current_inputs, current_outputs


def aten___is__(mapper, graph, node):
    """ 构造is not的PaddleLayer。
    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3198
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3199 3200 3201 3202 3203 3204 3205
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
3206 3207
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3208 3209
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
3210 3211
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3212 3213 3214 3215
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3216 3217 3218 3219 3220
    graph.add_layer(
        "prim.is",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
    return current_inputs, current_outputs


def aten___isnot__(mapper, graph, node):
    """ 构造is not的PaddleLayer。
    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3233
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3234 3235 3236 3237 3238 3239 3240
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
3241 3242
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3243 3244
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
3245 3246
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3247 3248 3249 3250
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3251 3252 3253 3254 3255
    graph.add_layer(
        "prim.isnot",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
    return current_inputs, current_outputs


def aten_layer_norm(mapper, graph, node):
    """ 构造层归一化的PaddleLayer。
    TorchScript示例:
        %input0.4 : Tensor = aten::layer_norm(%input.6, %1181, %174, %173, %70, %71)
        参数含义:
        %input0.4 (Tensor): 输出,层归一化后的结果。
        %input.6 (Tensor): 需要进行层归一化的特征层。
        %1181 (list/int/tuple): 需规范化的shape。
        %174 (Tensor): weights。
        %173 (Tensor): bias。
        %70 (float): 指明在计算过程中是否添加较小的值到方差中以防止除零。
        %71 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
3272 3273
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("layernorm", mapper.nn_name2id)
S
SunAhong1993 已提交
3274
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3275
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3276 3277 3278 3279 3280 3281
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.6
S
SunAhong1993 已提交
3282 3283
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3284 3285 3286 3287 3288 3289 3290
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1181
    layer_attrs["normalized_shape"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%174
    weights = mapper.pytorch_params[inputs_name[2]]
S
SunAhong1993 已提交
3291
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
3292 3293 3294 3295
    # 处理输入3,即%173
    if inputs_name[3] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[3]]
        if bias is not None:
S
SunAhong1993 已提交
3296
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
3297
    else:
S
SunAhong1993 已提交
3298
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
3299 3300 3301 3302 3303 3304 3305
    # 处理输入4,即%70
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
        "paddle.nn.LayerNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3306
        scope_name=scope_name,
S
SunAhong1993 已提交
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
        **layer_attrs)
    return current_inputs, current_outputs


def aten_le(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %80 : bool = aten::le(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于等于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3320
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3321 3322 3323 3324 3325 3326 3327
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
3328 3329
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3330 3331
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
3332 3333
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3334 3335 3336 3337
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3338 3339 3340 3341 3342
    graph.add_layer(
        "prim.le",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3343 3344 3345
    return current_inputs, current_outputs


3346 3347 3348 3349 3350 3351 3352
def aten_leaky_relu(mapper, graph, node):
    """ 构造leaky relu激活的PaddleLayer。
    TorchScript示例:
        %input.117 : Tensor = aten::leaky_relu(%input.114, %1570)
        参数含义:
        %input.117 (Tensor): 输出,leaky relu后的结果。
        %input.114 (Tensor): 需要leaky relu的Tensor。
S
SunAhong1993 已提交
3353 3354
        %1570 (float): 输入中的元素小于0时的斜率。
    """
S
SunAhong1993 已提交
3355 3356
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("leakly_relu", mapper.nn_name2id)
S
SunAhong1993 已提交
3357
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3358
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3359 3360 3361 3362 3363 3364
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
3365 3366
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1570
    layer_attrs["negative_slope"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.LeakyReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3377
        scope_name=scope_name,
S
SunAhong1993 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
        **layer_attrs)
    return current_inputs, current_outputs


def aten_len(mapper, graph, node):
    """ 构造获取list长度的PaddleLayer。
    TorchScript示例:
        %85 : int = aten::len(%83)
        参数含义:
        %85 (int): 输出,list的长度。
        %72 (list): 需要获取长度的list。
    """
S
SunAhong1993 已提交
3390
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3391 3392 3393 3394 3395 3396 3397
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
3398 3399
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3400 3401 3402 3403
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3404 3405 3406 3407 3408
    graph.add_layer(
        "prim.len",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3409 3410 3411
    return current_inputs, current_outputs


W
wjj19950828 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
def aten_linear(mapper, graph, node):
    """
    TorchScript Code:
        %x.6 : Float(1, 128, strides=[128, 1]) = aten::linear(%input.305, %weight.629, %bias.317)
        Parameter meaning:
        %x.6 (Tensor): output
        %input.305 (Tensor): input tensor
        %weight.629 (Tensor): weight tensor
        %bias.317 (Tensor): bias tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # transpose weight
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
W
WJJ1995 已提交
3437 3438
    layer_inputs["y"] = inputs_name[1]
    layer_attrs["transpose_y"] = True
W
wjj19950828 已提交
3439
    graph.add_layer(
W
WJJ1995 已提交
3440 3441 3442
        "paddle.matmul",
        inputs=layer_inputs,
        outputs=layer_outputs,
W
wjj19950828 已提交
3443
        scope_name=scope_name,
W
WJJ1995 已提交
3444
        **layer_attrs)
W
wjj19950828 已提交
3445 3446 3447
    if len(inputs_name) == 3:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
W
WJJ1995 已提交
3448 3449 3450 3451 3452 3453
        graph.add_layer(
            "paddle.add",
            inputs={"x": output_name,
                    "y": inputs_name[2]},
            outputs=layer_outputs,
            scope_name=scope_name)
W
wjj19950828 已提交
3454 3455 3456 3457 3458
    current_inputs = list(layer_inputs.values())

    return current_inputs, current_outputs


S
SunAhong1993 已提交
3459 3460 3461 3462 3463 3464 3465 3466
def aten_log(mapper, graph, node):
    """ 构构造log的PaddleLayer。
    TorchScript示例:
        %787 : Tensor = aten::log(%786)
        参数含义:
        %787 (Tensor): 输出,取log的Tensor。
        %786 (Tensor): 需要获取log的Tensor。
    """
S
SunAhong1993 已提交
3467
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3468 3469 3470 3471 3472 3473 3474
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
3475 3476
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3477 3478 3479 3480 3481
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
3482 3483 3484 3485
        "paddle.log",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3486 3487 3488
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
def aten_log_softmax(mapper, graph, node):
    """ 构造log_softmax的PaddleLayer。
    TorchScript示例:
        %4 = aten::log_softmax(%input, %2, %3)
        参数含义:
        %4 (Tensor): 输出的Tensor。
        %input (Tensor): 输入的Tensor。
        %2 (int): 指定对输入进行运算的轴。
        %3 (int): 输入Tensor的数据类型。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%input
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%2,代表dtype
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
    # 处理输入2,即%3,代表dtype
    if mapper.attrs[inputs_name[2]] is not None:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.functional.log_softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
def aten_lstm(mapper, graph, node):
    """ 构造长短期记忆网络(LSTM)的PaddleLayer。
    TorchScript示例:
        %input.96, %551, %552 = aten::lstm(%input.95, %734, %549, %526, %525, %524, %526, %526, %526)
        参数含义:
        %input.96 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %551 (Tensor): cell state。
        %552 (Tensor): hidden state。
        %input.95 (Tensor): 网络输入。
        %734 (Tensor): 网络的初始状态。
        %549 (list): 所有权重组合成的list。
        %526 (bool): 是否使用bias。
        %525 (int): 网络层数。
        %524 (float): dropout概率。
        %526 (bool): 是否为训练阶段。
        %526 (bool): 是否使用双向LSTM。
        %526 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("lstm", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
S
SunAhong1993 已提交
3563 3564
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3565 3566
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
S
SunAhong1993 已提交
3567 3568
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3569 3570 3571 3572
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
S
SunAhong1993 已提交
3573 3574
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3575 3576 3577 3578 3579
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
S
SunAhong1993 已提交
3580 3581 3582 3583
            layer_attrs["hidden_size"] = int(
                mapper.paddle_params[param_name].shape[0] / 4)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name]
                                            .shape[1])
S
SunAhong1993 已提交
3584 3585
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
S
SunAhong1993 已提交
3586 3587 3588 3589
            mapper.paddle_params["{}.weight_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name,
                                                               part_name))
S
SunAhong1993 已提交
3590 3591
        else:
            part_name = param_name.split("_bias_")[-1]
S
SunAhong1993 已提交
3592 3593
            mapper.paddle_params["{}.bias_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
S
SunAhong1993 已提交
3594
        mapper.paddle_params.pop(param_name)
S
SunAhong1993 已提交
3595

