optimizer.py 2.3 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.optimizer.pass_manager import PassManager
S
SunAhong1993 已提交
16 17 18
from x2paddle.optimizer.fusion import *
from x2paddle.optimizer.elimination import *

S
SunAhong1993 已提交
19 20

class GraphOptimizer(object):
S
SunAhong1993 已提交
21
    def __init__(self, source_frame, jit_type="trace"):
S
SunAhong1993 已提交
22
        if source_frame == "pytorch":
S
SunAhong1993 已提交
23
            if jit_type == "trace":
S
SunAhong1993 已提交
24
                self.passes = ["trace_fc_fuse_pass"]
S
SunAhong1993 已提交
25 26
            else:
                self.passes = [
S
SunAhong1993 已提交
27 28 29 30
                    "constant_fuse_pass", "batchnorm2d_fuse_pass",
                    "interpolate_bilinear_fuse_pass", "fc_fuse_pass",
                    "adaptive_pool2d_fuse_pass", "reshape_fuse_pass",
                    "dropout_fuse_pass", "if_fuse_pass"
S
SunAhong1993 已提交
31
                ]
S
SunAhong1993 已提交
32
        elif source_frame == "caffe":
S
SunAhong1993 已提交
33
            self.passes = ["bn_scale_fuse_pass"]
S
SunAhong1993 已提交
34
        elif source_frame == "tf":
S
SunAhong1993 已提交
35 36 37 38
            self.passes = [
                "conv2d_add_fuse_pass", "tf_batchnorm_fuse_pass",
                "prelu_fuse_pass", "transpose_eliminate_pass"
            ]
W
wjj19950828 已提交
39 40
        elif source_frame == "onnx":
            self.passes = ["onnx_layernorm_fuse_pass"]
S
SunAhong1993 已提交
41
        else:
S
SunAhong1993 已提交
42
            self.passes = []
S
SunAhong1993 已提交
43 44 45 46

    def optimize(self, graph):
        for pass_name in self.passes:
            pass_ = PassManager.lookup(pass_name)()
S
SunAhong1993 已提交
47 48
            if pass_name.endswith("_eliminate_pass") or pass_name.endswith(
                    "conv2d_add_fuse_pass"):
S
SunAhong1993 已提交
49
                pass_.apply(graph)
S
SunAhong1993 已提交
50 51 52 53 54 55 56
            else:
                while True:
                    before_len = len(graph.layers)
                    pass_.apply(graph)
                    after_len = len(graph.layers)
                    if before_len == after_len:
                        break
S
SunAhong1993 已提交
57 58
            print("{} done!".format(pass_name))
        return graph