im2sequence.py 3.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
import onnx
import numpy as np
from onnx import onnx_pb, helper

im2seq_counter = 0


def im2sequence(op, block):
    global im2sequence_counter
    n, c, h, w = block.var(op.input('X')[0]).shape
    assert h > 0 and w > 0, "Only supported fixed input shape for im2sequence operator."
    stride_h, stride_w = op.attr('strides')
    paddings = op.attr('paddings')
    assert op.attr(
        'out_stride'
    ) != 1, "Only out_stride==1 is supported for im2sequence operator."
    h = h + paddings[0] + paddings[1]
    w = w + paddings[1] + paddings[2]
    kernel_h, kernel_w = op.attr('kernels')
    out_h = 1 + (h - kernel_h + stride_h - 1) // stride_h
    out_w = 1 + (w - kernel_w + stride_w - 1) // stride_w
    h_steps = list()
    for i in range(out_h):
        h_steps.append([i * stride_h, i * stride_h + kernel_h])
    w_steps = list()
    for i in range(out_w):
        w_steps.append([i * stride_w, i * stride_w + kernel_w])

    nodes = list()
    slice_blocks = list()
    for i in range(out_h):
        for j in range(out_w):
J
jiangjiajun 已提交
33 34
            starts_name = "im2sequence.starts.{}.{}.{}".format(im2seq_counter,
                                                               i, j)
J
jiangjiajun 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
            starts_tensor = helper.make_tensor(
                name=starts_name,
                data_type=onnx_pb.TensorProto.INT64,
                dims=[4],
                vals=[0, 0, h_steps[i][0], w_steps[j][0]])
            ends_name = "im2sequence.ends.{}.{}.{}".format(im2seq_counter, i, j)
            ends_tensor = helper.make_tensor(
                name=ends_name,
                data_type=onnx_pb.TensorProto.INT64,
                dims=[4],
                vals=[999999, 999999, h_steps[i][1], w_steps[j][1]])
            starts_node = helper.make_node(
                'Constant',
                inputs=[],
                outputs=[starts_name],
                value=starts_tensor)
            ends_node = helper.make_node(
                'Constant', inputs=[], outputs=[ends_name], value=ends_tensor)
            nodes.extend([starts_node, ends_node])

            slice_block_name = "im2sequence.slice.{}.{}.{}".format(
                im2seq_counter, i, j)
            slice_block_node = helper.make_node(
                'Slice',
                inputs=[op.input('X')[0], starts_name, ends_name],
                outputs=[slice_block_name])
            flatten_block_name = "im2sequence.flatten.{}.{}.{}".format(
                im2seq_counter, i, j)
            flatten_block_node = helper.make_node(
                "Flatten",
                inputs=[slice_block_name],
                outputs=[flatten_block_name],
                axis=0)
            nodes.extend([slice_block_node, flatten_block_node])
            slice_blocks.append(flatten_block_name)
    concat_block_name = "im2sequence.concat_block.{}".format(im2seq_counter)
    #    concat_block_node = helper.make_node("Concat", inputs=slice_blocks, outputs=[concat_block_name], axis=0)
    concat_block_node = helper.make_node(
        "Concat", inputs=slice_blocks, outputs=op.output('Out'), axis=0)
    nodes.append(concat_block_node)
    print("\n\n==========Importance Notice===========")
    print(
        "Since im2sequence operator is used in your paddlepaddle model, the translated onnx model only support input data with batch_size=1."
    )
    print("======================================\n")
    return nodes