S
SunAhong1993 已提交
3596 3597 3598 3599 3600
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
S
SunAhong1993 已提交
3601 3602 3603
            bias_shape = mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype(
                "float32")
S
SunAhong1993 已提交
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.LSTM",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633
def aten_lt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %80 : bool = aten::lt(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3634
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3635 3636 3637 3638 3639 3640 3641
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
3642 3643
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3644 3645
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
3646 3647
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3648 3649 3650 3651
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3652 3653 3654 3655 3656
    graph.add_layer(
        "prim.lt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3657 3658 3659 3660
    return current_inputs, current_outputs


def aten_masked_fill(mapper, graph, node):
W
wjj19950828 已提交
3661 3662
    """
    TorchScript Code:
S
SunAhong1993 已提交
3663
        %input.4 : Tensor = aten::masked_fill(%scores.2, %mask.2, %46)
W
wjj19950828 已提交
3664 3665 3666 3667 3668
        Parameter meaning:
        %input.4 (Tensor): Output Tensor
        %scores.2 (Tensor): Input Tensor
        %mask.2 (Tensor): bool mask
        %46 (-): fill value
S
SunAhong1993 已提交
3669
    """
S
SunAhong1993 已提交
3670
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3671 3672 3673
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    inputs_name, inputs_node = mapper._get_inputs_name(node)
W
wjj19950828 已提交
3674 3675 3676
    layer_full_inputs = {}
    layer_full_attrs = {}
    layer_where_inputs = {}
S
SunAhong1993 已提交
3677 3678
    current_inputs = []
    current_outputs = [output_name]
W
wjj19950828 已提交
3679
    # input list
S
SunAhong1993 已提交
3680 3681
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3682
    current_inputs.append(inputs_name[0])
W
wjj19950828 已提交
3683
    # paddle.full
S
SunAhong1993 已提交
3684
    graph.add_layer(
W
wjj19950828 已提交
3685
        "prim.shape",
S
SunAhong1993 已提交
3686
        inputs={"input": inputs_name[0]},
W
wjj19950828 已提交
3687
        outputs=[inputs_name[0] + "_shape"],
S
SunAhong1993 已提交
3688
        scope_name=scope_name)
W
wjj19950828 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697
    layer_full_inputs["shape"] = inputs_name[0] + "_shape"
    if inputs_name[2] in mapper.attrs:
        layer_full_attrs["fill_value"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_full_inputs["fill_value"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

S
SunAhong1993 已提交
3698
    graph.add_layer(
W
wjj19950828 已提交
3699 3700 3701
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"],
S
SunAhong1993 已提交
3702
        scope_name=scope_name)
W
wjj19950828 已提交
3703
    layer_full_attrs["dtype"] = inputs_name[0] + "_type"
S
SunAhong1993 已提交
3704
    graph.add_layer(
W
wjj19950828 已提交
3705 3706 3707
        "paddle.full",
        inputs=layer_full_inputs,
        outputs=[inputs_name[0] + "_full"],
S
SunAhong1993 已提交
3708
        scope_name=scope_name,
W
wjj19950828 已提交
3709 3710 3711 3712 3713 3714 3715 3716
        **layer_full_attrs)
    # paddle.where
    layer_where_inputs["condition"] = inputs_name[1]
    layer_where_inputs["x"] = inputs_name[0] + "_full"
    layer_where_inputs["y"] = inputs_name[0]
    graph.add_layer(
        "paddle.where",
        inputs=layer_where_inputs,
S
SunAhong1993 已提交
3717 3718
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
    return current_inputs, current_outputs


def aten_max(mapper, graph, node):
    """ 构造获取最大值的PaddleLayer。
    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::max(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
3731
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3742
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3743 3744 3745
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3746
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3747 3748 3749 3750
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
3751 3752 3753 3754
            "paddle.maximum",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3755 3756 3757 3758 3759
    else:
        pass
    return current_inputs, current_outputs


W
WJJ1995 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
def aten_max_pool1d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %input.8 : Tensor = aten::max_pool1d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.11
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%23
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
    # 处理输入3,即%21
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]

    graph.add_layer(
        "paddle.nn.MaxPool1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
def aten_max_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %input.8 : Tensor = aten::max_pool2d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
S
SunAhong1993 已提交
3819 3820
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
3821
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3822
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3823 3824
    layer_inputs = {}
    layer_attrs = {}
S
SunAhong1993 已提交
3825
    layer_attrs_tmp = {}
S
SunAhong1993 已提交
3826 3827 3828 3829
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.11
S
SunAhong1993 已提交
3830 3831
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3832 3833 3834 3835
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
S
SunAhong1993 已提交
3836 3837
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
    layer_attrs_tmp["pool_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3838
    # 处理输入2,即%23
S
SunAhong1993 已提交
3839 3840
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
    layer_attrs_tmp["pool_stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3841
    # 处理输入3,即%21
S
SunAhong1993 已提交
3842 3843
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
    layer_attrs_tmp["pool_padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
3844 3845 3846 3847
    # 处理输入4,即%22
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
3848
        outputs=[inputs_name[4] + "_assert"],
S
SunAhong1993 已提交
3849
        scope_name=scope_name + "_assert",
S
SunAhong1993 已提交
3850 3851 3852 3853 3854
        type="eq",
        key=mapper.attrs[inputs_name[4]],
        value=[1, [1, 1]])
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
3855
    layer_attrs_tmp["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
3856

S
SunAhong1993 已提交
3857 3858 3859 3860 3861 3862
    graph.add_layer(
        "paddle.nn.MaxPool2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
    return current_inputs, current_outputs


def aten_matmul(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %output.2 : Tensor = aten::matmul(%101, %111)
        参数含义:
        %output.2 (Tensor): 输出,相乘后的结果。
        %101 (Tensor): 矩阵1。
        %102 (Tensor): 矩阵2。
    """
S
SunAhong1993 已提交
3875
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3876 3877 3878 3879 3880 3881 3882
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%101
S
SunAhong1993 已提交
3883 3884
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3885 3886
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%102
S
SunAhong1993 已提交
3887 3888
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3889 3890 3891 3892
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3893 3894 3895 3896 3897
    graph.add_layer(
        "paddle.matmul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
    return current_inputs, current_outputs


def aten_min(mapper, graph, node):
    """ 构造获取最小值的PaddleLayer。
    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::min(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
3910
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3921
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3922 3923 3924
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3925
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3926 3927 3928 3929
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
3930 3931 3932 3933
            "paddle.minimum",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
    else:
        pass
    return current_inputs, current_outputs


def aten_mean(mapper, graph, node):
    """ 构造求均值的PaddleLayer。
    TorchScript示例:
        %x.28 : Tensor = aten::mean(%result.1, %4967, %3, %2)
        参数含义:
        %x.28 (Tensor): 输出,求均值后的结果。
        %result.1 (Tensor): 输入,需要求均值的Tensor。
        %4967 (int/list): 求平均值运算的维度。
        %3 (bool): 是否在输出Tensor中保留减小的维度。
        %2 (Tensor): 结果Tensor。
    """
S
SunAhong1993 已提交
3950
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3951 3952 3953 3954 3955 3956 3957 3958
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.1
S
SunAhong1993 已提交
3959 3960
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3961
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3962 3963 3964
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4967
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3965
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3966 3967
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3968 3969
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
3970 3971 3972
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%3
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3973
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3974 3975
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
3976 3977
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
S
SunAhong1993 已提交
3978 3979 3980
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
3981
        "paddle.mean",
S
SunAhong1993 已提交
3982 3983
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3984
        scope_name=scope_name,
S
SunAhong1993 已提交
3985 3986
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004


def aten_meshgrid(mapper, graph, node):
    """ 构造对每个张量做扩充操作的PaddleLayer。
    TorchScript示例:
        %out.39 : int = aten::mshgrid(%input.1)
        参数含义:
        %out.39 (Tensor): 输出,扩充后的结果。
        %input.1 (Tensor): 输入。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
4005 4006
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4007 4008 4009 4010 4011
    layer_inputs["args"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = layer_inputs.values()
    current_outputs = layer_outputs

S
SunAhong1993 已提交
4012 4013 4014 4015 4016
    graph.add_layer(
        "paddle.meshgrid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4017
    return current_inputs, current_outputs
S
SunAhong1993 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028


def aten_mul(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。
    TorchScript示例:
        %size_prods.39 : int = aten::mul(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
S
SunAhong1993 已提交
4029
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4030 4031 4032 4033 4034 4035 4036
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
S
SunAhong1993 已提交
4037 4038
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4039 4040
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
S
SunAhong1993 已提交
4041 4042
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4043 4044 4045 4046 4047
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

S
SunAhong1993 已提交
4048 4049 4050 4051 4052
    graph.add_layer(
        "prim.mul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
    return current_inputs, current_outputs


def aten_ne(mapper, graph, node):
    """ 构造判断数值是否不相等的PaddleLayer。
    TorchScript示例:
        %134 : bool = aten::ne(%133, %132)
        参数含义:
        %134 (bool): 对比后结果。
        %133 (-): 需对比的输入1。
        %132 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
4065
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4066 4067 4068 4069 4070 4071 4072
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
4073 4074
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4075 4076
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
4077 4078
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4079 4080 4081 4082
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4083 4084 4085 4086 4087
    graph.add_layer(
        "prim.ne",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
    return current_inputs, current_outputs


def aten_neg(mapper, graph, node):
    """ 构造对数值取负的PaddleLayer。
    TorchScript示例:
        %909 : int = aten::neg(%908)
        参数含义:
        %909 (int): 取负后结果。
        %908 (int): 需取负的输入。
    """
S
SunAhong1993 已提交
4099
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4100 4101 4102 4103 4104 4105 4106
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
4107 4108
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4109 4110 4111 4112
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4113 4114 4115 4116 4117
    graph.add_layer(
        "prim.neg",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4118 4119 4120
    return current_inputs, current_outputs


W
WJJ1995 已提交
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
def aten_frobenius_norm(mapper, graph, node):
    """ 构造计算范数的PaddleLayer。
    TorchScript示例:
        %25 = aten::frobenius_norm(%input, %58, %24)
        参数含义:
        %25 (Tensor): 取范数后的结果。
        %input (Tensor): 输入。
        %58 (int): 使用范数计算的轴。
        %24 (bool): 是否在输出的Tensor中保留和输入一样的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    layer_attrs["p"] = 2
    # 处理输入1,即%58
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%24
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.norm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
def aten_norm(mapper, graph, node):
    """ 构造计算范数的PaddleLayer。
    TorchScript示例:
        %25 = aten::norm(%input, %21, %58, %24)
        参数含义:
        %25 (Tensor): 取范数后的结果。
        %input (Tensor): 输入。
        %21 (int): 范数的种类。
        %58 (int): 使用范数计算的轴。
        %24 (bool): 是否在输出的Tensor中保留和输入一样的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4191 4192
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%21
    if inputs_name[1] in mapper.attrs:
        layer_attrs["p"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["p"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%58
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 处理输入3,即%24
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[3]
        current_inputs.append(inputs_name[3])

    graph.add_layer(
        "paddle.norm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4229 4230 4231 4232 4233 4234 4235 4236
def aten___not__(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。
    TorchScript示例:
        %4498 : bool = aten::__not__(%aux_defined.2)
        参数含义:
        %4498 (bool): 取负后结果。
        %aux_defined.2 (bool): 需取负的输入。
    """
S
SunAhong1993 已提交
4237
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4238 4239 4240 4241 4242 4243 4244
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
4245 4246
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4247 4248 4249 4250
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4251 4252 4253 4254 4255
    graph.add_layer(
        "prim.not",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
    return current_inputs, current_outputs


def aten_ones(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %input.49 : Tensor = aten::ones(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
4271
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
4285
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.ones",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4295
        scope_name=scope_name,
S
SunAhong1993 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
        **layer_attrs)
    return current_inputs, current_outputs


def aten_permute(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。
    TorchScript示例:
        %2385 : Tensor = aten::permute(%cls_confs0.2, %2384)
        参数含义:
        %2385 (Tensor): 重排后的结果。
        %cls_confs0.2 (Tensor): 需要重排的Tensor。
        %2348 (list): 依照此参数进行重排。
    """
S
SunAhong1993 已提交
4309
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4310 4311 4312 4313 4314 4315 4316 4317
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%cls_confs0.2
S
SunAhong1993 已提交
4318 4319
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4320 4321 4322 4323 4324 4325 4326 4327
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2348
    if inputs_name[1] in mapper.attrs:
        layer_attrs["perm"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4328
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4329 4330 4331 4332
        layer_inputs["perm"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
4333
        "paddle.transpose",
S
SunAhong1993 已提交
4334 4335
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4336
        scope_name=scope_name,
S
SunAhong1993 已提交
4337 4338 4339 4340
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
def aten_pixel_shuffle(mapper, graph, node):
    """ 构造以像素的方式重排的PaddleLayer。
    TorchScript示例:
        %x.6 : aten::pixel_shuffle(%input.101, %726)
        参数含义:
        %x.6 (Tensor): 输出,重排后的Tensor。
        %input.101 (Tensor): 需要重排的Tensor。
        %726 (int): 增大空间分辨率的增大因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.101
S
SunAhong1993 已提交
4359 4360
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%726
    layer_attrs["upscale_factor"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.functional.pixel_shuffle",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
4374

S
SunAhong1993 已提交
4375 4376 4377 4378 4379 4380 4381 4382
def aten_pow(mapper, graph, node):
    """ 构造指数激活的PaddleLayer。
    TorchScript示例:
        %x.6 : Tensor = aten::pow(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,指数激活后的Tensor。
        %4700 (Tensor): 需要指数激活的Tensor。
    """
S
SunAhong1993 已提交
4383
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4384 4385 4386 4387 4388 4389 4390 4391
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
4392 4393
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4394 4395 4396 4397 4398
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
4399
        layer_attrs["y"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
4400 4401
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4402 4403
                            current_outputs, scope_name)
        layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
4404 4405 4406
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
4407
        "paddle.pow",
S
SunAhong1993 已提交
4408 4409
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4410
        scope_name=scope_name,
S
SunAhong1993 已提交
4411 4412 4413 4414
        **layer_attrs)
    return current_inputs, current_outputs


4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
def aten_prelu(mapper, graph, node):
    """ 构造prelu激活的PaddleLayer。
    TorchScript示例:
        %result.3 : aten::prelu(%input.150, %999)
        参数含义:
        %result.3 (Tensor): 输出,prelu后的结果。
        %input.150 (Tensor): 需要prelu的Tensor。
        %999 (Tnsor): 权重。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.150
S
SunAhong1993 已提交
4433 4434
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
4435 4436 4437 4438 4439 4440 4441 4442
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%999
    weight = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + "._weight"] = weight
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4443 4444 4445 4446
        "paddle.nn.PReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
4447 4448 4449 4450
        num_parameters=weight.shape[0])
    return current_inputs, current_outputs


W
wjj19950828 已提交
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
def aten_real(mapper, graph, node):
    """
    TorchScript示例:
        %n0.3 : Tensor = aten::real(%n.3)
        参数含义:
        %n0.3 (Tensor): Return Real Tensor。
        %n.3 (Tensor): Input Complex Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.real",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
def aten_reflection_pad1d(mapper, graph, node):
    """ 构造1维映射填充的PaddleLayer。
    TorchScript示例:
        %6 = aten::reflection_pad1d(%input, %7)
        参数含义:
        %6 (Tensor): 输出,填充后的Tensor。
        %input (Tensor): 需要填充的Tensor。
        %7 (list|Tensor): 填充大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4500 4501
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%7
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        ipt_node = inputs_node[1]
        while ipt_node.kind() != "prim::GetAttr":
            inputs_name, inputs_node = mapper._get_inputs_name(ipt_node)
            ipt_node = inputs_node[0]
        layer_attrs["padding"] = list(mapper.pytorch_params[inputs_name[0]])
    layer_attrs["mode"] = string("reflect")
S
SunAhong1993 已提交
4517

S
add gru  
SunAhong1993 已提交
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
    graph.add_layer(
        "paddle.nn.Pad1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_reflection_pad2d(mapper, graph, node):
    """ 构造2维映射填充的PaddleLayer。
    TorchScript示例:
        %6 = aten::reflection_pad2d(%input, %7)
        参数含义:
        %6 (Tensor): 输出,填充后的Tensor。
        %input (Tensor): 需要填充的Tensor。
        %7 (list|Tensor): 填充大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4546 4547
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%7
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        ipt_node = inputs_node[1]
        while ipt_node.kind() != "prim::GetAttr":
            inputs_name, inputs_node = mapper._get_inputs_name(ipt_node)
            ipt_node = inputs_node[0]
        layer_attrs["padding"] = list(mapper.pytorch_params[inputs_name[0]])
    layer_attrs["mode"] = string("reflect")
S
SunAhong1993 已提交
4563

S
add gru  
SunAhong1993 已提交
4564 4565 4566 4567 4568 4569 4570 4571 4572
    graph.add_layer(
        "paddle.nn.Pad2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581
def aten_relu(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4582 4583
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
S
SunAhong1993 已提交
4584
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4585
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4586 4587 4588 4589 4590
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4591 4592
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4593 4594 4595 4596 4597
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4598 4599 4600 4601
        "paddle.nn.ReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
    return current_inputs, current_outputs


def aten_relu6(mapper, graph, node):
    """ 构造ReLU6激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu6(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU6后的结果。
        %result.5 (Tensor): 需要ReLU6的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4614 4615
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu6", mapper.nn_name2id)
S
SunAhong1993 已提交
4616
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4617
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4618 4619 4620 4621 4622
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4623 4624
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4625 4626 4627 4628 4629
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4630 4631 4632 4633
        "paddle.nn.ReLU6",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4634 4635 4636
    return current_inputs, current_outputs


4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
def aten_remainder(mapper, graph, node):
    """ 构造取余数的PaddleLayer。
    TorchScript示例:
        %701 : Tensor = aten::remainder(%661, %139)
        参数含义:
        %701 (Tensor): 输出,取余结果的Tensor。
        %661 (Tensor): 需要取余的Tensor。
        %139 (Tensor): 除数Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%661
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%139
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
W
WJJ1995 已提交
4663

4664 4665 4666 4667 4668 4669 4670 4671
    graph.add_layer(
        "prim.remainder",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4672 4673 4674
def aten_repeat(mapper, graph, node):
    """ 构造根据参数对输入各维度进行复制的PaddleLayer。
    TorchScript示例:
4675
        %701 : Tensor = aten::repeat(%699, %700)
S
SunAhong1993 已提交
4676 4677 4678 4679 4680
        参数含义:
        %701 (Tensor): 输出,复制后的Tensor。
        %699 (Tensor): 需要复制的Tensor。
        %700 (list): 指定每个维度复制的次数。
    """
S
SunAhong1993 已提交
4681
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4682 4683 4684 4685 4686 4687 4688 4689
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%699
S
SunAhong1993 已提交
4690 4691
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4692 4693 4694 4695 4696 4697 4698 4699
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%700
    if inputs_name[1] in mapper.attrs:
        layer_attrs["repeat_times"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4700
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4701 4702 4703 4704 4705 4706 4707
        layer_inputs["repeat_times"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.tile",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4708
        scope_name=scope_name,
S
SunAhong1993 已提交
4709 4710 4711 4712
        **layer_attrs)
    return current_inputs, current_outputs


W
WJJ1995 已提交
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
def aten_repeat_interleave(mapper, graph, node):
    """ 构造根据参数对输入各维度进行复制的PaddleLayer。
    TorchScript示例:
        %701 : Tensor = aten::repeat(%699, %700, %702)
        参数含义:
        %701 (Tensor): 输出,复制后的Tensor。
        %699 (Tensor): 需要复制的Tensor。
        %700 (int | Tensor): 指定每个维度复制的次数。
        %702 (int): 指定在哪个轴上进行复制。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%699
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%700
    if inputs_name[1] in mapper.attrs:
        layer_attrs["repeat_times"] = [int(mapper.attrs[inputs_name[1]])]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["repeat_times"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.tile",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)

    layer_attrs_reshape = {}
    layer_attrs_reshape["shape"] = [0, int(mapper.attrs[inputs_name[1]]), -1]
    graph.add_layer(
        "paddle.reshape",
        inputs={"x": layer_outputs[0]},
        outputs=[layer_outputs[0] + "_reshape"],
        scope_name=scope_name,
        **layer_attrs_reshape)

    layer_attrs_transpose = {}
    layer_attrs_transpose["perm"] = [0, 2, 1]
    graph.add_layer(
        "paddle.transpose",
        inputs={"x": layer_outputs[0] + "_reshape"},
        outputs=[layer_outputs[0] + "_transpose"],
        scope_name=scope_name,
        **layer_attrs_transpose)

    layer_attrs_reshape = {}
    layer_attrs_reshape["shape"] = [0, -1]
    graph.add_layer(
        "paddle.reshape",
        inputs={"x": layer_outputs[0] + "_transpose"},
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs_reshape)

    return current_inputs, current_outputs


W
WJJ1995 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
def aten_replication_pad1d(mapper, graph, node):
    """
    TorchScript Code:
        %58 : Tensor = aten::replication_pad1d(%input.1, %152)
        Parameter meaning:
        %58 (Tensor): Output Tensor
        %input.1 (Tensor): Input Tensor
        %%152 (list): Padding size
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # output list
    current_outputs = [output_name]
    # input list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["input"] = inputs_name[0]
    layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    layer_attrs["mode"] = string("replicate")
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Pad1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)

    return current_inputs, current_outputs


S
SunAhong1993 已提交
4819 4820 4821 4822 4823 4824 4825 4826 4827
def aten_reshape(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。
    TorchScript示例:
        %x.6 : Tensor = aten::reshape(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,reshape后的Tensor。
        %4700 (Tensor): 需要reshape的Tensor。
        %4703 (list): 形状大小组成的list。
    """
S
SunAhong1993 已提交
4828
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4829 4830 4831 4832 4833 4834 4835 4836
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
4837 4838
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4839 4840 4841 4842 4843 4844 4845 4846
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4847
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4848 4849
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
4850

S
SunAhong1993 已提交
4851
    graph.add_layer(
S
SunAhong1993 已提交
4852
        "paddle.reshape",
S
SunAhong1993 已提交
4853 4854
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4855
        scope_name=scope_name,
S
SunAhong1993 已提交
4856 4857 4858 4859
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
def aten_roll(mapper, graph, node):
    """ 构造循环滚动的PaddleLayer。
    TorchScript示例:
        %x.87 : Float = aten::roll(%x.86, %1862, %1863)
        参数含义:
        %x.87 (Tensor): 输出Tensor。
        %x.86 (Tensor): 输入Tensor。
        %1862 (int/list/tuple): 滚动位移。
        %1863 (int/list/tuple): 滚动轴。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.86
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1862
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shifts"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shifts"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%1863
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.roll",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
def aten_rsub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer,计算公式为:out = y - alpha * x。
    TorchScript示例:
        %31 : Tensor = aten::rsub(%30, %13, %7)
        参数含义:
        %31 (Tensor): 相减结果。
        %30 (Tensor): 输入Tensor x。
        %13 (int/float): 输入数值 y。
        %7 (int/float): alpha。
    """
S
SunAhong1993 已提交
4920
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4921 4922 4923 4924 4925 4926 4927
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%30
S
SunAhong1993 已提交
4928 4929
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4930 4931
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%13
S
SunAhong1993 已提交
4932 4933
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4934 4935
    layer_inputs["y"] = inputs_name[1]
    # 处理输入2,即%7
S
SunAhong1993 已提交
4936 4937
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4938 4939 4940 4941
    layer_inputs["alpha"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4942 4943 4944 4945 4946
    graph.add_layer(
        "prim.rsub",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4947 4948 4949
    return current_inputs, current_outputs


W
wjj19950828 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
def aten_rsqrt(mapper, graph, node):
    """
    TorchScript Code:
        %n0.3 : Tensor = aten::rsqrt(%n.3)
        Parameter meaning:
        %n0.3 (Tensor): output tensor
        %n.3 (Tensor): input tensor
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # outputs list
    current_outputs = [output_name]
    # inputs list
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]

    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.rsqrt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4980 4981 4982 4983 4984 4985 4986 4987 4988
def aten_ScalarImplicit(mapper, graph, node):
    """ 构造获取scalar的PaddleLayer。
    TorchScript示例:
        %89 : Scalar = aten::ScalarImplicit(%end.1)
        参数含义:
        %89 (Scalar): 输出,得到的Scalar。
        %end.1 (-): 组要转换的数据。
    【注意】由于Paddle无Scalar,所以最后转换为Tensor。
    """
S
SunAhong1993 已提交
4989
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4990 4991 4992 4993 4994 4995 4996
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
4997 4998
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4999 5000 5001 5002 5003 5004
    layer_inputs["input"] = inputs_name[0]
    input_type = list(node.inputs())[0].type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if str(input_type) == "Tensor":
        graph.add_layer(
S
SunAhong1993 已提交
5005 5006 5007 5008
            "prim.equal",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
    else:
        raise Exception(
            "The input type {} of aten::ScalarImplicit is not implemented yet!"
        ).format(input_type)
    return current_inputs, current_outputs


def aten_select(mapper, graph, node):
    """ 构造选取特定维度Variable的PaddleLayer。
    TorchScript示例:
        %19 : Tensor = aten::select(%18, %8, %7)
        参数含义:
        %19 (Tensor): 输出,选取的Tensor。
        %18 (Tensor): 需要选取的Tensor。
        %8 (int): select的维度。
        %7 (int): select的第n个向量。
    """
S
SunAhong1993 已提交
5026
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5027 5028 5029 5030 5031 5032 5033 5034
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%18
S
SunAhong1993 已提交
5035 5036
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5037 5038 5039 5040
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%8
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%75
S
SunAhong1993 已提交
5041 5042
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5043 5044 5045 5046 5047 5048 5049
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.select",
        inputs=layer_inputs,
5050
        outputs=layer_outputs,
S
SunAhong1993 已提交
5051
        scope_name=scope_name,
S
SunAhong1993 已提交
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
        **layer_attrs)
    return current_inputs, current_outputs


def aten__set_item(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。
    TorchScript示例:
        = aten::_set_item(%features.1, %out_name.1, %x.3)
        参数含义:
        %features.1 (list): dict。
        %out_name.1 (-): dict的key。
        %x.3 (-): dict的value。
    """
S
SunAhong1993 已提交
5065
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5066 5067 5068 5069 5070
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = []
    # 处理输入0,即%features.1
S
SunAhong1993 已提交
5071 5072
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5073 5074
    layer_inputs["dict"] = inputs_name[0]
    # 处理输入1,即%out_name.1
S
SunAhong1993 已提交
5075 5076
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5077 5078
    layer_inputs["key"] = inputs_name[1]
    # 处理输入2,即%x.3
S
SunAhong1993 已提交
5079 5080
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5081 5082 5083 5084
    layer_inputs["value"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5085 5086
    graph.add_layer(
        "prim.set_item", inputs=layer_inputs, outputs=[], scope_name=scope_name)
S
SunAhong1993 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
    return current_inputs, current_outputs


def aten_sigmoid(mapper, graph, node):
    """ 构造sigmoid激活的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::sigmoid(%54)
        参数含义:
        %55 (Tensor): 输出,sigmoid后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
5098 5099
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("sigmoid", mapper.nn_name2id)
S
SunAhong1993 已提交
5100
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5101
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5102 5103 5104 5105 5106
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%54
S
SunAhong1993 已提交
5107 5108
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5109 5110 5111 5112 5113
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5114 5115 5116 5117
        "paddle.nn.Sigmoid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5118 5119 5120
    return current_inputs, current_outputs


5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
def aten_silu(mapper, graph, node):
    """ 构造Silu激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::silu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,Silu后的结果。
        %input.5 (Tensor): 需要Silu的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("silu", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Silu",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5153 5154 5155 5156 5157 5158 5159 5160
def aten_sin(mapper, graph, node):
    """ 构造数学计算sin的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::sin(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,sin之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
5161
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5162 5163 5164 5165 5166 5167 5168
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
5169 5170
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5171 5172 5173 5174
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5175 5176 5177 5178 5179
    graph.add_layer(
        "paddle.sin",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
    return current_inputs, current_outputs


def aten_size(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。
    TorchScript示例:
        %73 : int[] = aten::size(%x.12, %10)
        参数含义:
        %73 (list): 输出,shape的list。
        %x.12 (Tensor): 需要获取shape的Tensor。
        %10 (int): 非必须,代表维度。
    """
S
SunAhong1993 已提交
5192
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5193 5194 5195 5196 5197 5198 5199 5200
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
5201 5202
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5203 5204 5205 5206 5207 5208 5209 5210 5211
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if len(inputs_name) > 1:
        # 处理输入1,即%12
        if inputs_name[1] in mapper.attrs:
            layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5212
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5213 5214 5215 5216 5217 5218
            layer_inputs["dim"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.shape_dim",
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
5219
            scope_name=scope_name,
S
SunAhong1993 已提交
5220 5221 5222 5223
            **layer_attrs)
        return current_inputs, current_outputs

    graph.add_layer(
S
SunAhong1993 已提交
5224 5225 5226 5227
        "prim.shape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
    return current_inputs, current_outputs


def aten_slice(mapper, graph, node):
    """ 构造切分list或Variable的PaddleLayer。
    TorchScript示例:
        %83 : int[] = aten::slice(%73, %_81, %82, %75, %77)
        参数含义:
        %83 (list/Tensor): 输出,切分后的list。
        %73 (list/Tensor): 需要切分的list。
        %_81 (int): 切分的维度,不一定存在。
        %82 (int): 切分的开始索引。
        %75 (int): 切分的结束索引。
        %77 (int): 切分的步长。
    """
S
SunAhong1993 已提交
5243
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5244 5245 5246 5247 5248 5249 5250 5251 5252
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    if len(inputs_name) == 5:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
5253 5254
                            current_outputs, scope_name)
        layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263

        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        # 处理输入1,即%_81
        if inputs_name[1] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[1] + "_list"],
S
SunAhong1993 已提交
5264
                scope_name=scope_name,
S
SunAhong1993 已提交
5265 5266 5267
                input0=mapper.attrs[inputs_name[1]])
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5268
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5269 5270 5271
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[1]},
S
SunAhong1993 已提交
5272 5273
                outputs=[inputs_name[1] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
            current_inputs.append(inputs_name[1])
        layer_inputs["axes"] = inputs_name[1] + "_list"
        current_inputs.append(inputs_name[1] + "_list")
        current_outputs.append(inputs_name[1] + "_list")
        # 处理输入2,即%82
        if inputs_name[2] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[2] + "_list"],
S
SunAhong1993 已提交
5284
                scope_name=scope_name,
S
SunAhong1993 已提交
5285 5286 5287
                input0=mapper.attrs[inputs_name[2]])
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
5288
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5289 5290 5291
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[2]},
S
SunAhong1993 已提交
5292 5293
                outputs=[inputs_name[2] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
            current_inputs.append(inputs_name[2])
        layer_inputs["starts"] = inputs_name[2] + "_list"
        current_inputs.append(inputs_name[2] + "_list")
        current_outputs.append(inputs_name[2] + "_list")
        # 处理输入3,即%85
        if inputs_name[3] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[3] + "_list"],
S
SunAhong1993 已提交
5304
                scope_name=scope_name,
S
SunAhong1993 已提交
5305 5306 5307
                input0=mapper.attrs[inputs_name[3]])
        else:
            mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
5308
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5309 5310 5311
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[3]},
S
SunAhong1993 已提交
5312 5313
                outputs=[inputs_name[3] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
            current_inputs.append(inputs_name[3])
        layer_inputs["ends"] = inputs_name[3] + "_list"
        current_inputs.append(inputs_name[3] + "_list")
        current_outputs.append(inputs_name[3] + "_list")
        # 处理输入4,即%77
        if inputs_name[4] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[4] + "_list"],
S
SunAhong1993 已提交
5324
                scope_name=scope_name,
S
SunAhong1993 已提交
5325 5326 5327
                input0=mapper.attrs[inputs_name[4]])
        else:
            mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
5328
                                current_outputs, scope_name)
S
SunAhong1993 已提交
5329 5330 5331
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[4]},
S
SunAhong1993 已提交
5332 5333
                outputs=[inputs_name[4] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
5334 5335 5336 5337 5338 5339
            current_inputs.append(inputs_name[4])
        layer_inputs["strides"] = inputs_name[4] + "_list"
        current_inputs.append(inputs_name[4] + "_list")
        current_outputs.append(inputs_name[4] + "_list")

        graph.add_layer(
S
SunAhong1993 已提交
5340
            "paddle.strided_slice",
S
SunAhong1993 已提交
5341
            inputs=layer_inputs,
S
SunAhong1993 已提交
5342 5343
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
5344 5345 5346
    else:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
5347
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5348 5349 5350
        layer_inputs["input"] = inputs_name[0]
        # 处理输入1,即%82
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5351
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5352 5353 5354
        layer_inputs["start"] = inputs_name[1]
        # 处理输入2,即%75
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
5355
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5356 5357 5358
        layer_inputs["end"] = inputs_name[2]
        # 处理输入3,即%77
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
5359
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5360 5361 5362 5363 5364
        layer_inputs["step"] = inputs_name[3]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())

        graph.add_layer(
S
SunAhong1993 已提交
5365 5366 5367 5368
            "prim.slice",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
    return current_inputs, current_outputs


def aten_softmax(mapper, graph, node):
    """ 构造softmax激活的PaddleLayer。
    TorchScript示例:
        %input2.1 : Tensor = aten::softmax(%input.5, %80, %72)
        参数含义:
        %input2.1 (Tensor): 激活后结果。
        %input.5 (Tensor): 需要激活的Tensor。
        %80 (int): 指定对输入Tensor进行运算的轴。
        %72 (str): 类型,默认为None。
    """
S
SunAhong1993 已提交
5382 5383
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softmax", mapper.nn_name2id)
S
SunAhong1993 已提交
5384
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5385
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5386 5387 5388 5389 5390 5391
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
5392 5393
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5394 5395 5396 5397 5398 5399 5400 5401 5402
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["axis"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.Softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5403
        scope_name=scope_name,
S
SunAhong1993 已提交
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
        **layer_attrs)
    return current_inputs, current_outputs


def aten_softplus(mapper, graph, node):
    """ 构造softplus激活的PaddleLayer。
    TorchScript示例:
        %54 : Tensor = aten::softplus(%x.31, %30, %29)
        参数含义:
        %54 (Tensor): 激活后结果。
        %x.31 (Tensor): 需要激活的Tensor。
        %30 (int): beta。
        %29 (int): 阈值。
    """
S
SunAhong1993 已提交
5418 5419
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softplus", mapper.nn_name2id)
S
SunAhong1993 已提交
5420
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5421
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5422 5423 5424 5425 5426 5427
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
5428 5429
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["beta"] = mapper.attrs[inputs_name[1]]
    layer_attrs["threshold"] = mapper.attrs[inputs_name[2]]

    graph.add_layer(
        "paddle.nn.Softplus",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5440
        scope_name=scope_name,
S
SunAhong1993 已提交
5441 5442 5443 5444
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
def aten_split_with_sizes(mapper, graph, node):
    """ 构构造split的PaddleLayer。
    TorchScript示例:
        %1450 : Tensor[] = aten::split_with_sizes(%1446, %1750, %41)
        参数含义:
        %1450 (Tensor): 输出,split后的Tensor。
        %1446 (Tensor): 需要获取split的Tensor。
        %1750 (list): 子Tensor的数量列表。
        %41 (int): 需要分割的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1446
S
SunAhong1993 已提交
5464 5465
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1750
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%135
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.split",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5495 5496 5497 5498 5499 5500 5501 5502
def aten_sqrt(mapper, graph, node):
    """ 构构造sqrt的PaddleLayer。
    TorchScript示例:
        %787 : Tensor = aten::sqrt(%786)
        参数含义:
        %787 (Tensor): 输出,取sqrt的Tensor。
        %786 (Tensor): 需要获取sqrt的Tensor。
    """
S
SunAhong1993 已提交
5503
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5504 5505 5506 5507 5508 5509 5510
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
5511 5512
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5513 5514 5515 5516 5517
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5518 5519 5520 5521
        "paddle.sqrt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
    return current_inputs, current_outputs


def aten_squeeze(mapper, graph, node):
    """ 构造删除位数为1的维度的PaddleLayer。
    TorchScript示例:
        %12 : Tensor = aten::squeeze(%start_logits.1, %4)
        参数含义:
        %12 (Tensor): 输出,删除维度后的Tensor。
        %start_logits.1 (Tensor): 需要删除维度的Tensor。
        %4 (int): 维度。
    """
S
SunAhong1993 已提交
5534
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5535 5536 5537 5538 5539 5540 5541 5542
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%start_logits.1
S
SunAhong1993 已提交
5543 5544
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5545 5546 5547 5548 5549 5550 5551 5552
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5553
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5554 5555 5556
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
5557
        "paddle.squeeze",
S
SunAhong1993 已提交
5558 5559
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5560
        scope_name=scope_name,
S
SunAhong1993 已提交
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
        **layer_attrs)
    return current_inputs, current_outputs


def aten_stack(mapper, graph, node):
    """ 构造堆叠Tensor的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::stack(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,堆叠后的结果。
        %i.12 (Tensor): 需要堆叠的Tensor组成的Tensor。
        %7 (int): 堆叠的轴。
    """
S
SunAhong1993 已提交
5574
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5575 5576 5577 5578 5579 5580 5581 5582
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5583 5584
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5585 5586 5587 5588 5589 5590 5591 5592
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5593
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5594 5595 5596 5597 5598 5599
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.stack",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5600
        scope_name=scope_name,
S
SunAhong1993 已提交
5601 5602 5603 5604 5605 5606 5607
        **layer_attrs)
    return current_inputs, current_outputs


def aten_sub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。
    TorchScript示例:
S
SunAhong1993 已提交
5608
        %840 : int = aten::sub(%839, %836, %3)
S
SunAhong1993 已提交
5609 5610 5611 5612
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
S
SunAhong1993 已提交
5613
        %3 (-): alpha。
S
SunAhong1993 已提交
5614
    """
S
SunAhong1993 已提交
5615
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5616 5617 5618
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
5619
    layer_attrs = {}
S
SunAhong1993 已提交
5620 5621 5622 5623
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%839
S
SunAhong1993 已提交
5624 5625
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5626 5627
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%836
S
SunAhong1993 已提交
5628 5629
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5630
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
    # 处理输入2,即%3
    if len(inputs_node) > 2:
        if inputs_name[2] in mapper.attrs:
            layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs, scope_name)
            layer_inputs["alpha"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
    else:
        layer_attrs["alpha"] = 1.0
S
SunAhong1993 已提交
5642 5643 5644
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5645 5646 5647 5648 5649 5650
    graph.add_layer(
        "prim.sub",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
    return current_inputs, current_outputs


def aten_t(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。
    TorchScript示例:
        %840 : int = aten::sub(%839, %836)
        参数含义:
        %109 (Tensor): 输出,转置后的矩阵。
        %102 (Tensor): 需要转置的Tensor。
    """
S
SunAhong1993 已提交
5662
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5663 5664 5665 5666 5667 5668 5669
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
5670 5671
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5672 5673 5674 5675 5676
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5677
        "paddle.transpose",
S
SunAhong1993 已提交
5678 5679
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5680
        scope_name=scope_name,
S
SunAhong1993 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
        perm=[1, 0])
    return current_inputs, current_outputs


def aten_tanh(mapper, graph, node):
    """ 构造tanh激活的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,tanh后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
5693 5694
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("tanh", mapper.nn_name2id)
S
SunAhong1993 已提交
5695
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5696
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5697 5698 5699 5700 5701
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
5702 5703
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5704 5705 5706 5707 5708
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5709 5710 5711 5712
        "paddle.nn.Tanh",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
    return current_inputs, current_outputs


def aten_split(mapper, graph, node):
    """ 构造分割Tensor的PaddleLayer。
    TorchScript示例:
        %160 : Tensor[] = aten::split(%159, %135, %123)
        参数含义:
        %160 (Tensor): 输出,分割后的矩阵。
        %159 (Tensor): 需要分割的Tensor。
        %135 (int): 分割的数量。
W
WJJ1995 已提交
5724
        %123 (int): 轴。
S
SunAhong1993 已提交
5725
    """
S
SunAhong1993 已提交
5726
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5727 5728 5729 5730 5731 5732 5733 5734
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%159
S
SunAhong1993 已提交
5735 5736
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5737
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
5738
    # 处理输入2,即%723
S
SunAhong1993 已提交
5739 5740
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5741
    layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
5742
    # 处理输入1,即%135
S
SunAhong1993 已提交
5743 5744
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5745 5746 5747 5748
    input_type = list(node.inputs())[0].type()
    if "[]" in str(input_type):
        layer_inputs["num_or_sections"] = inputs_name[1]
    else:
W
WJJ1995 已提交
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
        index = mapper.attrs[inputs_name[2]]
        graph.add_layer(
            "prim.shape",
            inputs={"input": inputs_name[0]},
            outputs=[inputs_name[0] + '_shape'],
            scope_name=scope_name)
        graph.add_layer(
            "prim.getitem",
            inputs={"list": inputs_name[0] + '_shape'},
            outputs=[inputs_name[0] + '_dim'],
            scope_name=scope_name,
            index=index)
        graph.add_layer(
            "prim.floordiv",
            inputs={'x': inputs_name[0] + '_dim',
                    'y': inputs_name[1]},
            outputs=[inputs_name[1] + '_div'],
            scope_name=scope_name)
        layer_attrs["num_or_sections"] = inputs_name[1] + '_div'
S
SunAhong1993 已提交
5768 5769 5770 5771
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5772
        "paddle.split",
S
SunAhong1993 已提交
5773 5774
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5775
        scope_name=scope_name,
S
SunAhong1993 已提交
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
        **layer_attrs)
    return current_inputs, current_outputs


def aten_transpose(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。
    TorchScript示例:
        %715 : Tensor = aten::transpose(%x.21, %704, %705)
        参数含义:
        %715 (Tensor): 输出,转置后的矩阵。
        %x.21 (Tensor): 需要转置的Tensor。
        %704 (int): 转置的维度1。
        %705 (int): 转置的维度2。
    """
S
SunAhong1993 已提交
5790
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5791 5792 5793 5794 5795 5796 5797
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.21
S
SunAhong1993 已提交
5798 5799
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5800 5801
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%704
S
SunAhong1993 已提交
5802 5803
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5804 5805
    dim1 = inputs_name[1]
    # 处理输入2,即%705
S
SunAhong1993 已提交
5806 5807
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5808 5809
    dim2 = inputs_name[2]
    # 获取当前节点输入的list
S
SunAhong1993 已提交
5810
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
5811
    graph.add_layer(
S
SunAhong1993 已提交
5812
        "prim.shape",
S
SunAhong1993 已提交
5813
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
5814 5815
        outputs=[output_name + "_shape"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5816 5817 5818 5819
    current_outputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len",
        inputs={"input": output_name + "_shape"},
S
SunAhong1993 已提交
5820 5821
        outputs=[output_name + "_len"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5822 5823 5824 5825 5826
    current_outputs.append(output_name + "_len")
    current_inputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len2list",
        inputs={"len": output_name + "_len"},
S
SunAhong1993 已提交
5827 5828
        outputs=[output_name + "_list"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5829 5830 5831 5832 5833 5834
    current_outputs.append(output_name + "_list")
    current_inputs.append(output_name + "_len")
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim1},
S
SunAhong1993 已提交
5835 5836
        outputs=[dim1 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5837 5838 5839 5840
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim2},
S
SunAhong1993 已提交
5841 5842
        outputs=[dim2 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5843 5844 5845 5846 5847 5848 5849
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim1 + "_new",
            "item": dim2 + "_new"
        },
S
SunAhong1993 已提交
5850 5851
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
5852 5853 5854 5855 5856 5857 5858
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim2 + "_new",
            "item": dim1 + "_new"
        },
S
SunAhong1993 已提交
5859 5860
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
5861
    graph.add_layer(
S
SunAhong1993 已提交
5862
        "paddle.transpose",
S
SunAhong1993 已提交
5863 5864
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5865
        scope_name=scope_name,
S
SunAhong1993 已提交
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
        perm=output_name + "_list")
    return current_inputs, current_outputs


def aten_to(mapper, graph, node):
    """ 构造类型转换的PaddleLayer。
    TorchScript示例:
        %30 : Tensor = aten::to(%extended_attention_mask.1, %12, %5, %5, %4)
        参数含义:
        %30 (Tensor): 转换后的Tensor。
        %extended_attention_mask.1 (Tensor): 需要转换的Tensor。
        %12 (int): 转换的类型。
    """
S
SunAhong1993 已提交
5879
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5880 5881 5882 5883 5884 5885 5886 5887
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5888 5889
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if len(inputs_name) == 6:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
S
SunAhong1993 已提交
5900
        "paddle.cast",
S
SunAhong1993 已提交
5901 5902
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5903
        scope_name=scope_name,
S
SunAhong1993 已提交
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
        **layer_attrs)
    return current_inputs, current_outputs


def aten_type_as(mapper, graph, node):
    """ 构造转换Tensor类型的PaddleLayer。
    TorchScript示例:
        %57 : Tensor = aten::type_as(%56, %mask.1)
        参数含义:
        %57 (Tensor): 输出,改变类型后的Tensor。
        %56 (Tensor): 需要改变类型的Tensor。
        %mask.1 (Tensor): 转换成与该Tensor相一致的类型。
    """
S
SunAhong1993 已提交
5917
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5918 5919 5920 5921 5922 5923 5924
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%56
S
SunAhong1993 已提交
5925 5926
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5927 5928 5929 5930
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
5931 5932
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5933 5934 5935
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
5936 5937
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5938 5939 5940 5941
    layer_inputs["dtype"] = inputs_name[1] + "_type"
    current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
5942 5943 5944 5945
        "paddle.cast",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
    return current_inputs, current_outputs


def aten_unsqueeze(mapper, graph, node):
    """ 构造插入维度的PaddleLayer。
    TorchScript示例:
        %13 : Tensor = aten::unsqueeze(%12, %7)
        参数含义:
        %13 (Tensor): 输出,插入维度后的Tensor。
        %12 (Tensor): 需要插入维度的Tensor。
        %7 (int): 维度。
    """
S
SunAhong1993 已提交
5958
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5959 5960 5961 5962 5963 5964 5965 5966
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5967 5968
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5969 5970 5971 5972 5973 5974 5975 5976
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5977
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5978 5979 5980
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
5981
        "paddle.unsqueeze",
S
SunAhong1993 已提交
5982 5983
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5984
        scope_name=scope_name,
S
SunAhong1993 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
        **layer_attrs)
    return current_inputs, current_outputs


def aten_upsample_bilinear2d(mapper, graph, node):
    """ 构造使用bilinear上采样的PaddleLayer。
    TorchScript示例:
        %4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
        %4995 (float): 高度的乘数因子。
W
WJJ1995 已提交
5999
        %4996 (float): 宽度的乘数因子。
S
SunAhong1993 已提交
6000
    """
S
SunAhong1993 已提交
6001
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6002 6003 6004 6005 6006 6007 6008 6009
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
6010 6011
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6012 6013 6014 6015 6016 6017 6018 6019
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
6020
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6021 6022 6023 6024 6025 6026
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
S
SunAhong1993 已提交
6027
            scope_name=scope_name,
S
SunAhong1993 已提交
6028
            cls="paddle.fluid.Variable")
S
SunAhong1993 已提交
6029
        # TODO(syf): paddle.Variable
S
SunAhong1993 已提交
6030 6031
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
S
SunAhong1993 已提交
6032 6033
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
S
SunAhong1993 已提交
6034
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
6035
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
6036 6037 6038
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
6039 6040
            outputs=[inputs_name[1]],
            scope_name=scope_name)
S
SunAhong1993 已提交
6041
        if_layer.add_block(block)
W
WJJ1995 已提交
6042
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
6043 6044 6045 6046 6047 6048 6049
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
    # 处理输入2,即%5421
    if inputs_name[2] in mapper.attrs:
        layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
6050
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6051 6052
        layer_inputs["align_corners"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
S
fix2  
SunAhong1993 已提交
6053 6054 6055 6056
    if "size" in layer_attrs and layer_attrs["size"] is None:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
6057
    layer_attrs["align_mode"] = 0
C
channingss 已提交
6058
    layer_attrs["mode"] = string("bilinear")
S
SunAhong1993 已提交
6059 6060 6061 6062
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6063
        scope_name=scope_name,
S
SunAhong1993 已提交
6064 6065 6066
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
6067

S
SunAhong1993 已提交
6068 6069 6070 6071 6072 6073 6074 6075
def aten_upsample_nearest2d(mapper, graph, node):
    """ 构造使用nearest上采样的PaddleLayer。
    TorchScript示例:
        %4997 : Tensor = aten::upsample_nearest2d(%x.13, %4963, %5421, %4995)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
W
WJJ1995 已提交
6076
        %5421 (float): 高度的乘数因子。
S
SunAhong1993 已提交
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
        %4995 (float): 宽度的乘数因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
6088 6089
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
            scope_name=scope_name,
            cls="paddle.fluid.Variable")
        # TODO(syf): paddle.Variable
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
W
WJJ1995 已提交
6113
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
6114 6115 6116 6117 6118 6119
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1]],
            scope_name=scope_name)
        if_layer.add_block(block)
W
WJJ1995 已提交
6120
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer)
S
SunAhong1993 已提交
6121 6122
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
S
fix  
SunAhong1993 已提交
6123
    if "size" in layer_attrs and layer_attrs["size"] is None:
6124
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
fix  
SunAhong1993 已提交
6125
                            current_outputs, scope_name)
6126
        layer_inputs["scale_factor"] = inputs_name[2]
S
SunAhong1993 已提交
6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
    layer_attrs["align_mode"] = 0
    layer_attrs["mode"] = string("nearest")
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
6137

S
SunAhong1993 已提交
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
def aten_values(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %5 : Float(1, *, 1024, 2048)[] = aten::values(%1)
        参数含义:
        %5 (list): 输出,由字典获取的values的list。
        %1 (dict): 字典。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
6154 6155
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6156 6157 6158 6159
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
6160 6161 6162 6163 6164
    graph.add_layer(
        "prim.dict2values",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
6165 6166 6167
    return current_inputs, current_outputs


S
SunAhong1993 已提交
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
def aten_view(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。
    TorchScript示例:
        %input.152 : Tensor = aten::view(%x.20, %430)
        参数含义:
        %input.152 (Tensor): 输出,view后的Tensor。
        %x.20 (Tensor): 需要view的Tensor。
        %430 (list): 形状大小组成的list。
    【注意】view 函数只能用于contiguous后的Tensor上,
          也就是只能用于内存中连续存储的Tensor。
          如果对Tensor调用过transpose,permute等操作的话会使该Tensor在内存中变得不再连续,
          此时就不能再调用view函数。因此,需要先使用contiguous来返回一个contiguous copy。
          reshape则不需要依赖目标Tensor是否在内存中是连续的。
    """
S
SunAhong1993 已提交
6182
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6183 6184 6185 6186 6187 6188 6189 6190
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.20
S
SunAhong1993 已提交
6191 6192
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6193 6194 6195 6196 6197 6198 6199 6200
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%430
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
6201
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6202 6203 6204
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
6205
        "paddle.reshape",
S
SunAhong1993 已提交
6206 6207
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6208
        scope_name=scope_name,
S
SunAhong1993 已提交
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
        **layer_attrs)
    return current_inputs, current_outputs


def aten_warn(mapper, graph, node):
    """ 构造warning的PaddleLayer。
    TorchScript示例:
        = aten::warn(%3, %2)
        参数含义:
        %3 (str): warning的提示字符串。
        %2 (int): warning的stacklevel。
    """
S
SunAhong1993 已提交
6221
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6222 6223 6224 6225 6226 6227 6228 6229
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3
S
SunAhong1993 已提交
6230 6231
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6232 6233 6234 6235 6236 6237 6238 6239
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2
    if inputs_name[1] in mapper.attrs:
        layer_attrs["stacklevel"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
6240
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6241 6242 6243 6244 6245 6246 6247
        layer_inputs["stacklevel"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "prim.warnings",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6248
        scope_name=scope_name,
S
SunAhong1993 已提交
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
        **layer_attrs)
    return current_inputs, current_outputs


def aten_where(mapper, graph, node):
    """ 构造返回一个根据输入condition, 选择x或y的元素组成的多维Tensor的PaddleLayer,该节点实现out = x + y。
    TorchScript示例:
        %input.4 : Tensor = aten::where(%209, %w0.2, %210)
        参数含义:
        %input.4 (Tensor): 选择的结果。
        %209 (Tensor): 条件。
        %w0.2 (Tensor): 输入数值 x。
        %210 (Tensor): 输入数值 y。
    """
S
SunAhong1993 已提交
6263
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6264 6265 6266 6267 6268 6269 6270
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%209
S
SunAhong1993 已提交
6271 6272
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6273 6274
    layer_inputs["condition"] = inputs_name[0]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
6275 6276
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6277 6278
    layer_inputs["x"] = inputs_name[1]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
6279 6280
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6281 6282 6283 6284
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
6285 6286 6287 6288 6289
    graph.add_layer(
        "paddle.where",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
    return current_inputs, current_outputs


def aten_zeros(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %input.49 : Tensor = aten::zeros(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
6305
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
6319
                            current_outputs, scope_name)
S
SunAhong1993 已提交
6320 6321 6322 6323 6324 6325 6326 6327 6328
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6329
        scope_name=scope_name,
S
SunAhong1993 已提交
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
        **layer_attrs)
    return current_inputs, current_outputs


def aten_zeros_like(mapper, graph, node):
    """ 构造创建与输入Tensor形状一致的、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %782 : Tensor = aten::zeros_like(%n.2, %655, %670, %662, %671, %672)
        参数含义:
        %782 (Tensor): 输出,全0的Tensor。
        %n.2 (Tensor): 标准Tensor。
        %655 (int): 类型dtype。
        %670 (int): layout。
        %662 (Device): 设备。
        %671 (bool): 是否计算梯度。
        %672 (memory_format): 存储类型。
    """
S
SunAhong1993 已提交
6347
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
6348 6349 6350 6351 6352 6353 6354 6355
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.2
S
SunAhong1993 已提交
6356 6357
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%655,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
6368
        scope_name=scope_name,
S
SunAhong1993 已提交
6369 6370
        **layer_attrs)
    return current_inputs, current_outputs